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Highlights 

• Traditional knowledge has helped indigenous communities live sustainably 

• Traditional knowledge improves environmental and sustainable governance outcomes 

• Gender-inclusive governance has shown progressive resource management outcomes 

• Young people are starting to document traditional ecological knowledge digitally 

• Policy reforms should formally acknowledge the value of traditional knowledge 

 

Abstract 

This study presents an analysis of a chemically reactive magnetohydrodynamic (MHD) third-grade fluid flowing through 

a cylindrical pipe. The combined effects of a radially applied magnetic field, variable viscosity, and Joule heating are 

examined to provide valuable insights into the fluid’s behaviour, with important implications for optimising industrial 

processes and enhancing the performance of systems that utilise MHD fluids. The coupled governing equations are 

formulated, and the Reynolds viscosity model is adopted and approximated using Taylor series expansion. The 

resulting non-linear dimensionless equations are solved numerically using the Galerkin weighted residual method. A 

parametric study of the relevant physical parameters is presented graphically and discussed. The results indicate that 

the velocity profile exhibits an inverse relationship with the magnetic parameter, while the Bejan number increases with 

increasing magnetic parameter and decreases with increasing Hall parameter. 
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Highlights 

• The study analyses how a reactive magnetohydrodynamic third grade fluid flows through a cylindrical pipe 

when magnetic field, variable viscosity, and Joule heating are present. 

• A Reynolds-type variable viscosity model is applied and the resulting nonlinear equations are solved 

numerically using the Galerkin weighted residual method. 

• The results show that increasing magnetic and Hall parameters significantly influences the velocity distribution 

of the fluid. 

• Fluid temperature increases with higher Eckert and Prandtl numbers due to stronger viscous dissipation and 

heat transfer effects. 

• Entropy analysis indicates that heat transfer irreversibility dominates the flow, with the Bejan number 

increasing as the magnetic parameter increases. 
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1.0 Introduction 

Magnetohydrodynamic (MHD) flows in rectangular and cylindrical systems continue to attract significant interest in the 

fields of engineering science and applied mathematics. This interest arises from their numerous important applications 

in biological and engineering industries, such as reactive polymer flows, crude oil extraction, synthetic fibre production, 

paper manufacturing, as well as absorption and filtration processes in chemical engineering (Chinyoka & Makinde, 

2010). The dynamics of reactive fluids flowing through pipes at low Reynolds numbers has long been an important 

subject in environmental engineering and science. 

The steady flow of a reactive variable-viscosity fluid in a cylindrical pipe with an isothermal wall was studied by Makinde 

(2007), who reported the dependence of steady-state thermal ignition criticality conditions on both the Frank-

Kamenetskii and viscous heating parameters. Makinde et al. (2013) numerically investigated entropy generation rates 

in the unsteady flow of a variable-viscosity incompressible fluid through a porous pipe with uniform suction at the 

surface. Ajadi (2009) obtained closed-form solutions using the homotopy analysis method to study the effects of 

variable viscosity and viscous dissipation on the thermal stability of a one-step exothermic reactive non-Newtonian flow 

in a cylindrical pipe, assuming negligible reactant consumption. In 2013, Aiyesimi et al. considered a mathematical 

model for dusty viscoelastic fluid flow in a circular channel and observed that increasing the magnetic field strength and 

viscoelastic parameter reduced the horizontal velocity of both the fluid and particles, thereby decreasing the boundary-

layer thickness and increasing the absolute value of the velocity gradient at the surface. Srihari and Avinash (2015) 

examined the effects of radiation on unsteady MHD flow of a chemically reacting fluid past a hot vertical porous plate 

using a finite difference approach. They reported that the temperature and velocity of the fluid increase with increasing 

heat generation parameter, while both temperature and velocity decrease with increasing radiation parameter, and that 

fluid temperature increases with increasing Eckert number. 

