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Abstract: 

This review article outlines current methods in predictive modeling with various biological areas such as 
proteomic, genomics, multivariable analysis, and bioinformatics as a whole. The onset of the digital era 
has inadvertently led to the emergence of Artificial Intelligence (AI). The core foundation of many of these 
applications such as Neural Networks (NNs), and their evolved form, Deep Neural Networks (DNNs), have 
progressed to allow integration in biological and bioinformatic applications. This paper highlights the 
instrumental advancements developed by the integration of these technologies in disease prediction and 
prevention as well as biomarker development. Such advancements are permitted by the analysis of high-
throughput proteomics and genomics data via machine learning algorithms. Moreover, the application of 
AI extends to various medical fields including cancer oncology, human aging research, diabetes, COVID-
19, kidney diseases and cardiovascular diseases. This broad implementation range lends itself to the 
foundation for a new generation of advances in healthcare and medical research. Thus, the ongoing 
evolution of AI and machine learning algorithms can lead to the expansion of scientific investigation while 
simultaneously progressing the treatments and therapies currently available in the healthcare. 
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Introduction: 

The technological revolution of the past few decades has ushered us into the digital age, with 

advancements resulting in the creation of AI. AI has a variety of applications in the fields of 

biology and bioinformatics, some of which include: profiling and predictions of disease states in 



 

genomic, proteomic datasets, proteins structural modeling, multivariable modeling and drug 

discover to name a few. Further advancements of said applications could lead to substantial 

positive impacts in public health by disease prevention efforts using relevant biomarkers and 

current databases as well as the analysis of ongoing investigations.  

When considering the implications and impacts of AI we must first understand the foundational 

architecture. Neural Networks (NNs) are generally the foundations of many AI applications1. 

These NNs can loosely be compared to the brain’s architecture1. The NNs are comprised of many 

nodes which can be paralleled to neurons1. The arrangement of these nodes is generally set in 

three divisions: input, hidden and output. The connections have associated measures or weights 

that allow for the final result to be tailored and optimized. The model, through a process known as 

“training”, adjusts based on the error rate and the disparity between predicted and actual outputs2. 

Training in this sense can fine tune the neural networks weights and better predict the outcomes2. 

This oversimplified explanation is what we consider machine learning (ML). When taken a step 

further the NNs can evolve into multi-layer complex networks known as Deep Neural Networks 

(DNNs)3 and by extension Deep Learning (DL). The DNNs complexity allows for the system to 

learn and help solve difficult problems that typical basic NNs would overlook. DNNs can also 

identify hierarchy of features, meaning that they allow for expansion into regions such as computer 

vision as seen in Krizhevsky et al.4 and natural language like the popular AI Generative Pre-trained 

Transformer 3 (GPT-3)5. DNNs applications are integrated in protein modeling such as the 

prediction tool AlphaFold6. They are also integrated genomic data sets like variant calling or gene 

expression analysis, the identification of biomarkers for biologically relevant predictions and a 

plethora of other applications.  



 

Pertaining to bioinformatics, the addition of AI and ML has many beneficial integrations that we 

are continuing to explore. This review will spotlight some of the most impactful applications of 

these technologies, emphasizing their significant roles in advancing scientific inquiry and 

enhancing patient outcomes. Moreover, integrating AI algorithms is considered a valuable 

development, as it could potentially change the way we approach diagnosis and treatments of 

diseases. This review article will encompass: AI in genomics, prediction and prevention, 

biomarker development and protein structure prediction.  

Artificial Intelligence in Genomics: 

Preprocessing is crucial in AI algorithms as it standardizes data for downstream use. This process 

addresses challenges such as noisy and/or missing data, as well as dimensionality issues, with the 

support of recent software and tools7. Traditional ML methods such as linear regression and 

support vector machines (SVMs) use statistical models to learn data patterns, providing key 

applications in biomedical genomic research, such as the coronavirus disease 2019 (COVID-19) 

and cancer8. Deep neural networks (DNNs), which have multiple hidden layers, along with 

convolutional neural networks (CNNs) — a specialized class of deep learning models for visual 

data analysis — are equipped to tackle genomics challenges through their unique architectures. 

