Paper - 9

Time : 1 Hour]

7)

8)

[Total Marks : 50

Select the following questions with proper alternative and answer it :

If an electric charge 'q' is placed at the centre 1) of a cube, then the flux associated with each surface of the cube is

(A)
$$\frac{q}{\epsilon_0}$$
 (B) $\frac{q}{6\epsilon_0}$ (C) $\frac{q}{4\epsilon_0}$ (D) $\frac{q}{2\epsilon_0}$

2) The dimensional formula of electric field is (A) $[M^1 L^1 T^{-3} A^{-1}]$ (B) $[M^1 L^2 T^{-3} A^{-1}]$

- (C) $[M^1 L^1 T^{-2} A^{-1}]$ (D) $[M^0 L^1 T^{-3} A^{-1}]$
- Two identical conducting spheres A and B 3) having charges +q and -q are kpet at 'd' orft 1 distance apart experience coulombian force F between them. If 50 % of charge is transferred from sphere B to A, then the new coulombian force between them is
 - (A) F (B) $\frac{F}{2}$ (C) $\frac{F}{4}$ (D) $\frac{2F}{3}$

10

Three equal charge +q each are placed at the 4) three vertices of an equilateral triangle. The electric field at the centroid of the triangle is

(B) $\frac{\kappa q}{r^2}$

(D) $\frac{\sqrt{3}kq}{2\pi^2}$

(A)
$$\frac{3kq}{r^2}$$

(C) zero

5) If two infinite plane sheets having same 9) surface charge density σ are placed parallel to each other, then the electric field between the two sheet is

(A) zero (B)
$$\frac{\sigma}{\varepsilon_0}$$
 (C) $\frac{\sigma}{2\varepsilon_0}$ (D) $\frac{2\sigma}{\varepsilon_0}$

As shown in figure charges + q each are placed 6) at the four vertices of a square. Then the coulombian force acting on charge placed at vertex D is

Board's Question Paper .

(March - 2024)

Charge + Q is placed at the centre of a circular path of radius r. The work done to bring charge +q from one end of the diameter to other end of the circular path in the electric field produced by charge + Q is

(A) $\frac{kQq}{r}$ (B) $\frac{kQq}{2r}$ (C) zero (D) $\frac{2kQq}{r}$

- By keeping a conductor in an external electric field and from the result obtained by electrostatics, which of the following options is wrong ?
 - (A) Inside a conductor electrostatic field is zero.
 - (B) At the surface of a charged conductor electric field must be perpendicular to the surface.
 - (C) The interior of the conductor have excess charge in static situation.
 - (D) Electrostatic potential is constant through out the volume of the conductor.

A charged capacitor is disconnected from the battery and if the distance between the two plates of the capacitor is increased then

- (A) charge on plate will decrease.
- (B) charge on plate will remain same.
- (C) the potential difference between the two plates will decrease.
- (D) capacitance of the capacitor will increase.
- Which of the following molecule is not polar ? 10)
 - (C) NH₃ (D) H, (A) HCl (B) H_2O

Std. - 12 : Physics - 'Kumar' (A) $5.12\pi \times 10^{-7}$ T (B) $5.12\pi \times 10^{-3}$ T

- (C) $4.27\pi \times 10^{-3}$ T (D) $8\pi \times 10^{-3}$ T
- 18) A conducting ring of radius R and one turn is formed from a conducting wire of length L and on passing current I the obtained magnetic dipole moment is m. If this wire is then converted to a ring of two turns and on passing electric current I, the new magnetic dipole moment obtained is

shot then the firs associated w

(A) $\frac{m}{2}$ (B) 2m (C) $\frac{m}{4}$ (D) 4m

- 19) A short bar magnet placed with its axis at 30° with a uniform external magnetic field of 0.25 T experiences a torque of magnitude 4.5 x 10⁻² J. The magnitude of the magnetic moment of the magnet will be J T⁻¹.
 (A) 0.18 (B) 0.36 (C) 0.54 (D) 0.72
- 20) The flux associated with a closed loop is $\phi_{(t)} = 3t^2 + 2t + 5$ weber. If the resistance of the loop is 14 Ω , then the current induced in this coil in t = 2 sec is

Current in a circuit falls from 5.0 A to 0.0 A in
 0.1 s. If an average emf of 100 V induced then
 the value of self inductance of the circuit is

Three coust charge + q each are placed at

(A) 0.5 H (B) 1 H (C) 2 H (D) 4 H

- 22) Mutual inductance of a system of two coil dos not depend on
 - (A) no. of turns of the coil.
 - (B) distance between two coil.
 - (C) the relative permeability of the medium within the coil.
 - (D) current passing through the coils.
- 23) A 1.0 m long metallic rod is rotated with an angular frequency 200 rad/s about an axis normal to the rod passing through its one end. The other end of the rod is in contact with a circular metallic ring. A constant and uniform magnetic field of 0.5 T parallel to the axis exist everywhere. The emf developed between the centre and the ring is

(A) 100 V (B) 200 V (C) 50 V (D) 400 V
24) From which of the following options the power factor of an A.C. circuit can be zero.

