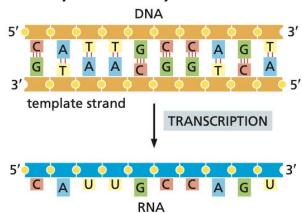

Confidential Customized for **Lorem lpsum LLC** Version 1.0

Transcription

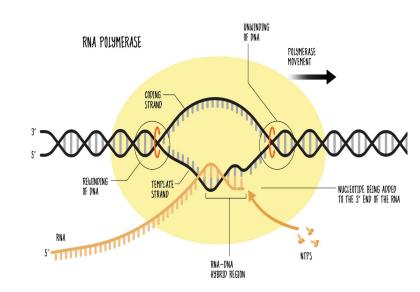
Table of Contents

1 Transcription

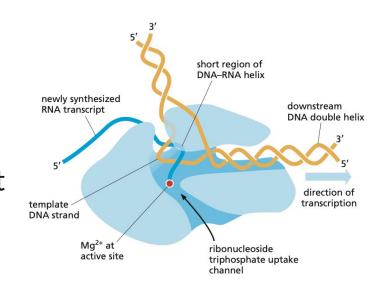

Transcription in Prokaryotes

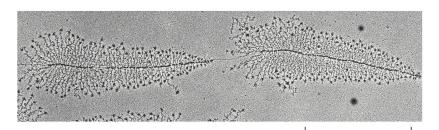
² RNA Polymerase

Transcription in Eukaryotes


Transcription

- Transcription: DNA → RNA
- Occurs in nucleus of eukaryotic cells. Cytoplasm of prokaryotic cells.
- RNA detaches itself from DNA immediately after synthesis
- Catalysed by RNA Polymerase




- RNA polymerase:
 - Links ribonucleotides instead of deoxyribonucleotides.
 - Does not require a primer
 - Has a higher error rate but has greater efficiency
 - Completes transcription without dissociating from the template.

RNA Polymerase

- Helicase activity: Unwinds DNA using Mg²⁺ ion for catalysis
- Nucleotides are added one by one at the polymerization site
- A short DNA-RNA hybrid forms temporarily before the RNA detached
- Multiple RNA polymerases can transcribe a DNA molecule

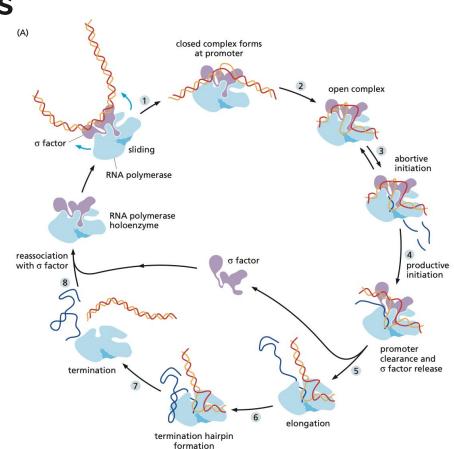


TABLE 6–1 Principal Types of RNAs Produced in Cells			
Type of RNA	Function		
mRNAs	Messenger RNAs, code for proteins		
rRNAs	Ribosomal RNAs, form the basic structure of the ribosome and catalyze protein synthesis		
tRNAs	Transfer RNAs, central to protein synthesis as the adaptors between mRNA and amino acids		
Telomerase RNA	Serves as the template for the telomerase enzyme that extends the ends of chromosomes		
snRNAs	Small nuclear RNAs, function in a variety of nuclear processes, including the splicing of pre-mRNA		
snoRNAs	Small nucleolar RNAs, help to process and chemically modify rRNAs		
IncRNAs	Long noncoding RNAs, not all of which appear to have a function; some serve as scaffolds and regulate diverse cell processes, including X-chromosome inactivation		
miRNAs	MicroRNAs, regulate gene expression by blocking translation of specific mRNAs and causing their degradation		
siRNAs	Small interfering RNAs, turn off gene expression by directing the degradation of selective mRNAs and helping to establish repressive chromatin structures		
piRNAs	Piwi-interacting RNAs, bind to piwi proteins and protect the germ line from transposable elements		

