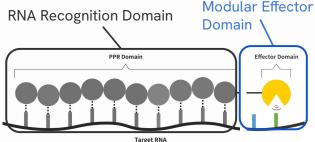

Targeted Upregulation of PKD1/PKD2 with Programmable PPR Proteins

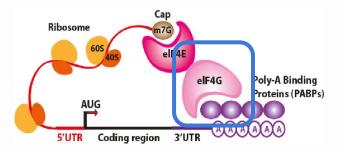
Carl Andersen Tan | Laboratory of Genome Chemistry Engineering

PKD1 and PKD2 Mutation Leads to Autosomal Dominant Polycystic Kidney Disease (ADPKD)

- One of the most common genetic disorders globally.
- loss-of-function mutations in either PKD1
 or PKD2 cause majority of ADPKD
- PKD1 and PKD2 protein loss/ downregulation leads to ADPKD
- Haploinsufficiency Autosomal Dominant
 PKD: Disease is the dominant phenotype
- Current treatment slows symptoms rather than targeting root genetic causes



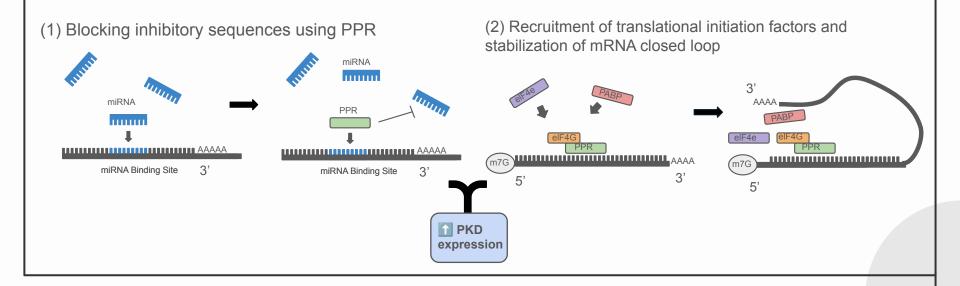
RNA Manipulation Using PPR Proteins


- Pentatricopeptide repeat (PPR) proteins are sequence-specific RNA binding proteins.
- PPR proteins are composed of smaller PPR motifs with each motif recognizing a specific nucleotide.
- PPR proteins can be designed to target specific RNA sequences with high RNA binding affinity and accuracy
- Effector domains can determine PPR functionality (e.g. GFP=visualisation)

[2]. Yagi, Y., Hayashi, S., Kobayashi, K., Hirayama, T., & Nakamura, T. (2013). Elucidation of the RNA Recognition Code for Pentatricopeptide Repeat Proteins Involved in Organelle RNA Editing in Plants. *PLoS ONE*, 8(3). https://doi.org/10.1371/journal.pone.0057286

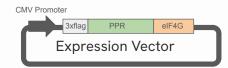
Cap-dependent translational initiation

Upregulation of PKD1/PKD2 by Translational Enhancement Effector PPR-eIF4G


- eIF4G (eukaryotic translation initiation factor 4G) is a central scaffolding protein in the translation initiation complex.
- Improves translation efficiency of mRNA
- PPR proteins fused to elF4G can enhance translation of endogenous mRNAs.
- Previous research: transfection of p53
 targeting-eIF4G-fused PPR constructs led to a
 ~7-fold increase in p53 expression (Ping et al.,
 2024)

eIF4G is a translational enhancement effector

[3] Ping, N., Hara-Kuge, S., Yagi, Y., Kazama, T., & Nakamura, T. (2024). Translational enhancement of target endogenous mRNA in mammalian cells using programmable RNA-binding pentatricopeptide repeat proteins. *Scientific Reports*, 14(1). https://doi.org/10.1038/s41598-023-50776-zc


Experimental Design:

Demonstrate that treatment of designer PPR-eIF4G proteins can effectively enhance the expression of disease-related genes *PKD1* and *PKD2* in mammalian cells

05

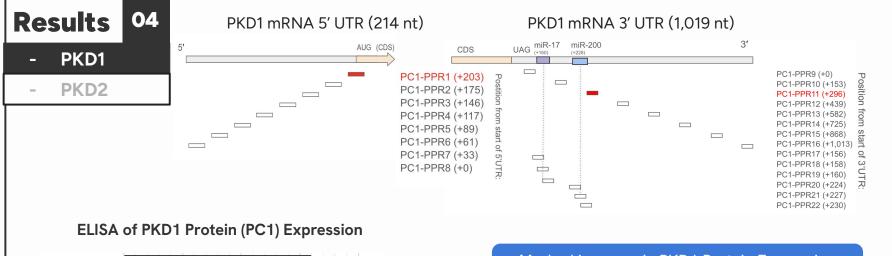
O3 Experimental Flow

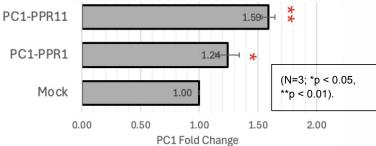
- on Design of PPR Constructs
- 22 (PKD1 targeting) and 16 (PKD2 targeting) 12-motif PPR proteins was constructed.
- Some positioned on inhibitory sites (miRNA binding sites/uORFs)