(A) 1.5×10^{-12} J (B) 1.5×10^{-6} J

(C) 1.5×10^{-8} J (D) 3×10^{-8} J

12) If a conducting wire of length L is uniformly stretched to double its length, then its conductivity becomes

- (A) double (B) 4 times
- (C) halved (D) remain same
- 13) Resistivity of which of the following substance decrease on increasing the temperature ?
 - (A) Copper (B) Silicon
 - (C) Aluminium (D) Nichrome
- 14) The storage battery of a car has an emf of 12 V. If the internal resistance of the battery is 0.6 Ω then the maximum current that can be drawn from the battery is

(A) 20 A (B) 25 A (C) 30 A (D) 72 A

15) If a battery of 12 V is connected across the diametrically end points A and B of a conducting ring of radius R and the current drawn from the battery is I, then the magnetic field produced at the centre of the ring due to the ring is

 $\mu_0 I$

(A) zero (B) μ0²/2R (C) μ0²/4πR (D) μ0⁻/R
16) Which of the following graph represents magnetic field (B) versus distance r from the centre of a long straight conducting wire of uniform cross sectional area carrying steady

(A) rore (B) $\mu_0 I$ (C) $\mu_0 I$ (D)

17) A closely wound solenoid 120 cm long has 4 laayers of windings of 400 turns each. The diameter of the solenoid is 1.8 cm. If the current carried is 8.0 A. Estimate the magnitude of B inside the solenoid near its centre.

46

Board's Question Papers

- (A) R and L in series
 - (B) R and C in series
 - (C) L, C and R in series
- (D) L and C in series
- 25) An L-C-R series circuit is connected to an AC source of peak voltage 240 V. The phase difference between voltage and current of this circuit is 45° and resistance is 100Ω , then the rms value of current through the circuit is
 - (A) 5.25 A (B) 1.7 A (C) 3.5 A (D) 1.2 A
- 26) Which of the following option represents Ampere-Maxwell Law ?
 - (A) $\oint \vec{B} \cdot d\vec{l} = \mu_0 i_c + \mu_0 \frac{d\phi_E}{dt}$ (B) $\oint \vec{B} \cdot d\vec{l} = \mu_0 i_c + \varepsilon_0 \frac{d\phi_E}{dt}$ (C) $\oint \vec{B} \cdot d\vec{l} = \mu_0 i_c + \frac{d\phi_E}{dt}$ (D) $\oint \vec{B} \cdot d\vec{l} = \mu_0 i_c + \mu_0 \varepsilon_0 \frac{d\phi_E}{dt}$
- 27) Which of the following waves is used in speed gun to measure the speed of ball in cricket match ?
 - (A) Radio wave(B) Microwave(C) Infrared waves(D) Ultraviolet wave
- 28) The speed of light in a medium of refractive index 1.25 is (Speed of light in vacuum is 3 × 10⁸ ms⁻¹)
 - (A) $2.4 \times 10^8 \text{ ms}^{-1}$ (B) $2.0 \times 10^8 \text{ ms}^{-1}$ (C) $1.5 \times 10^8 \text{ ms}^{-1}$ (D) $1.25 \times 10^8 \text{ ms}^{-1}$
 - (C) $1.5 \times 10^8 \text{ ms}^{-1}$ (D) $1.25 \times 10^8 \text{ ms}^{-1}$ A small telescope has an objective lens of focal
- 29) A small telescope has an objective lens of focal length 140 cm and an eye piece of focal length 5 cm. The magnifying power of telescope for viewing distant object when the telescope is in normal adjustment is

30) Which of the following figure is correct on the basis of Huygens principle for refraction of a plane wave by a thin prism.

