PHYSICS

- In LCR series a.c. circuit at resonance the value of power factor will be ______. 1)

(B) = 0

- (D) ∞
- 2) If the primary coil of a transformer has 100 turns and the secondary has 200 turns. Then for a input of 220 V at 10 A find output current, in step up transformer.
- (A) 50.0A

(B) 0.05A

(C) 0.5A

- (D) 5.0 A
- For obtaining wattless current _____ is connected with a.c. supply.
- (A) R-L in series (B) R-C in series (C) Only L (D) Only R

- 4) As indicated below which one is the equation of Ampere-Maxwell law?
 - (A) $\oint \vec{B} \cdot d\vec{l} = \mu_0 i_c + \mu_0 \varepsilon_0 \frac{d\phi_E}{dt}$ (B) $\oint \vec{B} \cdot d\vec{l} = \mu_0 i_c + \mu_0 \varepsilon_0 \frac{d\phi_B}{dt}$

 - (C) $\oint \vec{B} \cdot d\vec{A} = \mu_0 i_c + \mu_0 \varepsilon_0 \frac{d\phi_E}{dt}$ (D) $\oint \vec{E} \cdot d\vec{l} = \mu_0 i_c + \mu_0 \varepsilon_0 \frac{d\phi_E}{dt}$

5)	1, , , , d		transmit voice com	munication in the
3	(A) HF		(D) JUIE	Land
	(C) VHF		(D) LF	
6)	For plane mirro	or focal length is	m.	
10000	(A) -1		(B) 1	
	(C) 0		(D) ∞	
7)	spherical glass s		en the distance of ir ical glass.	stance in air and falls on a
	(A) K		(B) 2R	
	(vici ihad zul devje		(D) 1.5R	
_	of minimum devi	iation will be	s 4° having refractiv	ve index 1.6, then the angl
·	-	iation will be	(B) 1.6°	ve index 1.6, then the angl

9)	Consider a refracting tale				4
5	Consider a refracting telescope whose eyepiece a focal length of 1cm, then be	obje mag	ctive has a nifying po	focal length of ower of this tele	lm and the scope will
<u> </u>	(A) 50				
V		(B)	1	V 	
	(C) 200	SON	100		
	· allengan				
10)	Him Formanian The				
10)	The phase difference between any two	partic	ele of a civ	on 6	
Ω	(A)		or a gry	en wave front is_	rad.
1	0	(B)	π		
	(C) π/2 (Δ) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C	(D)	π/4		
	La La Marine Const.			1	
11)	In a Young's double-slit experiment,	the sl	its are sep	arated by 0.28 n	nm and the
	serectris placed 1.4 m away. The distar	nce be	tween the	central bright fri	nge and the
	fourth bright fringe is measured to be 1 the experiment is	$\frac{1.2 \text{ cm}}{\chi}$	i. Then the	wavelength of li	ight used in
	the experiment is				
	(A) 660 nm	(B)	550 nm		
	(C) 600 nm	•			
	(C) 600 nm	(D)			

- 12) The refractive index of glass is 1.6 then the speed of light in glass will be speed of light in vacuum is 3.0×10^8 ms⁻¹.
- (A) $1.66 \times 10^8 \,\mathrm{ms}^{-1}$

(B) $1.88 \times 10^8 \text{ ms}^{-1}$

(C) $1.22 \times 10^8 \,\mathrm{ms^{-1}}$

- (D) $1.48 \times 10^8 \text{ ms}^{-1}$
- 13) Is is the unit of _____ physical quantity.
- (A) Work function

(B) Rydberg constant

- (C) Moment of Inertia
- (D) Angular momentum
- 14) To emit an electron from the metal, minimum electric field required is_
 - (A) 10^6 Vm^{-1}

(B) 108 Vm⁻¹

(C) 10^5 Vm^{-1}

- (D) 10^4 Vm^{-1}
- 15) A ball of mass 0.12 kg moving with a speed of 20 ms⁻¹ has de-Broglie wavelength

(A) 2.76×10^{-34} m

(B) $1.76 \times 10^{-34} \text{ m}$

(C) 3.76×10^{-34} m

(D) 4.76×10^{-34} m

18) The ground state energy of hydrogen atom is -13.6 eV, then the potential energy of the electron in this state will be _____.