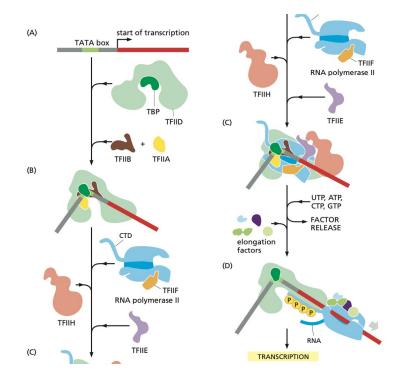
Transcription mechanism in Bacteria:

- RNA Polymerase Holoenzyme Assembly
- 2. DNA Unwinding at the Promoter
- Abortive Initiation
- Promoter Clearance and σ Factor Release
- 5. Elongation Phase
- 6. Transcription Termination

Transcription in Eukaryotes

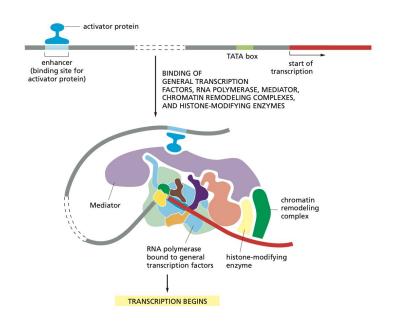
- Eukaryotes have three RNA polymerases:
- 1. **RNA Polymerase I:** Transcribes rRNA genes (except 5S rRNA).
- RNA Polymerase II: Transcribes protein-coding genes (mRNA) and some non-coding RNAs.
- 3. **RNA Polymerase III:** Transcribes tRNA, 5S rRNA, and other small RNAs.
- Require multiple general transcription factors

TABLE 6-3 The General Transcription Factors Needed for Transcription Initiation by Eukaryotic RNA Polymerase II					
Name	Number of subunits	Roles in transition initiation			
TFIID	12	Recognizes TATA box and other DNA sequences near the transcription start point			
TFIIB	1	Recognizes BRE element in promoters; accurately positions RNA polymerase at the start site of transcription			
TFIIA	2	Not required in all promoters; stabilizes binding of TFIID			
TFIIF	3	Stabilizes RNA polymerase interaction with TFIIB; helps attract TFIIE and TFIIH			
TFIIE	2	Attracts and regulates TFIIH			
TFIIH	10	Unwinds DNA at the transcription start point, phosphorylates Ser5 of the RNA polymerase C-terminal domain (CTD); releases RNA polymerase from the promoter			


TFIID is composed of TBP and 11 additional subunits called TAFs (TBP-associated factors).

Transcription in Eukaryotes

TABLE 6-3 The General Transcription Factors Needed for Transcription							
Initiation by Eukaryotic RNA Polymerase II							


minution by Lunaryout river orymorates in				
Number of subunits	Roles in transition initiation			
12	Recognizes TATA box and other DNA sequences near the transcription start point			
1	Recognizes BRE element in promoters; accurately positions RNA polymerase at the start site of transcription			
2	Not required in all promoters; stabilizes binding of TFIID			
3	Stabilizes RNA polymerase interaction with TFIIB; helps attract TFIIE and TFIIH			
2	Attracts and regulates TFIIH			
10	Unwinds DNA at the transcription start point, phosphorylates Ser5 of the RNA polymerase C-terminal domain (CTD); releases RNA polymerase from the promoter			
	subunits 12 1 2 3 2			

TFIID is composed of TBP and 11 additional subunits called TAFs (TBP-associated factors).

Transcription in Eukaryotes

- In Eukaryotes, Transcription Initiation Also Requires:
- Transcriptional activators- bind to enhancers to help recruit general transcription factors
- Mediator: large protein complex, bridges communication between activators, RNA polymerase II, and general transcription factors.
- Chromatin-modifying enzymes

Thank you

