CHEMISTRY

- 41) In the complex K[Cr(H₂O)₂(C₂O₄)₂].3H₂O, oxidation state
- number of the central metal ion is _____ and ____.

 (A) +4,4

 (C) +4,6 (B) +3,4 (B) +3,6

- 42) Which reagent will be used for the following reaction? $CH_3CH_2CH_2CH_3 \xrightarrow{?} CH_3 - CH_2 - CH_2CH_2CI + CH_3 - CI$
 - (A) Cl,, air, Fe/dark

(B) NaCl+H,SO,

(C) CL/UV light

- (D) Cl2, air/dark
- 43) What is the major product in the following reaction?

$$CH_3 = CH_3 - C - CH = CH_2 \xrightarrow{HX} ?$$

$$H$$

Predict the order of reactivity of the following compounds in $S_{\rm N}1$ reaction.

(A)
$$(ii) > (iii) > (iv) > (i)$$

$$(ii) > (iii) > (iv) > (i)$$
 (B) $(ii) > (iv) > (iii) > (i)$

(C)
$$(iv) > (iii) > (ii) > (i)$$

م والع - والع - والع - والع ع

Match the reactions given in column - I with the names given in column - II. 45)

Column - I	Column - II		
i) $R-Cl+Nal \xrightarrow{dry} R-I+NaCl$	a) Swarts reaction		
ii) $CH_3 - Br + AgF \xrightarrow{\Delta} CH_3 - F + AgBr$	b) Wurtz reaction		
iii) $R - X + Mg \xrightarrow{dry} R - Mg - X$	c) Finkelstein reaction		
↓ H ₂ O	d) Grignard reaction		
RH+Mg(OH)X	JID.		

$$(A)$$
 $(i) \rightarrow (c); (ii) \rightarrow (a); (iii) \rightarrow (d)$

(B) (i)
$$\rightarrow$$
 (d); (ii) \rightarrow (c); (iii) \rightarrow (b)

(C) (i)
$$\rightarrow$$
 (a); (ii) \rightarrow (c); (iii) \rightarrow (d)

(D) (i)
$$\rightarrow$$
 (b); (ii) \rightarrow (a); (iii) \rightarrow (d)

(Space for Rough Work)

46) Which product will be obtained in the following reaction_____

$$CH_{2}-C-OCH_{3} \xrightarrow{NaBH_{4}} ?$$

(A) CH₂-CH₂-OCH₃

- (C) CH₂-CH-OCH₃
- (D) CH₂-C-OCH₃
- 47) Predict the major product of acid catalysed dehydration of butan-1-ol.
 - (A) $2CH_2 = CH_2$

(B)
$$CH_3 - C = CH_2$$

- (C) CH3-CH=CH-CH3
- (D) $CH_3 CH_2 CH = CH_2$

48) Give the major product formed by heating

$$CH_3 - CH_2 - CH_2 - O - C - CH_2 - CH_3$$
 With HI

 CH_3

(A)
$$CH_3 - CH_2 - CH_2 - OH + CH_3 - CH_2 - C - I$$

 CH_3
 CH_3
 CH_3

(B)
$$CH_3 - CH_2 - CH_2 - OI + CH_3 - CH_2 - CH_2 - CH_3$$
 CH_3
 CH_3
 CH_3
 CH_3

(C)
$$CH_3 - CH_3 + I - CH_2 - O - C - CH_2 - CH_3$$

 CH_3
 CH_3

49) Arrange the following compounds in decreasing order of their acidic strength

50) Name the following reaction.

- (A) Clemmensen reduction (B) Stephen reaction
- (C) Etard reaction
- (D) Rosenmund reduction

51) 'R' + CH₃ -CO - CH₃
$$\xrightarrow{H^*}$$
 Schiff's base what is 'R' in this reaction?

(A) C₈H₅-NH-NH₂
(B) NH₂-NH₂

- (C) CH₃-NH₂
- (D) NH,OH

What is X in this reaction?

53) Which of the following carboxylic acid has least pKa value among all?