The effects of Hall current and chemical reaction on hydromagnetic flow over a stretching vertical surface with internal 

heat generation or absorption were investigated by Salem and Abd El-Aziz (2008). A finite element solution for heat 

and mass transfer flow incorporating Hall current, heat source, and viscous dissipation was presented by Sivaiah and 

Raju (2013). 

Shateyi and Marewo (2014) employed a computational iterative approach known as the Spectral Local Linearisation 

Method (SLLM), combined with the Chebyshev spectral method, to study the effects of Hall current on MHD flow and 

heat transfer over an unsteady stretching permeable surface in the presence of thermal radiation and heat source or 

sink. Aiyesimi et al. (2015) presented a similarity solution for the hydromagnetic boundary-layer flow of a nanofluid past 

a stretching sheet embedded in a Darcian porous medium with radiation, using the Adomian decomposition method. 

Second law thermodynamic analysis and its design-related concept of entropy generation minimisation have become 

cornerstones in the field of heat transfer and thermal design. Several researchers have been motivated to investigate 

fundamental and applied engineering problems using second law analysis, owing to entropy production resulting from 

the combined effects of velocity and temperature gradients. Entropy generation is closely associated with 

thermodynamic irreversibility, which is inherent in all heat transfer processes. Eegunjobi and Makinde (2012) 

investigated the combined effects of buoyancy force and Navier slip on the entropy generation rate in a vertical porous 

channel with wall suction or injection. Chinyoka and Makinde (2013) studied the combined effects of Navier slip, 

convective cooling, variable viscosity, and suction or injection on the entropy generation rate in the unsteady flow of an 

incompressible viscous fluid through a channel with permeable walls. 

In this paper, the motivation arises from the desire to gain a deeper understanding of the combined effects of a radially 

applied magnetic field and Hall current on the flow of a chemically reactive third-grade fluid. The relevant governing 

equations are solved numerically using the Galerkin weighted residual method (Finlayson, 1972; Jain, 1984; Cicelia, 

2014; Keskin, 2019). The effects of various governing parameters on velocity, temperature, and concentration are 

presented and discussed. In addition, the entropy generation rate of a laminar MHD flow of a reactive third-grade fluid 

is analysed in a circular pipe, which is assumed to be electrically conducting and incompressible, in the presence of an 

externally applied radially exponential magnetic field. 
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2.0 Mathematical Formulation 

A steady flow of electrically conducting, incompressible, third grade fluid with variable viscosity of Reynold’s type 

0( )n T T
e − −

=
  in a non-conducting circular pipe in the absence of gravitational force is considered. The z-axis is taken 

along the axis of flow. A radially exponential varying magnetic field  
2

0 
r

R
rB B e=

 is applied (Sahadeb, 1973) with Joule 

heating and no electric field is applied. The flow is induced due to constant applied pressure gradient in the z-direction 

and electron-atom collision frequency is assumed to be relatively high compared to the collision frequency of ions. The 

equations which govern the MHD flow are the continuity, momentum and Maxwell equations. In fluid dynamics studies, 

it is assumed that the flows meet the Clausius-Duhem inequality, and the specific Helmholtz free energy of fluid has a 

minimum at equilibrium (Rajagopal, 1980). Using the velocity field  
(0,  0, w( )),V r=

 the incompressibility condition 

is satisfied identically and momentum and Maxwell equations after the constitutive equations   
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(Ellahi & Riaz, 2010; Reddy, et al. 2013) and the stated assumptions give    
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with the boundary conditions  
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 are fluid velocity, fluid 

temperature, applied magnetic field strength, modified pressure, electrical conductivity, Hall parameter, thermal 
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conductivity, thermal radiation, molecular diffusivity, thermal diffusivity, specific heat capacity, chemical reaction rate 

constant, reference temperature, wall temperature, reference concentration and wall concentration. For the 

temperature dependent viscosity, considering the Reynold’s model 
( )0n T T

e
− −

=  and following Ellahi (2013) we 

have 
B

e



−

= . The Taylor series expansion is used which gives  
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0
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B n T T= −  and assuming that 1B  , then higher order terms can be neglected. 