Meanwhile, recurrent neural networks (RNNs), designed to identify patterns within sequential 

data, play a critical role in analyzing time-based sequencing datasets9. COVID-19 brought many 

recent changes to the field due to the extent of its impact and the necessity of accelerated research 

to mitigate the spread. An effective response to the COVID-19 epidemic required rapid genomic 

segmentation. Randhawa GS used a non-aligned, machine-learning method that rapidly and 

accurately segments the COVID-19 genome, confirming its origins in the betacoronavirus10. The 

strength of the method lies in the analysis of raw DNA sequences without needing genome 



 

annotation, highlighting the complexity of coronavirus evolution and the ability of ML algorithms 

to perform genomic analysis in a timely manner to combat large scale virus outbreaks. The 

employment of AI algorithms increases accuracy and precision over manual analysis methods, and 

at the same time reduces human error. By combining genomic data with current health records and 

environmental information, AI-aided procedures provide a holistic health perspective that could 

advance genomics, decision-making, disease understanding, medical innovation, and personalized 

health care as well as disease prediction and prevention methodologies.  

AI in Disease Prediction and Prevention: 

There are many models and tools that can help predict and gauge the progression of diseases. Each 

of these tools has a foundational core based on NNs. Ensemble Learning is a ML technique that 

takes multiple categories to make more precise predictions in contrast to simply using one 

classifier11. The methodology has been used in a variety of disease states such as diabetes12, skin 

disease13, kidney disease14, liver disease15, and heart conditions16. The methods to Ensemble 

Learning have a variety of approaches that include bagging, boosting, stacking, and voting, each 

of which can play a critical role in the design of the model11. Briefly, these approaches each have 

distinctive functionalities: bagging (Bootstrap Aggregating) improves the stability and accuracy 

of machine learning algorithms12, boosting reduces bias and builds strong predictive models17, 

voting is used when combining conceptually different machine learning classifiers to distinguish 

the optimal one13, and finally stacking involves combining the predictions from multiple models 

to train a new model18. The combination of these approaches allows for a refined and accurate 

prediction. Graph Neural Networks (GNNs) is another interesting technique that uses graphs as an 

input data for predictions. In contrast to data vectors, graphs can convey complex data structures 

that numerical datasets are sometime difficult to extrapolate from. These GNN models have 



 

potential to aid not only in disease prediction but help in medical diagnosis and treatment19,20. 

GNN’s applications extend to prediction of protein-protein interactions21, prediction of drug 

interactions with proteins22, and relationship characterization of brain imaging23.   

 These ML models have been integrated with patient data in order to structure methods for 

prediction and prevention assessments. There are various studies in extrapolating this information 

for predictive analysis as well as various ML algorithms. In Khalid et al. we see a variety of 

algorithms implemented like Naïve Bayes, decision tree, K-nearest neighbor, random forest, 

support vector machine, Linear Discriminant Analysis (LDA), Gradient Boosting (GB), and neural 

network24. These algorithms can be applied to determine if a patient has Chronic Kidney Disease 

or not to a 100% accuracy24. In Arumugam et al., the forecasting of heart disease and diabetes 

was improved using ML and fine-tuned decision tree models which outperformed the naïve Bayes 

and support vector machine models25. These models used multiple variables to predict various 

diseases, thus demonstrating MLs ability to handle complex multivariable data in a healthcare 

setting25. In You et al., prediction models for Cardiovascular diseases (CVD) were obtained by 

using known empirical clinical knowledge and a list of comprehensive variables26. These 

variables or predictors were selected using ML and the research group was able to develop a novel 

CVD risk prediction model26. Additionally, by implementing the model created by You et al., 

intervention of high-risked CVD partients will help aid in the preventive clinical decisions26. 