02 Cell Transfection

- Transfection into HEK293T cells and harvested 48 hrs post-transfection
- 3 Biological Replicates

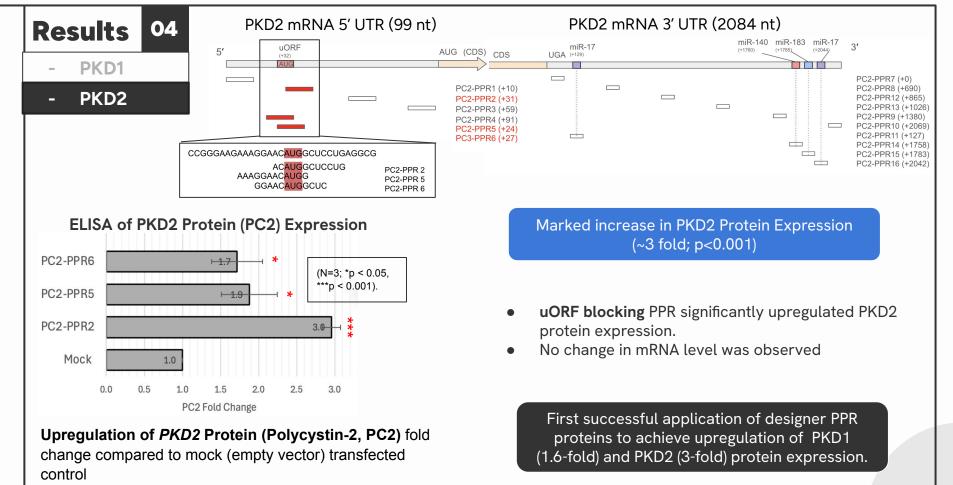
os qPCR



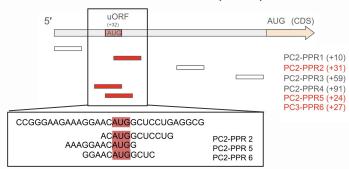

- 04 Western Blot
 - PKD1/PKD2 **protein**change was observed
 Band intensity
 compared to β-Actin

- PKD1 & PKD2 mRNA quantified with qPCR and compared to mock (empty vector) transfected controls
- β-Actin as housekeeping gene

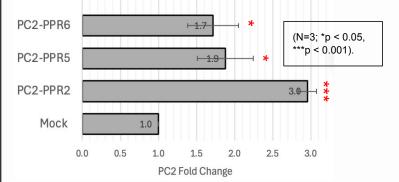
- Protein Quantification of PKD1 and PKD2
- Bicinchoninic acid (BCA) assay used to standardize total protein levels



Upregulation of *PKD1* **Protein (Polycystin-1, PC1)** fold change compared to mock (empty vector) transfected control


Marked increase in PKD1 Protein Expression (~1.6 fold; p<0.01)

 3'UTR and 5'UTR targeting constructs significantly upregulated PKD1 expression

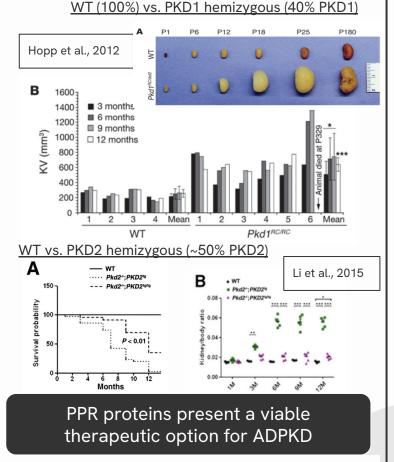

Demonstrates eIF4G-mediated translational enhancement independent of inhibitory element blockade

PKD2 mRNA 5' UTR (99 nt)

ELISA of PKD2 Protein (PC2) Expression

Upregulation of *PKD2* **Protein (Polycystin-2, PC2)** fold change compared to mock (empty vector) transfected control

Marked increase in PKD2 Protein Expression (~3 fold; p<0.001)

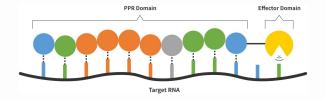

- uORF blocking PPR significantly upregulated PKD2 protein expression.
- No change in mRNA level was observed

First successful application of designer PPR proteins to achieve upregulation of PKD1 (1.6-fold) and PKD2 (3-fold) protein expression.

