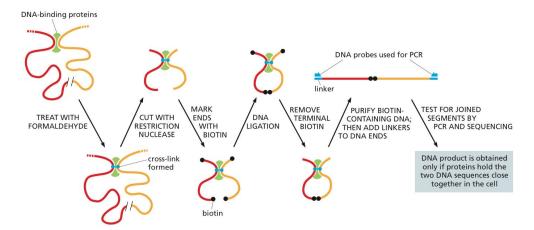
Confidential Customized for Lorem Ipsum LLC Version 10

Chromosomal Organization

Carl Andersen Tan – November 6 Textbook Presentation

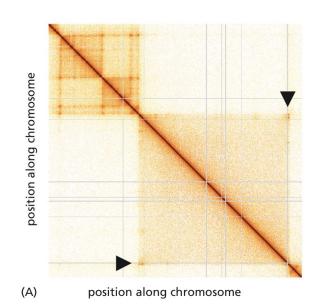
Table of Contents

Hi-C and its role in assessing TADs

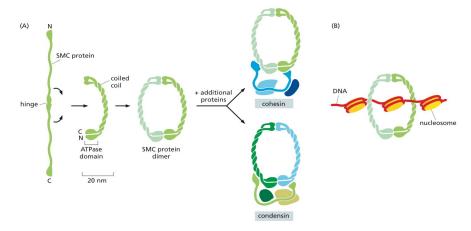

Packaging of Mitotic Chromosomes

Packing by SMC complex

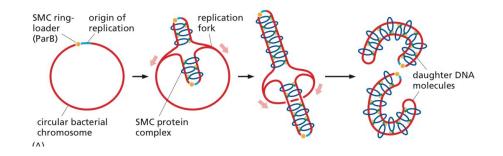
^{*}Speaker notes has more detailed information

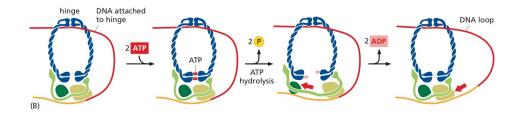

Biomolecular technique "Hi-C" used to elucidate Chromosome Organisation

- Chromosomes occupy its own discrete territory within the nucleus.
- Hi-C provided a way to map chromatin interactions throughout the genome by cross-linking chromatin, cutting DNA, ligating it, and then sequencing the interacting fragments.

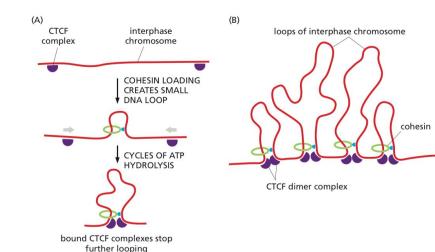

Biomolecular technique "Hi-C" used to elucidate Chromosome Organisation

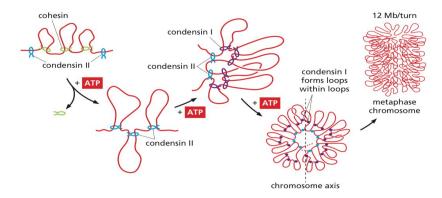
- Figure shows a plot of any DNA sequence from a 2kb region (position indicated by x axis) was found to be ligated to another 2kb region (position indicated by y axis)
- Hi-C allows for determination of topologically associated domains (TAD)
- TADs are thought to play crucial roles in gene regulation by influencing which genes and regulatory elements can interact within the same domain.


Chromosomal DNA is organized into large loops

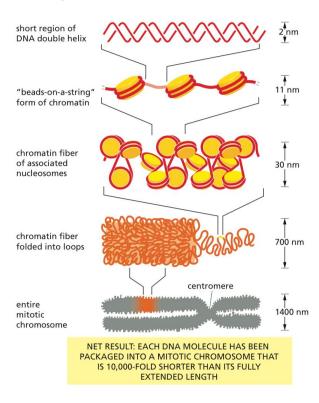

- DNA is folded into loops by an SMC protein complex
- The condensin complex is essential for the condensation of chromosomes during mitosis and meiosis
- The cohesin complex is essential for holding sister chromatids together from the time they are duplicated until they are separated during anaphase.

Chromosomal DNA is organized into large loops


- Moving SMC containing protein rings function to separate bacterial chromosomes
- Par B binds adjacent to the origin of replication of the circular chromosome.
- ATP hydrolysis drives movement until two DNA replication forks formed at the origin meet



- During interphase cohesin rings are loaded at multiple sites along a chromosome. They serve to fold linear chromosomal DNA into loops.
- The cohesin rings stop at favored stopsties marked by CTCF
- CTCF are insulator proteins that help maintain discrete domains of chromatin function (e.g. enables function of reader-writer remodeling complexes)



Mitotic Chromosomes are highly condensed

- As cells enter mitosis, the interphase organisation of chromatin loops created by condensin is lost
- Another SMC protein, Condensin II forms larger new chromatin loops
- A second set of loops is formed with condensin I
- Loops within loops are formed packaging the DNA tighter

Chromosome Organisation

Thank you