(D) 6.2×10^{-7}

- 23) The energy required for electron to jump the forbidden band for germanium at
 - room temperature in the intrinsic semiconductor is _____eV.
 - (B) 1.1

- (D) 0.05
- 24) The Dimensional formula for Electric Flux is ______

(A) $M^{1}L^{1}T^{-3}A^{-1}$

- 25) For an electric dipole an angle between \overline{E} and \overline{P} at a point on the equatorial plane

	26) An infinite line charge produce 2cm. Then the linear charge den (K = 9 × 10 ⁹ Nm ² /C ²)	es an electric field of 9×10 ⁴ N/C at a distantion will be	ince of
D	(A) 10 μC/m	(B) 1μC/m	
	(C) 0.01μC/m	(D) 0.1μC/m	
27	7) If an electron is accelerated by a p of	ootential difference of 2.5V it would gain e	nergy
	(Take charge of electron 1 × 10 ⁻¹⁹	PC)	
	(A) 2.5 MeV	(B) 2.5 J	
	(C) 2.5 eV	(D) 2.5 erg	
ing ig.	Daugo administrator a fina de mas estado	v dod s jeneja ni v si	
28)	A radius of spherical charged shell	is 10 cm and electric potential on its surfarom the centre of the shell will be	ce is
7	(A) 1 V	(B) 100 V	
	(C) 200 V	(D) 0 V	

29)	A parallel plate capacitor with air between the plates has a capacitance of 4 pt/. If the distance between the plates is reduced by half and the space between them is be
	(A) 24 pF (B) 98 pF
	(C) 12 pF (D) 48 pF
30)	The SI units of the current density is
D	(A) Am ⁻¹ (B) Am ²
V	(C) Am ⁻³ (D) Am ⁻²
31)	The magnitude of the drift velocity per unit electric field is known as
	(A) Conductivity (B) Resistivity
	(C) Mobility (D) Charge density

As shown in the circuit diagram find the value of I

(A) 0.4 A

90 10

.00 l

(B) 2.5 A

(C) 1.8A

(D) 2.8A

33) A silver wire has a resistance of 2.1Ω at 27.5° C and a resistance of 2.7Ω at 100° C. Then the temperature coefficient of resistivity of silver will be _____.

- (A) $3.9 \times 10^3 \, ^{\circ}\text{C}^{-1}$ and (8)
- (B) $3.9 \times 10^{-3} \, {}^{\circ}\text{C}^{-1}$ (A)
- (C) 3.9 × 10⁻³ °C
- (D) 3.9 × 10³ °C philosof (3)

	rate.	Then t	he magni	tude of	induce		t du	iring th	is tim	e mier	val wil	l be_	······································	
n	(A)	4.0 ×	$10^{-3} A$			(E	3)	2.0 × 3	10-3 A					
5	(C)	6.0 ×	10 ⁻³ A			(E)) ·	8.0 ×	10 ⁻³ A	yesty l				
39)	of se	lf indu	N turns ar uctance. H.	Now i	f curre	ent char	ge	to 5I	then 1	new s	elf in	ductar	ice wil	1
To red a	HAN DATE	- Prim							1100 4		en les			
	(A)	1/5 L				(F	3)	5 L				e Lul		
	(C)	25 L			(8)	(I	O)	L						
			m.4 - (11 8	(D)				i ii	A s dia				
40) odl aun I			ctor of 50										current	t in
	(A) 7		PT. 404		(E)	·	B)	28 A	-7	1,201	× JE.	2 2	20	
	(C) 1	4 A	-71 E-01		((1))	(D)	21 A		101	3	14	X St	

38) A square loop of side 10 cm and resistance 0.5 Ω is placed vertically in the