Introducing the following non-dimensional quantities (Ellahi, 2013) into (2.2) to (2.5) and the boundary conditions  
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and using Rosseland’s approximation  
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* * * , , ,  , , ,  , , , ,S , , ,r c H u H p c RM c P E Q D J R K    denotes third grade parameter, magnetic parameter, 

pressure drop, Prandtl number, Eckert number, heat source/sink parameter, material constant parameter, Dufour 

number, radiation parameter, Schmidt number, chemical reaction parameter, Stefan-Boltzmann constant and mean 



Akinremi, B.V. (2026)  Journal of Education, Science and Technology, (1)1. 111-123 

115 | P a g e  
 

absorption coefficient. For steady flow, the time dependent terms are set to zero and the following equations were 

obtained respectively with the boundary conditions    
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Equations (2.8), (2.9), (2.10) and (2.11) comprise the boundary value problem to now be solved. 

3.0 Method of Solution (Galerkin Weighted Residual) 

Suppose an approximate solution is to be determined for the differential equation of the form    

  ( ) 0   L f + =         (3.1) 

where ( )x   is an unknown dependent variable,  L  is a differential operator and  ( )f x  is a known function. Let   
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N

i i

i

x c u x
=

= be an approximate solution to (2.8). On substituting ( )x   into (2.8), it is unlikely that (2.8) is 
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satisfied i.e. ( ) 0     L f +   therefore              

     ( )                L f R + =       (3.2) 

where ( )R x  is a measure of error called the Residual (Baluch, 1983, Jain, 1984). Multiplying (3.2) by an arbitrary 

weight function ( )u x  and integrating over the domain to obtain 

     ( ) ( ) ( ) ( ) 0
D D
u x L f dD u x R x dD + =        (3.3) 

Galerkin Weighted Residual method ensures equation (3.3) vanishes over the solution domain and the weight function 

is chosen from the basic functions ( ) ( )   ( 0,..., )iu x u x i N= =  hence   
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These are a set of n-order linear equations to be solved to obtain all the ic  coefficients. The trial functions can be 

polynomials, trigonometric functions etc. The trial functions are usually chosen in such that the assumed function   

( )x satisfies the global boundary conditions for ( )x  though this is not strictly necessary and certainly not always 

possible (Finlayson, 1972).  To apply the method to (2.8)-(2.10), we select an approximate solutions of the form  
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concentration respectively, which satisfies the boundary conditions (2.11). Applying the boundary conditions on the 

approximate solution we obtain the following: 
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The residue R for (2.7) -(2.9) respectively are given by  
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Considering the orthogonality of the residues above, we have 
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The symbolic calculation software MAPLE 2022 is used to compute the values of 1 1 1, ,a b c and the approximate 

solutions. 

 

4.0 Irreversibility Ratio 
Inherent irreversibility in a pipe flow occurs owing to exchange of energy and momentum within the fluid and the solid 

boundaries. The entropy generation is owed to heat transfer and the effects of fluid friction. The equation for rate of 

entropy generation per unit volume (Makinde et al., 2013; Chinyoka & Makinde, 2013) is given 
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       (4.1) 

where the first term in (4.1) is the irreversibility due to heat transfer, the second and third terms are entropy generation 

due to viscous dissipation. Introducing the dimensionless quantities in (2.6) to (4.1), we have 
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      (4.3) 

where IhfN  is irreversibility due to heat transfer and SvdN gives entropy generation due to viscous dissipation. The 

Bejan number is defined as 
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Ihf

e

Svd

N
B

N
=         (4.4) 

such that 0 1eB   denoting 1eB =  is the limit at which heat transfer irreversibility dominates , 0eB =  is the limit at 

which fluid friction irreversibility dominates, and 1

2
eB = connotes equal contribution.(Bejan, 1996) 

5.0 Results 
In this investigation, the application of a radially exponential magnetic field to reactive MHD third grade fluid flow in 

the presence of Joule heating and variable viscosity using the Galerkin weighted residual method was considered. 

