

Optimistic Timeline for XLP2 Gene Therapy Clinical Trials in the U.S.

Preclinical Development for Rare Disease Gene Therapies

Developing a gene therapy for a rare monogenic disease like X-linked lymphoproliferative disease type 2 (XLP2) typically begins with a multi-year preclinical phase. In this stage, researchers design and optimize a therapeutic gene delivery vector (such as an AAV or lentiviral vector), test it in cell cultures, and evaluate efficacy in animal models. For rare diseases, identifying or creating a suitable animal model can be challenging and time-consuming. **These preclinical investigations often require several years** – on the order of 3–5 years in many cases – to establish proof-of-concept and gather the safety data needed for human trials 1. For example, experts have noted that the preclinical development (including requisite animal studies and other IND-enabling experiments) generally takes a minimum of around **4 years, and often longer**, before a therapy is ready to advance 1. In an optimistic scenario, a well-resourced XLP2 gene therapy program might compress this timeline by leveraging existing technologies and models (for instance, using vector platforms proven in similar immunodeficiencies and any available XLP2 animal models). However, even under ideal conditions, **a few years of focused preclinical work** are typically necessary to ensure the therapy's safety and efficacy prior to human testing.

Timeline to IND Application Filing

Once robust preclinical results are obtained, the next major milestone is filing an **Investigational New Drug (IND)** application with the U.S. FDA. Preparing for an IND involves final toxicology studies (often under Good Laboratory Practice standards), scale-up of vector manufacturing to clinical grade, and compiling extensive documentation on the product's chemistry, manufacturing, and controls. Sponsors often engage in a **pre-IND meeting** with the FDA to get guidance, which can add a few months of preparation and dialog (roughly on the order of 3–4 months including meeting scheduling and follow-up in a smooth scenario) ². After the IND dossier is submitted, the FDA's review process is relatively quick: by regulation, the agency will notify the sponsor within 30 days if there is a clinical hold; otherwise the trial may proceed ². In practice, this means that *if all goes well*, an IND could be cleared roughly one month after submission. Putting these steps together, an optimistic timeline might involve on the order of **2–3 years of preclinical studies** followed by several months of IND preparation, aiming to file the IND perhaps by the **third year** of the project. Under ideal conditions (no major FDA objections or delays), the IND would become active 30 days after filing, enabling the **first-in-human trial** to initiate shortly thereafter. In summary, reaching IND submission for a rare disease gene therapy often takes several years of groundwork, but in a best-case scenario the process from project start to IND clearance might be achieved in around **3–4 years** total.

Case Studies: Discovery to First-in-Human Timelines in Monogenic Diseases

Experience with gene therapies for other monogenic rare diseases provides reference points for timeline expectations. These examples illustrate that the path from initial discovery or concept to a first-in-human trial can range from just a few years (with concentrated effort and favorable data) to a decade or more:

- Wiskott-Aldrich Syndrome (WAS) an X-linked immunodeficiency comparable in some ways to XLP2 required nearly a decade of preclinical development. A lentiviral gene therapy for WAS was built on a research program initiated in 2002, and by 2010–2011 the first Phase I/II trials were underway 3. In other words, about 8–9 years elapsed from concept to human dosing in this case, partly because novel vector technology had to be developed and early safety setbacks in the field were addressed. This example shows the longer end of the spectrum, reflecting the caution and groundwork needed for first-in-class therapies.
- Luxturna (RPE65 gene therapy for inherited blindness) In the field of inherited retinal disease, development spanned roughly a decade from gene identification to clinical trial. The causative RPE65 gene for one form of congenital blindness was first identified in the late 1990s; about 10 years later (2007), researchers launched the first Phase 1 trial of an AAV-based gene therapy for this condition 4. This timeline (gene discovery in ~1997 to human trial in 2007) underscores that even with strong academic interest and animal models (e.g. Briard dogs), reaching the clinic took a full decade, in part due to meticulous preclinical testing and manufacturing scale-up.
- Spinal Muscular Atrophy (SMA) Zolgensma: SMA is a rare but devastating pediatric disease caused by a single gene defect. Remarkably, the development of an AAV9 gene replacement therapy (AVXS-101, later branded Zolgensma) was accelerated by concentrated effort. Foundational animal proof-of-concept studies demonstrating efficacy in SMA mouse models were published around 2009–2010. By May 2014, just a few years later, the sponsor had opened a Phase 1 trial in infants with SMA ⁵. This fast (~4-year) transition from decisive animal data to human trials was facilitated by the urgent unmet need and the existence of enabling technologies (AAV9 vectors) and indeed the therapy went on to achieve FDA approval in 2019. SMA's case illustrates a best-case timeline in modern gene therapy: strong early results and regulatory support enabled first-in-human studies in only a few years after initial breakthroughs.
- ADA-SCID ("Bubble boy" disease): Historically, one of the first gene therapy successes was for ADA deficiency, a severe immunodeficiency. The first gene therapy trial in the U.S. took place in 1990, treating a four-year-old girl with ADA-SCID 6. The ADA gene had been cloned just a few years prior, making this an unusually rapid bench-to-bedside translation. However, this trial was a special case conducted at the NIH under unique circumstances, and it required only a very small safety study. It's an outlier example most gene therapy programs, especially today, involve more extensive preclinical work but it demonstrates that in principle a few-year turnaround is possible in exceptional scenarios.