(A)

- 31) Two waves having same intensity I_0 and originated from two non-coherent sources superpose at a point. The average intensity at the point is
 - (A) I_0 (B) $2I_0$ (C) $3I_0$ (D) $4I_0$
- 32) In the case of photoelectric effect, on increasing the frequency of incident light
 - (A) photelectric current increases
 - (B) photoelectric current decreases
 - (C) stopping potential increases
 - (D) stopping potential decreases
- 33) The photoelectric cut-off voltage in a certain experiment is 1.5 V. What is the maximum kinetic energy of photoelectrons emitted ?
 - (A) 1.5 eV (B) 3.0 eV
 - (C) 1.5 J (D) 1.6×10^{-19} J
- 34) If de-Broglie wavelength of a dust particle of mass 1.0×10^{-9} kg is 3×10^{-25} m, then the speed of the particle is
 - $(h = 6.625 \times 10^{-34} \, \text{Js})$
 - (A) 1.1 ms^{-1} (B) 1.0 kms^{-1}
 - (C) 1.2 kms^{-1} (D) 2.2 ms^{-1}
- 35) Threshold frequency of which of the following metal does not lie in the ultraviolet region. (In case of photoelectric effect)
 - (A) Zinc (B) Cadmium
 - (C) Magnesium (D) Sodium

47

	wings,
36) The momentum of a photon of light of frequency f is	45) The atomic masses of two isotopes of an element are 34.98 u and 36.98 u and their relative abundance are 75 4.97
(A) $\frac{nc}{f}$ (B) $\frac{n}{cf}$ (C) $\frac{nf}{c}$ (D) hcf	respectively, then the average atomic mass
37) If the radius of hydrogen atom in its first orbit	(A) 34.51μ (B) 36.46μ
Is a_0 , then its radius in third excited state is (A) $3a_2$ (B) $4a_3$ (C) $9a_4$ (D) 16a	(C) 35.47 u a saltor (D) 35.99 u and
38) The size of atom is Thomson's model is the	46) In a p-type semiconductor, which of the
size in Rutherford's model.	(A) Electrons are materity about a
(A) much greater than (B) not different from	trivalent atoms are the dopants.
(C) much less than (D) double	(B) Electrons are minority charge carriers and
quantum number that characterises the	pentavalent atoms are the dopants.
Earth's revolution around the Sun in an orbit	(C) Holes are minority carriers and pentavalent
of radius 1.5×10^{11} m with orbit speed 1.5×10^{4} m/s is (Mass of Earth is 6.0 × 10 ²⁴ km	(D) Holes are majority carriers and trime
$h = 6.625 \times 10^{-34}$ Js)	atoms are the dopants.
(A) 2.6×10^{72} (B) 2.6×10^{74}	47) When a forward bias is applied to a p_{-1}
(C) 2.6×10^{39} (D) 2.6×10^{73}	junction it
40) Kinetic energy of electron in one of the orbit of	(A) raises the potential barrier $b = \frac{1}{2} \frac{1}{2}$
nychogen atom is x then its total energy is	(B) reduces the majority carrier to zero
(A) $-x$ (B) $-\frac{x}{2}$ (C) $-2x$ (D) $-\frac{x}{2}$	(C) lowers the potential barrier
32) ⁸ n the case of photoslectric effect, on	(D) potential barrier remain same
given nuclear fusion reaction that occurs in	48) What type of semiconductor is CdS ?
the Sun.	(A) Elemental (B) Organic
$^{2}H + ^{3}H \rightarrow ^{4}He + ^{1}H + ^{1}H +$	(C) Inorganic (D) Organic polymer
(A) 0.42 MeV (B) 1.02 MeV	(E) more than 3 eV 3
(C) 12.86 MeV (D) 5.49 MeV	(A) Metals (B) Allovs
	(C) Semiconductor (D) Non-metals
42) The radius of nuclei of $\frac{1}{13}$ Al is (R ₀ = 1.2 fm)	in tength 140 cm and an eye pirter of focal lengt
(A) 3.0×10^{-15} m (B) 3.6×10^{-15} m	S cm. The magnitude purves of the cope for
(C) 3.2×10^{-14} m (D) 3.6×10^{-12} m (3) Which of the following element has maxim	normal adjustment is
binding energy per uncleon ?	
(A) Uranium (B) Lithium	12' Which of the following figure is correct on the
(C) Tungsten (D) Iron	mais of Huygens principle for refraction of a
44) According to Einsteins mass-energy equivalent	Hard way have the product of the second seco
relation, the energy equivalent of 1 mg of	IOV If a diode having infinite reverse his
substance is	resistance is connected in a circuit as shown
(Speed of light in vacuum $C = 3 \times 10^8 \text{ m/s}$)	figure, then I ₁ and I ₂ are respectively
(A) 9×10^{13} J (B) 9×10^{10} J	(A) 0.0 A; 0.2 A (B) 10.0 A; 0.0 A
(C) 9×10^{-13} J (D) 9×10^{-10} J	(C) 0.2 A; 0.0 A (D) 0.0 A; 0.0 A