The velocity, temperature and chemical functions are analysed by computing their numerical values and plotting their 

respective graphs against various thermophysical variables of interest. 
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Figure 6 Temperature profile for various values of 

Prandtl number 

 

 

 

Figure 1 Velocity Profile for various valves of Magnetic 

parameter 

Figure 2 Velocity Profile for various valves of Hall 

parameter 

Figure 3 Velocity profile for various values of Third 

grade parameter 

Figure 4 Velocity profile for various values of radiation 

parameter 
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Figure 10 Variation of Bejan number for various 

values of Eckert number 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 5 Temperature profile for various values of 

Eckert number 

Figure 9 Variation of Bejan number for various values 

of Magnetic parameter 
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6.0 Discussion 
Figures 1 to 4 illustrates the effect of magnetic, Hall, third grade and radiation parameters on velocity profiles for steady 

MHD fluid flow with radially applied magnetic field and variable viscosity. In Figure 1, magnetic parameter was varied 

between 𝑀 = 1  and 𝑀 = 10,  while other parameters were held constant that is Λ = 0.1, 𝐵𝑐 = 1, 𝑚 = 1, 𝐸𝑐 = 0.1, 𝐽𝐻 =

0.71, 𝑄𝐻 = 0.1, 𝑃𝑟 = 0.72 𝑎𝑛𝑑 𝑅𝑝 = 0.1 , result showed that magnetic parameter enhances the velocity as it reduces and 

converging to zero at 𝜂 = 1. In Figure 2, Hall parameter was varied between 𝑚 = 0.1  and 𝑚 = 10,  while other 

parameters were held constant that is  Λ = 0.1, 𝐵𝑐 = 1, 𝑀 = 0.1, 𝐸𝑐 = 0.1, 𝐽𝐻 = 0.71, 𝑄𝐻 = 0.1, 𝑃𝑟 = 0.72 𝑎𝑛𝑑 𝑅𝑝 = 0.1 , 

result showed that the Hall parameter enhances the flow field as it increases. Figure 3 shows that decreasing the 

thirdgrade parameter enhances the velocity profile, when varying the third grade parameter between Λ = 1  and Λ =

10,  while other parameters were held constant that is M = 1, 𝐵𝑐 = 1, 𝑚 = 1, 𝐸𝑐 = 0.1, 𝐽𝐻 = 0.71, 𝑄𝐻 = 0.1, 𝑃𝑟 =

0.72 𝑎𝑛𝑑 𝑅𝑝 = 0.1.  In Figure 4, radiation parameter was varied between 𝑅𝑝 = 0.1  and 𝑅𝑝 = 0.4,  while other parameters 

were held constant that is Λ = 0.1, 𝐵𝑐 = 1, 𝑚 = 1, 𝐸𝑐 = 0.1, 𝐽𝐻 = 0.71, 𝑄𝐻 = 0.1, 𝑃𝑟 = 0.72 𝑎𝑛𝑑 𝑀 = 1 , result showed that 

radiation has the tendency of increasing the flow profile as it increases. 

Figures 5 and 6 show the effect of Eckert and Prandtl number on temperature profile. It is observed that increase in 

Eckert and Prandtl number enhances the temperature profile when varied between 𝐸𝑐 = 0.1  and 𝐸𝑐 = 100,  and 𝑃𝑟 =

0.07 𝑎𝑛𝑑 𝑃𝑟 = 250 respectively. Figure 7 depicts chemical reaction parameter impeding the concentration profile with 

higher magnitude of influence when 𝐾𝑟 = 1  when varied between  𝐾𝑟 = 1 and 𝐾𝑟 = 4. Schmidt number enhances the 

concentration profile with higher magnitude of influence at 𝑆𝑐 = 100 when varied from 𝑆𝑐 = 0.5 and 𝑆𝑐 = 100, while 

keeping other parameters is Λ = 0.1, 𝐵𝑐 = 1, 𝑚 = 1, 𝐸𝑐 = 0.1, 𝑅𝑝 = 0.4, 𝐾𝑟 = 1, 𝐽𝐻 = 0.71, 𝑄𝐻 = 0.1, 𝑃𝑟 = 0.72 𝑎𝑛𝑑 𝑀 = 1 

constant. 