These case studies show that timelines can vary widely. **Older programs** (like WAS or RPE65) often took close to a decade to reach clinical trials, while **newer programs** (like SMA) have managed it in around half that time when science and resources align. The trend in recent years, thanks to accumulated knowledge

and better vector platforms, is toward *shorter development cycles* for rare disease gene therapies 7. Indeed, initiatives like the Bespoke Gene Therapy Consortium (BGTC) are actively trying to streamline this process – for example, several BGTC-backed AAV gene therapy projects launched in 2023 aim to be trial-ready within only a few years 7.

Regulatory Pathways and Expedited Development Programs

To achieve the fastest possible timeline, developers of an XLP2 gene therapy would take advantage of regulatory pathways designed to expedite rare disease treatments. In the U.S., the FDA offers **multiple expedited designations** that can help shorten development and review times:

- Orphan Drug Designation (ODD): XLP2, being an ultra-rare disease, would qualify for orphan status (for diseases affecting fewer than 200,000 people in the US). Orphan designation provides incentives like fee waivers and tax credits, and signals FDA's support for developing a therapy in an otherwise neglected disease 8 9. While it doesn't cut the clinical testing time per se, orphan status often attracts industry interest and resources, which can indirectly accelerate progress 9. It also grants 7-year exclusivity upon approval, encouraging investment in the program.
- Rare Pediatric Disease Designation: XLP2 primarily affects children (it often presents with severe Epstein–Barr virus–triggered immune dysregulation in boys). A rare pediatric disease designation could be obtained, as was done by the BGTC for all its pediatric gene therapy candidates ⁸. This designation makes the program eligible for a **Priority Review Voucher** if the therapy is ultimately approved. More immediately, it emphasizes the serious unmet need in children and can be a "badge" that helps push the program forward ⁹.
- Fast Track Designation: Fast Track can be requested early in development for a therapy that treats a serious condition and fills an unmet medical need. It does *not* require human efficacy data at the time of request preliminary data (even from animal models) may suffice. Fast Track status allows for **more frequent meetings** with FDA and a rolling review of the marketing application later. An XLP2 gene therapy could likely secure Fast Track given the life-threatening nature of the disease and lack of effective treatments, much as other gene therapies for severe rare disorders have. For instance, a gene therapy for Dravet syndrome (another pediatric monogenic condition) was granted Fast Track by the FDA in its early phase 10.
- Breakthrough Therapy Designation: Breakthrough status is granted when early clinical evidence (human data) indicates a substantial improvement over existing therapies for a serious condition. In an optimistic scenario, if an XLP2 gene therapy shows remarkable outcomes in its first patients (for example, preventing hemophagocytic lymphohisticocytosis episodes or restoring immune function), the sponsors could apply for Breakthrough designation. This brings intensive guidance from senior FDA officials and an organizational commitment to expedite development. Notably, Breakthrough designation requires some clinical results, so it could be pursued after a Phase 1/2 trial is underway and showing promise.
- Regenerative Medicine Advanced Therapy (RMAT) Designation: RMAT is a special expedited
 program for cell and gene therapies, introduced by the 21st Century Cures Act (2016). A gene
 therapy for XLP2 would fall under this category. Like Breakthrough, RMAT requires preliminary
 clinical evidence of benefit, but it is specifically tailored to regenerative medicines. RMAT