Additionally, another aspect of multivariable ML applications include the integration of various 

omic analysis. Capturing the intricate interplay within biological systems necessitates the 

integration of genomic, transcriptomic, and proteomic information. Databases such as 

'LinkedOmics'27 offer an extensive repository of cancer-related omics data, which is invaluable 

for training predictive models. Take central nervous system tumors, for instance, where multi-



 

omic analyses have revealed predictive markers of tumor progression28. Machine learning excels 

in sifting through these vast and complex datasets, bringing to light new facets of tumor biology 

that have significant implications for diagnosis and prognosis in oncology29. Beyond aiding 

multivariable analyses for disease prediction, these machine learning models also set the stage for 

breakthroughs in biomarker discovery. 

AI in Biomarker Development: 

One additional implementation of AI lies in the development of biological markers in efforts to 

improve healthcare and make advances in medical research. Biological markers, also known as 

biomarkers, is a broad term that encapsulates the objective signs of a disease or condition that can 

be accurately measured30,31. Biomarker assessments draw from clinical data, which categorize 

molecular markers found in patient samples like blood and bodily fluids31,32. Additionally, 

machine learning algorithms process extensive genetic and proteomic data, further supporting 

diagnostic and monitoring efforts. In relation to diseases, healthcare workers can utilize 

biomarkers to detect the presence of diseases and monitor their progression by providing insights 

to its severity. They can be advantageous in personalized medicine, to match patients to the 

treatments that is best suited to complement their genetic makeup and to assess the individual’s 

receptivity to particular treatments33. For example, Rezayi et al. reviewed AI techniques and their 

effectiveness in neoplasm precision medicine33. It was identified that 34 papers containing patient 

genomic, somatic mutation, phenotype, and proteomics with drug-response data was used as input 

in AI methods33. Additionally 16 papers using AI approaches looked at drug responses, a 

functional category for personalized treatment33.   

One potential avenue for this development could lie in the application of AI to the growing high 

throughput proteomic data sets obtained by MS-based proteomics34. DL can analyze said MS 



 

proteomic data and has now become a vital part of the data generation pipeline for biomarker 

discovery35. In a recent publication from Nakayasu et al., through a ML analysis, they identified 

protein panels capable of predicting the emergence of persistent autoantibodies and Type 1 

diabetes (T1D) even six months before the autoimmune response appeared36. The authors 

advocate for evaluating these predictive protein panels in ongoing human cohort studies for better 

prognostics and therapeutics development concerning autoimmunity and T1D36. Despite these 

recent developments, biomarkers are novel, and their development requires various efforts. One 

study by Xiao et al., highlights the benefit and necessity of biomarker development in cancer 

oncology in relation to screening, diagnosis, and therapeutics34. Additionally, AI intervention 

could diminish the amount of time spent in cancer identification, by advancing precision oncology 

via biomarker evaluation37. Apart from established diseases, the lack of biomarkers is evident in 

novel applications such as the development of anti-aging remedies. The study by Putin et al 

selected 21 DNNS to predict human chronological age using blood samples from routine health 

exams in the hopes of facilitating the tracking of biomarkers38. This led researchers to develop an 

online system to evaluate the performance of the predictors, which could potentially lead to the 

expansion of DNN training for the analysis of different types of biological data38. Even though 

monitoring concentration of biomarkers can help in elucidating disease conditions, some more 

thorough structural approaches are needed to truly understand the functionality of specific 

biomolecules.  

AI in Protein Structure Prediction: 

The protein structure prediction software AlphaFold2 has allowed the identification of over 200 

million protein structures39.  Of the structures generated they have be complemented with 

cryogenic electron microscopy (cryo-EM) to help elucidate critical structural biology tasks, such 



 

as functional classification, variant effects, binding site prediction and modeling into new 

experimental data40. Alphafold2 has helped in a variety of applications including: identification 

of nuclear pore complex proteins41, characterization of molecular mechanisms for the activation 

of gametogenesis in malaria parasites42 and elucidation of CCR4–NOT transcription complex 

subunit 9, a key player in mRNA degradation43. 

