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Highlights

e The study analyses how a reactive magnetohydrodynamic third grade fluid flows through a cylindrical pipe
when magnetic field, variable viscosity, and Joule heating are present.

e A Reynolds-type variable viscosity model is applied and the resulting nonlinear equations are solved
numerically using the Galerkin weighted residual method.

e The results show that increasing magnetic and Hall parameters significantly influences the velocity distribution
of the fluid.

e Fluid temperature increases with higher Eckert and Prandtl numbers due to stronger viscous dissipation and
heat transfer effects.

e Entropy analysis indicates that heat transfer irreversibility dominates the flow, with the Bejan number
increasing as the magnetic parameter increases.

Abstract

This study presents an analysis of a chemically reactive magnetohydrodynamic (MHD) third-grade fluid flowing through
a cylindrical pipe. The combined effects of a radially applied magnetic field, variable viscosity, and Joule heating are
examined to provide valuable insights into the fluid’s behaviour, with important implications for optimising industrial
processes and enhancing the performance of systems that utilise MHD fluids. The coupled governing equations are
formulated, and the Reynolds viscosity model is adopted and approximated using Taylor series expansion. The
resulting non-linear dimensionless equations are solved numerically using the Galerkin weighted residual method. A
parametric study of the relevant physical parameters is presented graphically and discussed. The results indicate that
the velocity profile exhibits an inverse relationship with the magnetic parameter, while the Bejan number increases with
increasing magnetic parameter and decreases with increasing Hall parameter.
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1.0 Introduction

Magnetohydrodynamic (MHD) flows in rectangular and cylindrical systems continue to attract significant interest in the
fields of engineering science and applied mathematics. This interest arises from their numerous important applications
in biological and engineering industries, such as reactive polymer flows, crude oil extraction, synthetic fibre production,
paper manufacturing, as well as absorption and filtration processes in chemical engineering (Chinyoka & Makinde,
2010). The dynamics of reactive fluids flowing through pipes at low Reynolds numbers has long been an important
subject in environmental engineering and science.

The steady flow of a reactive variable-viscosity fluid in a cylindrical pipe with an isothermal wall was studied by Makinde
(2007), who reported the dependence of steady-state thermal ignition criticality conditions on both the Frank-
Kamenetskii and viscous heating parameters. Makinde et al. (2013) numerically investigated entropy generation rates
in the unsteady flow of a variable-viscosity incompressible fluid through a porous pipe with uniform suction at the
surface. Ajadi (2009) obtained closed-form solutions using the homotopy analysis method to study the effects of
variable viscosity and viscous dissipation on the thermal stability of a one-step exothermic reactive non-Newtonian flow
in a cylindrical pipe, assuming negligible reactant consumption. In 2013, Aiyesimi et al. considered a mathematical
model for dusty viscoelastic fluid flow in a circular channel and observed that increasing the magnetic field strength and
viscoelastic parameter reduced the horizontal velocity of both the fluid and particles, thereby decreasing the boundary-
layer thickness and increasing the absolute value of the velocity gradient at the surface. Srihari and Avinash (2015)
examined the effects of radiation on unsteady MHD flow of a chemically reacting fluid past a hot vertical porous plate
using a finite difference approach. They reported that the temperature and velocity of the fluid increase with increasing
heat generation parameter, while both temperature and velocity decrease with increasing radiation parameter, and that
fluid temperature increases with increasing Eckert number.

The effects of Hall current and chemical reaction on hydromagnetic flow over a stretching vertical surface with internal
heat generation or absorption were investigated by Salem and Abd EI-Aziz (2008). A finite element solution for heat
and mass transfer flow incorporating Hall current, heat source, and viscous dissipation was presented by Sivaiah and
Raju (2013).

Shateyi and Marewo (2014) employed a computational iterative approach known as the Spectral Local Linearisation
Method (SLLM), combined with the Chebyshev spectral method, to study the effects of Hall current on MHD flow and
heat transfer over an unsteady stretching permeable surface in the presence of thermal radiation and heat source or
sink. Aiyesimi et al. (2015) presented a similarity solution for the hydromagnetic boundary-layer flow of a nanofluid past
a stretching sheet embedded in a Darcian porous medium with radiation, using the Adomian decomposition method.