⁰⁵ Significance

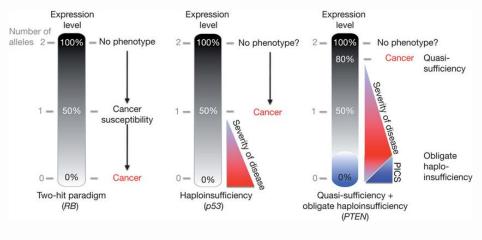
- <u>2-fold increases</u> should suffice to rescue kidney function due to nature of **haploinsufficiency**
- Hopp et al. (2012): 60% difference in endogenous PKD1 substantially influences ADPKD markers: cyst formation, kidney function and kidney size.
- Li et al. (2015): 2-fold increase of PKD2 led to 2-fold increase in lifespan, and restored kidney function in PKD2 hemizygous ADPKD mouse models.

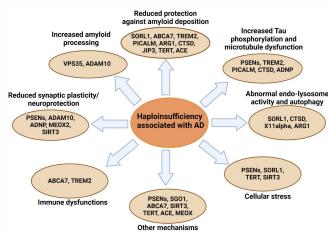
This study's findings: 1.6-fold PKD1 and 3-fold PKD2 protein increase are therapeutically relevant



[4] Hopp, K., Ward, C. J., Hommerding, C. J., Nasr, S. H., Tuan, H. F., Gainullin, V. G., Rossetti, S., Torres, V. E., & Harris, P. C. (2012). Functional polycystin-1 dosage governs autosomal dominant polycystic kidney disease severity. Journal of Clinical Investigation, 122(11), 4257–4273. https://doi.org/10.1172/JCI64313

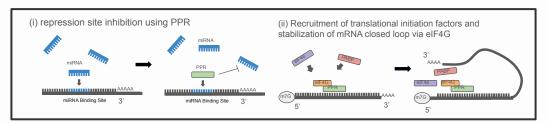
[5]Li, A., Tian, X., Zhang, X., Huang, S., Ma, Y., Wu, D., Moeckel, G., Somlo, S., & Wu, G. (2015). Human Polycystin-2 Transgene Dose-Dependently Rescues ADPKD Phenotypes in Pkd2 Mutant Mice. American Journal of Pathology, 185(10), 2843–2860. https://doi.org/10.1016/j.aipath.2015.06.014


05


Conclusion

This study highlights the potential of PPR proteins as a novel therapy for haploinsufficiency related disorders such as ADPKD.

Targeted Upregulation of *PKD1/PKD2* with Programmable PPR Proteins: A Versatile Approach for Addressing Haploinsufficiency


Carl Andersen Tan Laboratory of Genome Chemistry Engineering

Supplementary

*Use for Q&A

Carl Andersen Tan Laboratory of Genome Chemistry Engineering

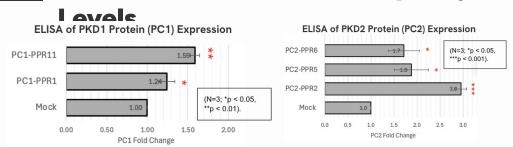
Future Research

Determine Individual Influence of Blocking Strategies

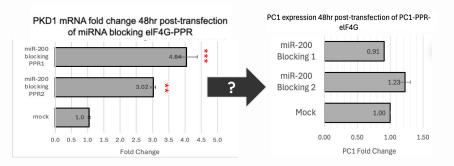
All Experiments were conducted with PPR-eIF4G fusion proteins yet blocking only requires PPR. Examining PPR blocking can reveal whether results were due to **either (i) repressional site inhibition or (ii) translational upregulation by effector**

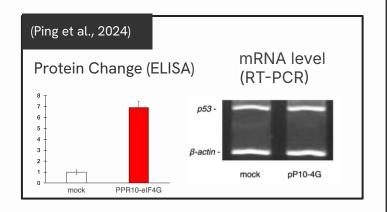
Optimization of PPR Construction and Effector

Testing of alternative translational effector domains may identify more potent candidates for gene upregulation (e.g. YTHDF)



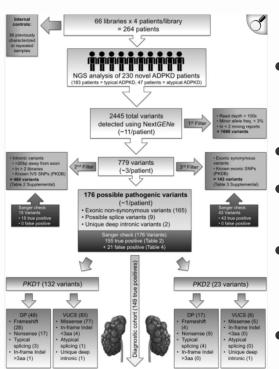
Screen for Off-Targets

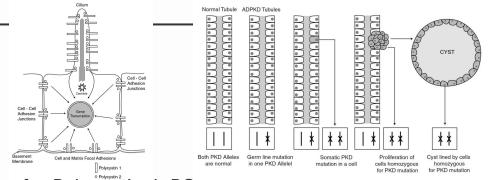

12-motif (12nt) PPR was used. RNA Immunoprecipitation assay (RIP) can be used to check of off-target PPR binding.