As of July 2020, AlphaFold2, previously known as AlphaFold6, is currently the best method for 

protein structural predictions44. The model was entered in the CASP14 assessment and had a 

significantly better accuracy compared to other models44. The evaluation conducted by CASP 

occurs every two years, utilizing newly resolved structures that have not been registered in the 

PDB or publicly revealed, ensuring a blind test scenario for the methods partaking in the 

assessment. This evaluation has historically stood as the benchmark for gauging the precision of 

structure prediction endeavors45,46. AlphaFold2 strength and accuracy in protein structure 

prediction come from novel neural network architectures and refined training procedures, while 

adhering to the evolutionary and geometric principles of proteins. It employs a unique architecture 

to jointly embed Multiple Sequence Alignments (MSAs) and pairwise features, bolstering end-to-

end structure prediction. The equivariant attention architecture and a structure module work in 

tandem to elucidate precise 3D coordinates of protein residues from amino acid sequences. The 

"Evoformer" neural network block processes inputs and connects information about spatial and 

evolutionary relationships within proteins. Furthermore, the iterative refinement strategy termed 

'recycling' significantly enhances prediction accuracy with a slight extension in training time. The 

structured methodology, iterative refinements, and the innovative architectures together 

encapsulate AlphaFold2’s strategy in decoding the intricate 3D structure of proteins44. Though 



 

great strides have been made to accurately predict these models, we are far from accurately 

determining the nuances in protein configuration when other interacting partners are present47.  

Discussion:  

AI's integration as a tool in scientific research brings forth a multitude of transformative 

possibilities. Notably AI can aid researchers by improving their efficiency in analyzing large-scale 

datasets that are often insurmountable due to the near impossibility of single-handed human 

interpretation. Among these, the applications relating to disease prediction, biomarker 

development and proteomic/genomic analysis will serve not only to complement and accelerate 

current research projects but also to improve the predictive insights we gain from simulations and 

models. Currently, many models have been constructed to predict or identify diseases and changes 

in metabolism such as: kidney diseases, cardiovascular diseases, cancer, COVID-19, diabetes, and 

aging to name a few.  

 By examining complex data and detecting subtle patterns, AI can simultaneously lead to effective 

disease prediction, management and treatment, with the compiled information, enhancing 

biomarker identification and development. AI significantly refines proteomic and genomic data 

analysis, illuminating the complex genetic and protein dynamics fundamental to biological 

processes. Furthermore, as AI and ML algorithms continue to evolve, they will open up new 

avenues of scientific investigation considered to be distantly unobtainable by today’s standards. 

By predicting outcomes, simulating experiments, and optimizing processes with an unprecedented 

level of sophistication and efficiency, AI expands the horizons of scientific exploration. Multiple 

algorithms have been implemented in conjunction with AI such as Naïve Bayes, decision tree, K-

nearest neighbor, random forest, SVM, LDA, GB, and neural networks. Techniques like Ensemble 

Learning have also included an array of tools from bagging, boosting, stacking, and voting. GNNs 



 

extend to prediction of protein-protein interactions, drug interactions and an array of real-world 

clinical applications. DNNs and by extension CNNs and RNNs aid in visual data analysis and 

sequential data for refined parsing. AlphaFold2 has unlocked an array of structural protein 

information that is invaluable to clinical applications. All these tools in conjunction and 

complementation to AI shape the methodologies that allow for breakthroughs in scientific inquiry 

and clinical progression.  

Though much progress on protein modeling and scaffolding has been accomplished, there needs 

to be a push for translational science to allow for health care professionals to make better decisions 

for patients. The same idea can be mentioned for predictive models. There are many datasets and 

repositories as well as models that have been designed to predict and prevent disease state. 

Although the applications of AI in healthcare are not yet broadly utilized, the models trained on 

pre-existing datasets often embed inherent biases and disparities. If not reduced appropriately, AI 

algorithms could perpetuate existing inequities and data gaps in the field, like the healthcare 

sector48. Thus, it is important to use representative data sets and to robustly address potential 

biases in algorithmic development. While novel, the implementation of AI is simply an extension 

of the digital age that led to the scientific discoveries that have aided humankind of previous 

decades and will continue to allow for the progression of such discoveries in the distant future.  
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