Second law thermodynamic analysis and its design-related concept of entropy generation minimisation have become
cornerstones in the field of heat transfer and thermal design. Several researchers have been motivated to investigate
fundamental and applied engineering problems using second law analysis, owing to entropy production resulting from
the combined effects of velocity and temperature gradients. Entropy generation is closely associated with
thermodynamic irreversibility, which is inherent in all heat transfer processes. Eegunjobi and Makinde (2012)
investigated the combined effects of buoyancy force and Navier slip on the entropy generation rate in a vertical porous
channel with wall suction or injection. Chinyoka and Makinde (2013) studied the combined effects of Navier slip,
convective cooling, variable viscosity, and suction or injection on the entropy generation rate in the unsteady flow of an
incompressible viscous fluid through a channel with permeable walls.

In this paper, the motivation arises from the desire to gain a deeper understanding of the combined effects of a radially
applied magnetic field and Hall current on the flow of a chemically reactive third-grade fluid. The relevant governing
equations are solved numerically using the Galerkin weighted residual method (Finlayson, 1972; Jain, 1984; Cicelia,
2014; Keskin, 2019). The effects of various governing parameters on velocity, temperature, and concentration are
presented and discussed. In addition, the entropy generation rate of a laminar MHD flow of a reactive third-grade fluid
is analysed in a circular pipe, which is assumed to be electrically conducting and incompressible, in the presence of an
externally applied radially exponential magnetic field.
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2.0 Mathematical Formulation

A steady flow of electrically conducting, incompressible, third grade fluid with variable viscosity of Reynold’s type
—_ @ "(T-To)
u=e in a non-conducting circular pipe in the absence of gravitational force is considered. The z-axis is taken

r
along the axis of flow. A radially exponential varying magnetic field B, = Bye*f is applied (Sahadeb, 1973) with Joule
heating and no electric field is applied. The flow is induced due to constant applied pressure gradient in the z-direction
and electron-atom collision frequency is assumed to be relatively high compared to the collision frequency of ions. The
equations which govern the MHD flow are the continuity, momentum and Maxwell equations. In fluid dynamics studies,
it is assumed that the flows meet the Clausius-Duhem inequality, and the specific Helmholtz free energy of fluid has a

minimum at equilibrium (Rajagopal, 1980). Using the velocity field V= (O’ 0, W(I’)), the incompressibility condition
is satisfied identically and momentum and Maxwell equations after the constitutive equations

T =—pl +uA +a A+, A+ LA+ B (AN +AA)+BFADA + 1A +7,(AA +AA)
+7:A 7 (AN + ACA) + 75 (trA) A, + 7 (A AY +(7,trA, + 7t (ALA)) A,

r

A = gradV +(gradV)’

(2.1)
A :%+ A L+LU'A,, (n>1
(Ellahi & Riaz, 2010; Reddy, et al. 2013) and the stated assumptions give
_ _\3 r_
1d( —_.dw) 28, d| [dw op oBeRw
-~ r,Ll(T)— _|_ﬁ_ rl =—— __p_0—2:O 2.2)
rdr dr rodr dr oz 1+m
dw) dw) [dT 1dT dq ‘,
uT)| =—| +28,| — | +k| —+==—[+Q,(T -T,)-—*+oBZ%rw
A1) dr by r {dr2 r dr} Q(T-To) dr 0
, (2.3)
,Du(dC 1dC)
c, \dr® rdr
_ 2 2
—Wd—C+ D, d (23+£d_C 4+ Do d -[ +1d—T -k, (C-C,)=0 (2.4)
dr dr® r dr T, Ldr® rdr
with the boundary conditions
@:o,T(r):T,C(r):C at r=0
dr ° ° (2.5)

w(r)=0, T(r)=T,, C(r)=C, at r=R

p* !

2
- dw
where W, T, By, p=—p+o{W ,o,mKk,q,D,,4,c,.k.,T,.T,,Cy,C, are fluid velocity, fluid
temperature, applied magnetic field strength, modified pressure, electrical conductivity, Hall parameter, thermal

113 |Page



Akinremi, B.V. (2026) Journal of Education, Science and Technology, (1)1. 111-123

conductivity, thermal radiation, molecular diffusivity, thermal diffusivity, specific heat capacity, chemical reaction rate
constant, reference temperature, wall temperature, reference concentration and wall concentration. For the

(T-To)

-n
temperature dependent viscosity, considering the Reynold’s model 1 =€ and following Ellahi (2013) we

-BY
have U = € . The Taylor series expansion is used which gives

(BY)?

2
u=1- BH+T+O(¢93), (BO)

1oy BO+-——+0(8%)
y7; 2

where B = n(TW —TO) and assuming that |Bg| <1, then higher order terms can be neglected.