06

Future Research: Discrepancy Between mRNA & Protein

 In two targets, significant increases in PKD1 mRNA was observed but no parallel increase in protein levels?



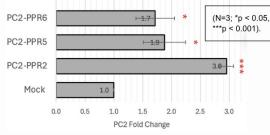

Elucidating this phenomenon can advance understanding of miRNA-RNA and PPR-RNA interactions

?

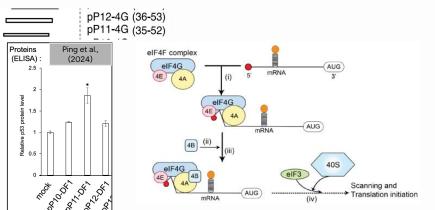
Hypothesis: miR-200 may shift targeting to downstream translational regulators that indirectly modulate PKD1 protein synthesis

More About ADPKD

- PKD1 (coding for Polycystin-1, PC1) and PKD2 (coding for Polycystin-2, PC2) are membrane proteins involved in Ca²⁺ signalling in tubular epithelial cells.
- These signals regulate normal proliferation levels.
- Mutations are typically frameshift or nonsense mutations in one PKD allele (Rosetti et al., 2012)
- When levels of functional polycystin fall below a threshold, it causes aberrant proliferation, fluid absorption, and ultimately cyst formation
- ADPKD is caused by the decreased expression of functional PKD1 and PKD2, not accumulation of nonfunctional PC1/PC2


Rossetti, S., Hopp, K., Sikkink, R. A., Sundsbak, J. L., Lee, Y. K., Kubly, V., Eckloff, B. W., Ward, C. J., Winearls, C. G., Torres, V. E., & Harris, P. C. (2012). Identification of gene mutations in autosoma polycystic kidney disease through targeted resequencing. *Journal of the American Society of Nephrology : JASN*, 23(5), 915–933. https://doi.org/10.1681/ASN.2011101032

Target Selection


ELISA of PKD2 Protein (PC2) Expression

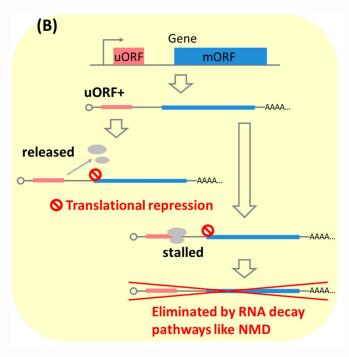
PKD2 mRNA 5' UTR (99 nt)

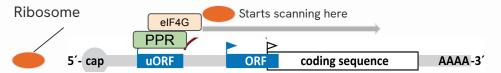
In this study: Translational enhancement was highly dependent on the specific target position .

PC2-PPR2 (+31)
PC2-PPR5 (+24)
PC3-PPR6 (+27)

Small nucleotide shifts (~1nt shift) cause great effects (Ping et al. 2024)

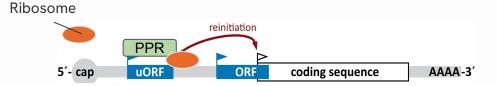
uORF


- Enhancement did not correlate with proximity to 5' end or start codon, nor with known internal ribosome entry sites (IRES)
- The presence of known secondary structures did not correlate with translational enhancement.

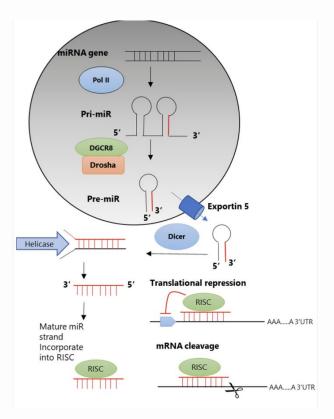

Hypothesis: only certain mRNA positions allow eIF4G to stabilize the translation pre-initiation complex. Moving the PPR-eIF4G by 10–20 nt could disrupt its ability to "reach" critical factors like eIF3 or ribosomes loading site. –Position of PPR may affect translational initiation complex assembly