Figures 9 to 12 indicate that the irreversibility due to heat transfer dominates from the centreline of the pipe for Magnetic 

parameter, Eckert number, Dufour number and Prandtl number respectively. Figure 9 shows that the Bejan number 

increases with increase in magnetic parameter varied between 𝑀 = 1 𝑎𝑛𝑑 𝑀 = 10 for constant parameters Λ =

0.1, 𝐵𝑐 = 1, 𝑚 = 0.1, 𝐸𝑐 = 0.1, 𝐽𝐻 = 0.71, 𝑄𝐻 = 0.1, 𝑃𝑟 = 0.72 𝑎𝑛𝑑 𝑅𝑝 = 0.1, while figure 10 describes increasing the 

Eckert number varied between 𝐸𝑐 = 5 𝑎𝑛𝑑 𝐸𝑐 = 20 for constant parameters Λ = 0.1, 𝐵𝑐 = 1, 𝑚 = 0.1, 𝑀 = 1, 𝐷𝑢𝑓 = 0.1,

𝐽𝐻 = 0.71, 𝑄𝐻 = 0.1, 𝑃𝑟 = 0.72 𝑎𝑛𝑑 𝑅𝑝 = 0.1 increases the Bejan number.  The Dufour and Prandtl numbers were varied 

between 0.1 to 0.5, and 0.72 to 5 respectively against the Bejan number, increase in both Dufour and Prandtl numbers 

showed appreciable increase in Bejan number which is maximum at at the pipe centre line and decreases close to the 

pipe wall.  


 

( )w 
 

RK4 

( )w 
 

GM 

( ) 
 

RK4 

( ) 
 

GM 

( ) 
 

 RK4 

( ) 
 

GM 

0 0.2426873919 0.242897239 0 0 0 0 

0.2 0.2329296447 0.233181350 0.212145367 0.228824682 0.274100248 0.485904134 

0.4 0.1974790573 0.184256705 0.418372663 0.443237038 0.497472225 0.828856201 

0.6 0.1483545360 0.140386061 0.618504523 0.643237038 0.685937704 1.028856201 

0.8 0.0825577950 0.078967159 0.814154594 0.828824692 0.850546605 1.085904134 

1.0 0 0 1.0 1.0 1.0 1.0 

Table 6: Comparison of GM Result for Steady Flow with Radial Magnetic Field and Variable Viscosity with RK4  
 

Table 6 shows the computational result comparison between the Galerkin Weighted Residual method solution and 

Runge Kutta method solution for the velocity, temperature and concentration profiles respectively for
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0.1, Re 0.2, 0.5, 0.6,Pr 0.72, 1H H c u r c HM m Q R E D Bi a S S J = = = = = = = = = = = = = =  = . The two solutions can 

be seen to have good agreement.  

7.0 Conclusion 
In this numerical investigation, the irreversibility ratio of a steady reactive magnetohydrodynamic third-grade fluid flow 

in a circular pipe is presented using the Galerkin method. Numerical expressions for the velocity, temperature and 

concentration were obtained which were used to compute the entropy generation number. Special emphasis has been 

focused here to the variations of pertinent parameters of physical significance on the Bejan number. The main findings 

of the present analysis are: 

• The velocity is enhanced for increasing values of ,R pm  and inhibited for ,M   

• The temperature is enhanced for values of ,PrEc  and inhibited for Pr,Re and Du  

• The concentration is enhanced for values of cS  and inhibited for rK  

• , ,c uM E D  and Pr  enhances the Bejan number showing the dominance of irreversibility due to heat transfer 

over entropy generation due to viscous dissipation in the flow regime. 

8.0 Ethical Considerations 

Not applicable, as the research does not involve living subjects or sensitive data. 

9.0 Limitations 
Not applicable.  
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