Introducing the following non-dimensional quantities (Ellahi, 2013) into (2.2) to (2.5) and the boundary conditions

w=wWw, r=Rp, T=(T,-T,)0+T,, C=(C,-C,)x+C,

2 2p2 2 Aa c 2 2
A:2,B3V\£0’M:O'BOR o= R @, r:,Uo P E = W ,QHZQSR ,
MR Wotly HoWy 0T k ¢, (Ty—To) k
2p2 4
D= DmﬂT(Cw_CO) ,J — O-BOR CP , R :160-*pCPT0 ’ R = 1 D= KCRZ, (2.6)
Y oke(T,-T) T Ok(T,-T) P 35.k 1+R, D,

:WOR S = Dm;lT(TW_TO)

S

"D, T,Rw,(C,-C,)

m

and using Rosseland’s approximation

q = — 40-* ﬂ
' 30. or

2.7)

AM,c, PLE,,Qy, B, D, Jy, Rp,SC,KR,G*,é‘* denotes third grade parameter, magnetic parameter,

pressure drop, Prandtl number, Eckert number, heat source/sink parameter, material constant parameter, Dufour
number, radiation parameter, Schmidt number, chemical reaction parameter, Stefan-Boltzmann constant and mean
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absorption coefficient. For steady flow, the time dependent terms are set to zero and the following equations were

obtained respectively with the boundary conditions

d’w  1dw

22 4 2
_2:—__—(5 B, BY Jd_Hd_w B‘¢ ]d@dw

dn ndn 2 )dnpdpy dn dp

22 22 2
A1 g BN (M) gy (1, g, B (O d—";’+c
n 2 d77 2 dn ) dn

22 22 7
+CBH+CB 4 +|1+BO+ B'0 _Me V;I
2 2 J1+m

—[ZB2 +B%0+

2 2 2
99__RUA9_per (dwj ~BRE R*e(jwj _BRERY (d J
Z

dp?  npdnp dn 7 2
2

—APE.R. [SWJ ~Q,R.O-1J,E,Re"W —D,R, 3 z_DR 37‘

7 n dn

d?y _s.w dy 1dy dZH_SCSr%

d7 ndp ~dp? o dp

+S Dy
Boundary conditions

dw
—=0, ¢ 0, =0 t =0
i (m)=0. x(n)=0 at 7

w(n) =0, 6(n)=L x(n)=1 a n=1

Equations (2.8), (2.9), (2.10) and (2.11) comprise the boundary value problem to now be solved.

(2.8)

(2.9)

(2.10)

(2.11)

3.0 Method of Solution (Galerkin Weighted Residual)

Suppose an approximate solution is to be determined for the differential equation of the form

L(g)+f =0

(3.1)

where  @(X) is an unknown dependent variable, L is a differential operator and f (X) is a known function. Let

N
w(X)= ZCiui (X) be an approximate solution to (2.8). On substituting ¥ (X) into (2.8), it is unlikely that (2.8) is
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satisfied i.e. L(y)+ f =0  therefore

L(y)+f =R (3.2)

where R(X) is a measure of error called the Residual (Baluch, 1983, Jain, 1984). Multiplying (3.2) by an arbitrary

weight function u(x) and integrating over the domain to obtain
jDu(x)[L(w)+ f]dD:IDu(x)R(x)dDio 3.3)

Galerkin Weighted Residual method ensures equation (3.3) vanishes over the solution domain and the weight function
is chosen from the basic functions u(x) =u.(x) (i=0,...,N) hence

(u,R) = jDu(x)R(x)dD = jDui (x)[L(uo(x) +ZN:ciui (x))+ f }dD =0 (34

These are a set of n-order linear equations to be solved to obtain all the C; coefficients. The trial functions can be

polynomials, trigonometric functions etc. The trial functions are usually chosen in such that the assumed function
W(X) satisfies the global boundary conditions for ¢(X) though this is not strictly necessary and certainly not always
possible (Finlayson, 1972). To apply the method to (2.8)-(2.10), we select an approximate solutions of the form

w,(n) = a,+an+an’, v,(n)=b,+bn+bn’ w,(7) = Cy+Cap+C,n° for the velocity, temperature and

concentration respectively, which satisfies the boundary conditions (2.11). Applying the boundary conditions on the
approximate solution we obtain the following:

W(n) = 8,(1-1%), 0n)= n*+b(n-n?), x(m)= n° +c(n—n°) and U, = (1-7°), u, = (-1%), Uy =(7—1")

are the weighting functions U; , where a,, bl, C, are the coefficients to be determined.