designation provides early, frequent interactions with the FDA and may enable features like accelerated approval or priority review ¹¹. In effect, it offers similar benefits to Breakthrough therapy designation for gene therapies. For example, Encoded Therapeutics' gene therapy for Dravet syndrome obtained RMAT after showing encouraging early efficacy, building on the fact that it already had Fast Track, Orphan, and Rare Pediatric designations in place ¹⁰ ¹¹. A successful XLP2 program could follow a similar path: orphan and pediatric designations from the start, Fast Track early on, and then RMAT once some human data emerges.

• **Priority Review and Accelerated Approval:** As the program reaches the marketing application stage, priority review can shorten the FDA review timeline to 6 months instead of 10. This is often granted for therapies that showed significant improvements (and would be essentially automatic if a Rare Pediatric Disease voucher is used). Accelerated approval could be a consideration if a surrogate endpoint (for instance, a biomarker of immune reconstitution) reasonably predicts clinical benefit in XLP2; this pathway would allow approval based on that surrogate with a post-approval trial to confirm benefit. These pathways don't affect the start of clinical trials, but they underscore FDA's willingness to **speed the overall development** for serious rare diseases

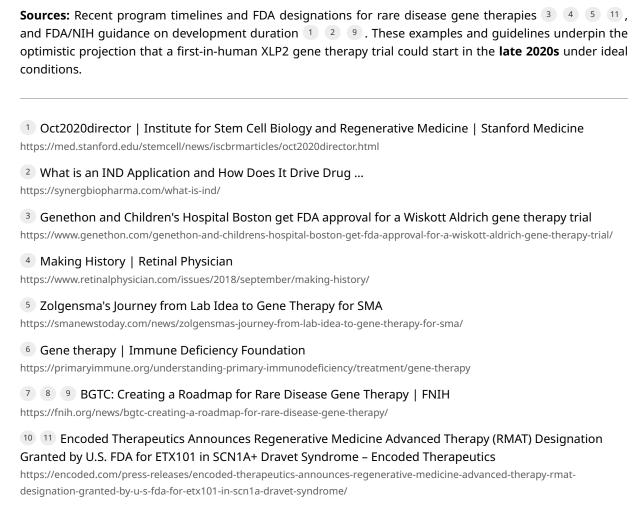
In summary, the regulatory framework in the U.S. offers **numerous tools to hasten development** for a gene therapy like XLP2. In an optimistic scenario, one would expect the sponsors to secure Orphan Drug and Rare Pediatric designations very early (even before IND filing, as these can be granted based on disease prevalence and seriousness ⁸). Fast Track designation could also be in hand early, facilitating close communication with FDA. Then, as soon as there are encouraging signals in the first patients, an RMAT designation could be sought to further streamline the path to later-phase trials and approval ¹¹. Leveraging these expedited programs helps minimize bureaucratic delays and keep the timeline as short as possible – essentially ensuring that **regulatory processes do not become a bottleneck** in an otherwise smooth development program.

Best-Case Projection for XLP2 Gene Therapy Trial Launch

Bringing together the above considerations, we can outline a **best-case timeline** for initiating a clinical trial of gene therapy for XLP2 in the United States, assuming work starts now (late 2025 or early 2026) and proceeds without major setbacks:

- **Years 0–1:** Foundational research and vector design. The therapeutic gene (XIAP, which is mutated in XLP2) would be packaged into a suitable delivery system. Given that XLP2 gene therapy has not been done before, initial in vitro experiments and perhaps small animal studies (e.g. Xiap-knockout mice, if available) would be conducted to demonstrate that the gene delivery can restore immune function. By the end of Year 1 (optimistically), there would be a lead vector candidate showing promise in the lab.
- Years 1–2: Proof-of-concept and animal efficacy studies. During this period, efficacy would be confirmed in vivo for instance, showing that gene-treated XLP2 mice (or another model) survive an immune challenge that would normally cause fatal HLH. Simultaneously, the production process for the vector would be scaled to a **pilot GMP batch** for testing. If all goes well, by ~2 years into the project, there is compelling efficacy data in at least one model and preliminary safety data, justifying moving forward. The sponsor might initiate a pre-IND meeting with FDA around this time to ensure their plans align with regulatory expectations.