Std. - 12 : Physics

48

Board's Question Papers 49 Time : 2 Hours] PART - B [Total Marks : 50]	
 Obtain the expression for the magnetic energy stored in a solenoid in terms of magnetic field B, area A and length <i>l</i> of the solenoid and hence obtain formula for magnetic energy per unit volume. A 100 Ω resistor is connected to a 220 V, 50 Hz AC supply. (a) What is the rms value of current in the circuit ? (b) What is the net power consumed over a full cycle ? Derive the relation between focal length (f) and radius of curvature (R) for a spherical convex mirror with the help of a geometrical diagram of reflection of incident ray on a convex spherical mirror. 	 (b) just outside the sphere ? (c) at a point 18 cm from the centre of the sphere ? 14) Obtain the formula for equivalent emf and equivalent internal resistance of a series combination of two cells of emf ε₁ and ε₂ and internal resistance r₁ and r₂ respectively. 15) Obtain the formula for force acting between two parallel straight current carrying conductors and hence define one ampere. 16) A horizontal straight wire 10 m long extending from east to west is falling with a speed of 5.0 ms⁻¹ at right angle to the horizontal component of the earth's magnetic field 3 × 10⁻⁵ Wb m⁻². (a) What is the instantaneous value of the emf induced in the wire ?
Using Huygens principle, explain reflection of a plane wave by a plane reflecting surface. Light of frequency 7.21×10^{14} Hz is incident on a metal surface. Electrons with a maximum speed of 6.0×10^5 m/s are ejected from the surface. What is the threshold frequency for photoemission of electrons ? $(h = 6.625 \times 10^{-34} \text{ Js}, e = 1.6 \times 10^{-19} \text{ C}, m = 9.1 \times 10^{-31} \text{ kg})$ A hydrogen atom initially in the ground level absorbs a photon which excites it to the $n = 4$ level. Determine the wavelength and frequency of photon.	 (b) What is the direction of the emf? (c) Which end of the wire is at the higher electrical potential? 17) In actual transformers, small energy losses do occur. Give reason for it and how it can be reduced. (Any three) 18) (a) The radii of curvatures of the faces of a double convex lens are 10 cm and 15 cm. Its focal length is 12 cm. What is the refractive index of the material of lens? (b) A convex lens of glass has 20 cm focal length in air. What is focal length in water (Refractive index of air-water is 1.3) Refractive index of air-glass = 1.5)

19) Discuss the intensity of transmitted light when a polaroid sheet is rotated between two crossed polaroids.

50

- 20) Summarise any three experimental features and observation described in the experimental study of photoelectric effect.
- 21) On the basis of Bohr's postulate obtain the formula for radius and total energy of electron in the n^{th} stable orbit for hydrogen atom.

Section - C

- Answer any 4 of the following given questions from 22 to 27 : (Each carries 4 marks) [16]
- 22) Derive the formula for electric potential due to an electric dipole at a point having position vector \vec{r} with respect to the mid-point of the dipole and discuss the electric potential on (a) equator, (b) axis
- 23) As shown in figure, resistances are connected in the four arms of a Wheatstone bridge.

- A galvanometer of 15Ω resistance is conneceted across BD. Calculate the current through galvanometer when a potential difference of 10 V is maintained across AC.
- 24) A sinusoidal voltage of peak value 283 V and frequency 50 Hz is applied to a series LCR circuit in which R = 3 Ω , L = 25.48 mH and C = 796 μ F. Find :
 - (a) the impedance of the circuit
 - (b) the phase difference between the voltage across the source and the current
 - (c) the power dissipated in the circuit and
 - (d) the power factor biogelos and becap
- 25) Draw the ray diagram for the formation of image by a compound microscope and obtained the formula for magnification.
- 26) How long can an electric lamp of 100 W be kept glowing by fusion of 2.0 kg of deuterium ? Take the fusion reaction as :

 ${}^{2}_{1}\text{H} + {}^{2}_{1}\text{H} \rightarrow {}^{3}_{2}\text{He} + n + 3.27 \text{ MeV}$

27) Explain full wave rectification with the help d proper circuit diagram and draw the wave form of input and output voltage.