The residue R for (2.7) -(2.9) respectively are given by

1
420(Bs +2)*
+(2(b2 —9b, — 48)(M” +1)B.2 + ((L4b, — 224)m? + (—328860M +14)b, -+ 283080M (3.5)

(120960(—i +(b - E) B.)a,Me —88A(% +(b + ﬁ) B.)(m* +1)a,’

—224)B_ ~1120m* +8820M -1120)a, + 49(7+ (b, + ?) B,)(m*+1) =0

—288E_J, ea,’ ros (16OE PrAa,’ +16E, Pr(B, b1+ B, +—)a +(14Q,, +70)b,

(3.6)
~70(c, - 4))Du +21Q,, +140)R_ +783E,J, " —g(b1 ~1)=0
cao ® 25, 2
—(-S,a, —2d-10S, —10 +£=0 3.7
( S~ )6~ 20 3 3 G0

Considering the orthogonality of the residues above, we have
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o, 1 1 31 56 24 ]
(1—77 )(m (120960(—£ + (bl —g) Bc)ao Me —88A(E + (bl + E) Bc)

(M* +1)a,® + (2(b? —9b, — 48)(m? +1)B.2 + ((14b, — 224)m’ + (—328860M +

[ay

<u1,Ra>:IO

14)b, +283080M — 224)B_ —1120m? +8820M —1120)a, + 49(§+ (b, +§) B,)

| (m? +1))

i 2 2, 1 4 5 21, ,
) (n—n°)(-288E_J,ea,” + — (L60E_ Pr Aa,” +16E_Pr(B.b, + =B, + —)a,
k)=, 20 2

+(14Q,, +70)b, —70(c, —4))Du + 21Q,, +140)Rp + 783E0Jha02 - §(b1 -1))

S.a, @ 25,

10 20 3

ol 2yy L 2 B
(U, R,) = _[0 _(77—77 )(& (-S.8, —2®-10S, —-10)c, - +§)}df7 =0

The symbolic calculation software MAPLE 2022 is used to compute the values of E:’ll,bl,Cl and the approximate

solutions.

4.0 Irreversibility Ratio

Inherent irreversibility in a pipe flow occurs owing to exchange of energy and momentum within the fluid and the solid
boundaries. The entropy generation is owed to heat transfer and the effects of fluid friction. The equation for rate of
entropy generation per unit volume (Makinde et al., 2013; Chinyoka & Makinde, 2013) is given

2 2 4
k (dT dw 20, ( dw
go - K (A1), ufdw) 26, (dw o
T, \dr T, L dr T, \dr
where the first term in (4.1) is the irreversibility due to heat transfer, the second and third terms are entropy generation
due to viscous dissipation. Introducing the dimensionless quantities in (2.6) to (4.1), we have

2am 2 2 2 2 2 4
N, = r’s =77_2 do L Ban dw LB dw 4.2)

k Q°\dp Q (dpy Q (dn

2 4
where Q = TW , BR = Wy = 2ﬂ3WO are temperature difference parameter, Brickman number
_To k(Tw _To) kR (Tw _To)
and third grade parameter and
2 2 2 2 2 4

N, =T8O\ _Bor’(dw) pa(dw w3

Q°\dn Q (dn Q \dp

where NIhf is irreversibility due to heat transfer and NSvd gives entropy generation due to viscous dissipation. The

Bejan number is defined as
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N
Be _ Ihf (4.4)
NSvd

such that 0 < B, <1 denoting Be =1 is the limit at which heat transfer irreversibility dominates , B, =0 is the limit at

which fluid friction irreversibility dominates, and g zlconnotes equal contribution.(Bejan, 1996)
e

5.0 Results

In this investigation, the application of a radially exponential magnetic field to reactive MHD third grade fluid flow in
the presence of Joule heating and variable viscosity using the Galerkin weighted residual method was considered.
The velocity, temperature and chemical functions are analysed by computing their numerical values and plotting their
respective graphs against various thermophysical variables of interest.
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6.0 Discussion