- Years 2–3: IND-enabling studies and IND submission. In this phase, the focus is on safety studies and manufacturing. Required GLP toxicology studies (for example, testing the gene therapy in two species to assess for any off-target effects or safety issues) would be performed. Assuming no major toxicity signals, the team would concurrently finalize the clinical trial protocol and prepare the IND application. Manufacturing of a clinical trial lot under GMP would also be completed. By the end of Year 3 (or into Year 4 at the latest), in this optimistic timeline, the IND application is filed with the FDA. Thanks to prior Fast Track interactions and guidance, the application is high quality and addresses regulatory concerns. The FDA then reviews it within 30 days and grants IND clearance (no clinical hold), allowing the trial to proceed 2.
- Year 4 (approximately 2029): First-in-human trial begins. With IND approval in hand, the sponsors can initiate a Phase I/II clinical trial of the XLP2 gene therapy in the U.S. This would likely be an open-label, early-phase trial in a small number of patients (perhaps adolescents or young adults initially, given FDA's typical cautious approach of starting in older patients before infants ¹³). On an optimistic schedule, the first XLP2 patient could receive the investigational gene therapy in roughly the 2028–2029 timeframe. This assumes ~3 years of preclinical work (2025–2028) and a quick IND approval process.


It's important to stress that **2028–2029 is a best-case estimate** for a U.S. trial launch. This projection aligns with some of the faster examples seen in gene therapy development. For instance, the SMA gene therapy moved from animal studies to human trials in about 4 years ⁵, and the BGTC is aiming for similar sub-5-year turnarounds for several of its programs started in 2023 ⁷. If an XLP2 program were initiated imminently with ample funding, scientific expertise, and the benefit of today's advanced gene therapy methods, a late-2020s trial start is feasible. By comparison, a less ideal (but still reasonable) scenario could easily take longer – if any hurdles arise (e.g. needing to troubleshoot an unexpected toxicity, difficulties in manufacturing, or simply the inherently iterative nature of research), the timeline could extend into the early 2030s.

In summary, **assuming everything proceeds smoothly**, a gene therapy clinical trial for XLP2 in the U.S. could realistically **begin by around 2028 or 2029** in the most optimistic scenario. This assumes rapid progress through preclinical development (\sim 3 years) and efficient regulatory interactions (IND by year \sim 3–4). The year 2030 would be a reasonable **outside estimate** for a best-case launch, providing a small buffer. Achieving this will depend on leveraging expedited regulatory pathways and learning from analogous gene therapy efforts, but the rapid progress in related rare disease gene therapies gives cause for optimism that XLP2 could follow an accelerated path to the clinic 3 5 .

Supporting Examples and Analogous Cases

- WAS Gene Therapy: ~8+ years preclinical (2002–2010) before trial 3.
- Luxturna (RPE65): ~10 years from gene discovery to Phase 1 (1997–2007) 4.
- SMA Zolgensma: ~4 years from pivotal animal studies to first trial (2010–2014) 5.
- **Regulatory Designations:** Dravet syndrome gene therapy granted Fast Track, Orphan, Rare Pediatric early; later earned RMAT after initial patient data 10 11.

Each of these cases informed the projected timeline by illustrating how long critical stages can take and how FDA programs can compress the schedule. With XLP2 having no current gene therapy, these precedents and special designations will be crucial to reach patients as quickly as possible.

Rare Disease Focus: FDA's Trio of Cell and Gene Therapy Draft Guidances Highlight Expedited Programs, Innovative Trial Designs, and Postapproval Evidence Generation | Insights | Ropes & Gray LLP https://www.ropesgray.com/en/insights/alerts/2025/11/rare-disease-focus-fdas-trio-of-cell-and-gene-therapy-draft-guidances-

highlight-expedited-programs

13 Preclinical Drug Development for a Gene Therapy Product: No Cookie Cutter Route | Lovelace

https://www.lovelacebiomedical.org/preclinical-drug-development-for-a-gene-therapy-product-no-cookie-cutter-route/

Biomedical