- (A) NO2 · CH2 · COOH
- (B) CH₃·COOH

(C) HCOOH

(D) C₆H₅·COOH

54) Identify 'C' in the following reaction.

$$C_6H_5NO_2 \xrightarrow{Fe/HCl} A' \xrightarrow{NaNO_2+HCl} B \xrightarrow{H_2O} C'$$

(A) (O)

(B) O -c

(C) (O)-OH

(D) O-CH,

- 55) Which amine is prepared by Gabriel phthalimide synthesis?
 - (A) Ar-NH,

(B) R-NH-R

R

- (D) R-NH,
- 56) Which is the correct order of the basic strength of given amines?
- (\underline{A}) $(C_2H_5)_2NH > C_2H_5NH_2 > C_6H_5NH_2 > NH_3$
 - (B) $(C_2H_5)_2NH > C_2H_5NH_2 > NH_3 > C_6H_5NH_2$
 - (C) $NH_3 > C_6H_5NH_2 > (C_2H_5)_2NH > C_2H_5NH_2$
 - (D) $C_6H_5NH_2 > (C_2H_5)_2NH > C_2H_5NH_2 > NH_3$
- 57) Which diazonium salt is water insoluble and stable at room temperature?
 - (A) C₆H₅·N₂+BF₄

(B) C₆H₅N₂⁺Br

- (C) C6H5N7HSO7
- (D) C₆H₅N₂+Cl⁻
- Lactose is composed of which units?
 - (A) α-D-Glucose and α-D-Glucose
 - (B) α-D-Glucose and β-D-Fructose
 - (C) β-D-Galactose and β-D-Glucose
 - (D) α-D-Glucose and β-D-Galactose

- Which of the following gives Zwitter ion in its aqueous solution?

 - NH2-CH2-COOH
 - (C) NH₂-CH₂-CH₂-NH₂
 - (D) CH₃CH₂NH₂
- 60) Deficiency of which vitamin is responsible for RBC deficient in haemoglobin?
- (B) Vitamin B
- (C) Vitamin B₂
- (D) Vitamin B
- 61) Which of the following statement is incorrect for the structure of Nucleic acids?
 - (A) Nucleotides are joined together by phosphodiester linkage
 - In DNA molecule, the sugar moiety is β-D-2-deoxyribose (B)
 - A unit formed by the attachment of a base 1' position of sugar is known as (C) nucleoside
 - (D) RNA contains four bases adenine, guanine, cytosine and thymine

62)	aqueous solution						
	[Atomic wt : $H = 1$, $O = 16$, $C = 12$ amu]						
	(A) 135.0 g	(B) 107.65 g					
	(C) 90.0 g	(D) 112.5 g					
		(C) NH, CH, CH, NH,	68				
63)	The vapour pressure of pure liquids 'P' and 'Q' are 450 and 750 mm of Hg respectively at 350 K. If total vapour pressure is 600 mm of Hg, the mole fractions of 'P' and 'Q' respectively will be and						
	(A) 0.7 and 0.3	(B) 0.4 and 0.6					
	(C) 0.6 and 0.4	(D) 0.5 and 0.5					
			69				
64)	The freezing point depression of 645 g of aqueous solution of ethylene glycol $(C_2H_6O_2)$ is 2.25 K. Find weight of ethylene glycol in the solution.						
($[K_f = 1.86 \text{ K kg mol}^{-1}; H = 1, C = 12, O = 16 \text{ amu}]$						
	(A) 45.0 g	(B) 42.50 g					
	(C) 48.375 g	(D) 50 g					
	meet for the structure of Nucle	61) Which of the following statement is ince	70)				
65)	Van't Hoff factor (i) for dilute aqueous solution of K ₄ [Fe(CN) ₆], Fe ₄ [Fe(CN) ₆] ₃ and [CoCl ₂ (en) ₂]Cl ₂ are respectively,						
	(A) 2, 7, 5	(B) 2, 5, 7					
	(<u>C</u>) 5, 7, 2	(D) 7, 5, 2					
		(C) A unit formed by the attechment of	71)				
66)	Calculate the potential of hydrogen electrode in contact with a solution whose pH is 10.						
	(A) + 0.059 V	(B) -0.059 V					
	(C) + 0.59 V	(D) -0.59 V					