Figures 1 to 4 illustrates the effect of magnetic, Hall, third grade and radiation parameters on velocity profiles for steady
MHD fluid flow with radially applied magnetic field and variable viscosity. In Figure 1, magnetic parameter was varied
between M =1 and M = 10, while other parameters were held constant thatis A=0.1,B, =1,m=1,E, =0.1,] =
0.71,Qy = 0.1,P. = 0.72 and R, = 0.1, result showed that magnetic parameter enhances the velocity as it reduces and
converging to zero at n = 1. In Figure 2, Hall parameter was varied between m = 0.1 and m = 10, while other
parameters were held constant thatis A=0.1,B,=1,M =0.1,E. =0.1,]; = 0.71,Q4 = 0.1,P. = 0.72 and R, = 0.1,
result showed that the Hall parameter enhances the flow field as it increases. Figure 3 shows that decreasing the
thirdgrade parameter enhances the velocity profile, when varying the third grade parameter between A=1 and A =
10, while other parameters were held constant that is M=1,B.=1,m=1,E.=0.1,J; =0.71,Q4 =0.1,B,. =
0.72 and R, = 0.1. In Figure 4, radiation parameter was varied between R, = 0.1 and R, = 0.4, while other parameters
were held constant thatis A =0.1,B, =1,m = 1,E. = 0.1,J]; = 0.71,Qy = 0.1, . = 0.72 and M = 1, result showed that
radiation has the tendency of increasing the flow profile as it increases.

Figures 5 and 6 show the effect of Eckert and Prandtl number on temperature profile. It is observed that increase in
Eckert and Prandtl number enhances the temperature profile when varied between E. = 0.1 and E, = 100, and B. =
0.07 and B. = 250 respectively. Figure 7 depicts chemical reaction parameter impeding the concentration profile with
higher magnitude of influence when K, = 1 when varied between K, =1 and K, = 4. Schmidt number enhances the
concentration profile with higher magnitude of influence at S, = 100 when varied from S, = 0.5 and S, = 100, while
keeping other parametersis A=0.1,B, =1,m=1,E, = 0.1,R, = 04,K, =1, J; =0.71,Q0, = 0.1,P. = 0.72and M = 1
constant.

Figures 9 to 12 indicate that the irreversibility due to heat transfer dominates from the centreline of the pipe for Magnetic
parameter, Eckert number, Dufour number and Prandtl number respectively. Figure 9 shows that the Bejan number
increases with increase in magnetic parameter varied between M =1and M = 10 for constant parameters A =
01,B.=1m=0.1E =01,Jy =071,Q, = 0.1, =072 and R, = 0.1, while figure 10 describes increasing the
Eckert number varied between E; = 5 and E,; = 20 for constant parameters A = 0.1,B, = 1,m = 0.1, M = 1,D,s = 0.1,
Ju=0.71,Qy = 0.1,P. = 0.72 and R, = 0.1 increases the Bejan number. The Dufour and Prandtl numbers were varied
between 0.1 to 0.5, and 0.72 to 5 respectively against the Bejan number, increase in both Dufour and Prandtl numbers
showed appreciable increase in Bejan number which is maximum at at the pipe centre line and decreases close to the
pipe wall.

n w(77) w(77) o(7) o(n7) x(17) x(17)

RK4 GM RK4 GM RK4 GM
0 0.2426873919 0.242897239 0 0 0 0
0.2 0.2329296447 0.233181350 0.212145367 0.228824682 0.274100248 0.485904134
0.4 0.1974790573 0.184256705 0.418372663 0.443237038 0.497472225 0.828856201
0.6 0.1483545360 0.140386061 0.618504523 0.643237038 0.685937704 1.028856201
0.8 0.0825577950 0.078967159 0.814154594 0.828824692 0.850546605 1.085904134
1.0 0 0 1.0 1.0 1.0 1.0

Table 6: Comparison of GM Result for Steady Flow with Radial Magnetic Field and Variable Viscosity with RK4

Table 6 shows the computational result comparison between the Galerkin Weighted Residual method solution and

Runge Kutta method solution for the velocity, temperature and concentration profiles respectively for
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A=M=m=Q, =R, =E,=D,=Bi=019a=Re=0.2,S, =05,S,=0.6,Pr=J,=0.72,0=1. The two solutions can

be seen to have good agreement.

7.0 Conclusion

In this numerical investigation, the irreversibility ratio of a steady reactive magnetohydrodynamic third-grade fluid flow
in a circular pipe is presented using the Galerkin method. Numerical expressions for the velocity, temperature and
concentration were obtained which were used to compute the entropy generation number. Special emphasis has been
focused here to the variations of pertinent parameters of physical significance on the Bejan number. The main findings
of the present analysis are:

e The velocity is enhanced for increasing values of m, Rp and inhibited for M, A

e The temperature is enhanced for values of Ec,Pr and inhibited for Pr,Re and Du

e The concentration is enhanced for values of SC and inhibited for K,

o M,E., D, and Pr enhances the Bejan number showing the dominance of irreversibility due to heat transfer
over entropy generation due to viscous dissipation in the flow regime.

8.0 Ethical Considerations

Not applicable, as the research does not involve living subjects or sensitive data.

9.0 Limitations
Not applicable.
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