Mechanism of uORF Blocking

Normal uORF gene repression



(1) PPR-eIF4G alters ribosome scanning from 5'cap to PPR target

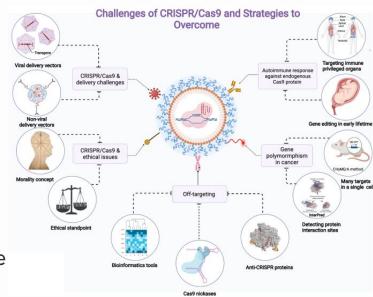

(1) eIF4G interacts with eIF3, which is bound to the 40S ribosomal subunit. This bridges the mRNA to the ribosome. Because PPR-eIF4G proteins were used, scanning could start from PPR target

(2) PPR-mediated "reinitiation"

(2) Ribosome normally scans from 5'cap but due to presence of PPR, it does not go through the uORF and instead directly initiates translation on main ORF

Mechanism of miRNA Blocking

 One strand of the duplex (the guide strand) is loaded into the RISC, primarily containing the Argonaute (AGO) protein.


Mechanism	Description
Translational Repression	Decreases translational initiation efficiency
mRNA Destabilization / Degradation	Recruitment of deadenylases (CCR4-NOT), decapping enzymes → mRNA decay
mRNA Cleavage	AGO2 cleaves the mRNA directly

Blocking of PPR prevents AGO Protein from associating with mRNA. Since in 3'UTR, it does not interfere with canonical cap-dependent scanning

Gene manipulation Technology

- CRISPR raises concerns about off-target and irreversible effects of genome editing.
- CRISPR gRNA target site limitations (e.g. GC-rich regions)
- PPR distinguishes between bases more effectively compared to canonical Watson-Crick base pairing (McDowell, 2022)
- 4. Limitations to Existing RNA manipulation techniques (ASO, siRNA, PUF, MS2)--Next slide

Existing RNA manipulation Technology

Nucleotide-Based Techniques:

RNA interference (RNAi) with **siRNAs** and **antisense oligonucleotides (ASOs).**

Limitations:

- Primarily suppress RNA levels
- Potential off-target effects due to weaker canonical Watson-crick base pairing

Protein-Based Techniques:

MS2 systems and Pumilio/fem-3 (**PUF**) RNA-binding proteins.

Limitations:

- Limited use in endogenous systems
- Limited programmability and sequence recognition capacity (e.g., PUF proteins bind 8–9 bases).

Special sequences in PKD1 and PKD2

5'UTR CDS

AUG

uORF

miR-17

miR-200

3'UTR

- Short coding sequence located in the 5' UTR of the
 PKD2 mRNA
- Ribosome dissociates from
 PKD2 mRNA before it
 reaches the start codon of
 the main coding sequence.

The FASEB Journal • Research Communication

Translational up-regulation of polycystic kidney disease protein PKD2 by endoplasmic reticulum stress

Jungwoo Yang, 1 Wang Zheng, 1 Qian Wang, Carlos Lara, Shaimaa Hussein, and Xing-Zhen Chen^2

- MicroRNA that has been shown to be upregulated in ADPKD models
- Binds to the 3' UTR of PKD1 and PKD2 mRNAs, leading to their degradation

and inhibit expression
post-transcriptionally

Influence downstream
 negative regulators of PKD1

ARTICLE

Received 7 Jun 2016 | Accepted 22 Dec 2016 | Published 16 Feb 2017

10.1038/ncomms14395 OPE

microRNA-17 family promotes polycystic kidney disease progression through modulation of mitochondrial metabolism

Sachin Hajarnis¹*, Ronak Lakhia¹*, Matanel Yheskel¹, Darren Williams¹, Mehran Sorourian², Xueqing Liu², Karam Aboudehen³, Shanrong Zhang⁴, Kara Kerigies², Ryan Galasso⁵, Jian Li², Vivek Kaima², Steven Lockton², Scott Davis², Andrea Flaten¹, Johnson⁵, William L. Holland⁵, Christine M. Kusminski⁵, Philipp E. Scherer⁵, Peter C. Harris⁶, Marie Trudel⁷, Darren P. Wallace⁸, Peter Igarashi³, Edmund C. Lee², John R. Androsavich² & Vishal Patel¹

Original Article
Effect of miR-200 on autosomal polycystic
nephropathy in rats

miR-200 family members

directly bind to PKD1 3'-UTR

Kebo Bi, Xiaoling Deng, Weihong Yu, Chunlian Yu, Xinglei Cui, Meiyan Yu, Tao Zhang

Department of Nephrology, Weihal Central Hospital, Weihal, Shandong, China Received November 25, 2015; Accepted January 27, 2016; Epub April 1, 2016; Published April 15, 2016