67)	(B) Con	ductivity of s	olution does no	s on	the nature of ele	on of electrolyte
68)	During the electrolysis of higher concentration of H ₂ SO ₄ , the product obtained					
	(A) O _{2(g)}	The Hollenia	I manich d	(B)	S ₂ O _{8(aq)} ²⁻	
	(C) SO ₂	(g)		(D)		
69)	in basic medium?			ole KMnO ₄ into MnO ₂		
	(A) 4.51 (C) 6.01			100	7.5 F 3.0 F	
70)	For any reaction the rate constant $K = 2.3 \times 10^{-5} \text{mol}^{-3/2} \text{L}^{3/2} \text{S}^{-1}$; then reaction will be			S ⁻¹ ; then the order of		
	(A) 0.0	Maria Cara Cara Cara Cara Cara Cara Cara		(B)	1.5	
	(C) 0.5	A. S. O. W. D. S. O. S.			2.5	
71)	Which of the following statements is <u>incorrect</u> for a reaction carried out in preson of catalyst?				arried out in presence	
	(A) Potential energy of reactants and products change					
			ant of the reaction			
	(C) There is no change in Gibbs energy of the reaction					
	(D) The	activation ene	rgy of the reacti	on de	ecreases	
-		(Sp	ace for Roug	h W	ork)	

72) Which of the following graphs is correct for a first order reaction $R \rightarrow P$?

73) Reaction $2A \rightarrow B + 3C$ is zero order reaction. If $K = 3.5 \times 10^{-4}$ mol L^{-1} S⁻¹; What will be the rate of production of 'C'?

- (A) $1.167 \times 10^{-4} \text{ mol L}^{-1} \text{ S}^{-1}$
- (B) 10.5 × 10⁻⁴ mol L⁻¹ S⁻¹
- (C) $3.5 \times 10^{-4} \text{ mol L}^{-1} \text{ S}^{-1}$
- (D) 7.0 × 10-4 mol L-1 S-1

(14) KMnO ₄ acts as on oxidising	acidic medium. The number of moles of KMnO ₄ one mole of sulphide ion in acidic solution		
that will be needed to recent in	one mole of sulphide ion in acidic solution		
is	one mole of sulphide ion in acidic solution		
(A) 1/5	outpinde foil in acture solution		
(C) 4/5			
	(B) 3/5 (D) 2/5		
75) Which one of the following is among	Fv 56 6		
75) Which one of the following is amp (A) V ₂ O ₃	hoteric oxide?		
(C) Cr,O,	(B) CrO		
(2) -2-3	(D) CrO ₃ - \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
76) Which of the following ion show h			
(A) Co ²⁺	nighest spin only magnetic moment value?		
(C) Ti ²⁺	(B) Mn ²⁺		
(C) 11	(B) Mn ²⁺ (D) Fe ²⁺		
Name the member of lanthanide so	ries which is well known to exhibit + 4 oxidation		
state?	ries which is well known to exhibit 1 4 oxidation		
	(B) Thulium		
	(D) Samarium		
78) Which one is the correct formula	for coordination compound %		
tris [ethane -1, 2-diamine] cobal	[(III)Suipilate		
(A) [Co(an) 1 (SO)]			
(A) $[Co(en)_3]_3(SO_4)_2$ (C) $[Co(en)_3](SO_4)_2$	(D) [Co(en) ₃]SO ₄		
(C) [Co(en) ₃](504/ ₂	2activaly		
79) Hybridizations in [Ni(CO) ₄] and	[Ni(CN) ₄] ² are respectively		
79) Hybridizations in [141(CO)43	(B) sp ² and sp ² (D) dsp ² and dsp ²		
(A) sp ³ and dsp ²			
(C) dsp ² and sp ³ [80] Identify the optically active company (C)	of from the following.		
60 - 1 contically active comp	(B) [Co(NH ₄) ₆]Cl ₂		
80) Identify the optically active services.	(D) [Co(NH ₃) ₅ CI]CI		
(A) PI(NH ₃) ₂ -2			
(C) [Co(en) ₃]Cl ₃	-		
for	Rough Work)		
(Space for	Rough Work)		
2			
+7 -2- WAS	+51.		
(Space for Rough Work) $ \begin{array}{cccccccccccccccccccccccccccccccccc$			
1 2 3d 1x7			
hs s			
7.			

What