nature communications

Article

https://doi.org/10.1038/s41467-023-42252-z

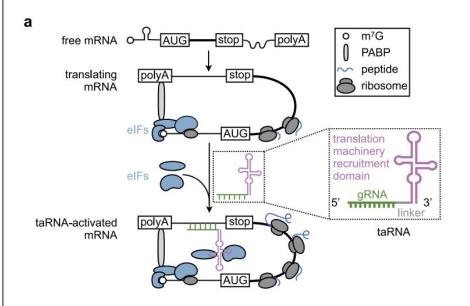
RNA-based translation activators for targeted gene upregulation

Received: 14 August 2023

Accepted: 4 October 2023

Published online: 26 October 2023

Yang Cao ¹, Huachun Liu ¹, Shannon S. Lu ¹, Krysten A. Jones¹, Anitha P. Govind², Okunola Jeyifous ², Christine Q. Simmons³, Negar Tabatabaei⁴, William N. Green², Jimmy. L. Holder Jr. ^{5,6}, Soroush Tahmasebi⁴, Alfred L. George Jr. ³ & Bryan C. Dickinson ¹

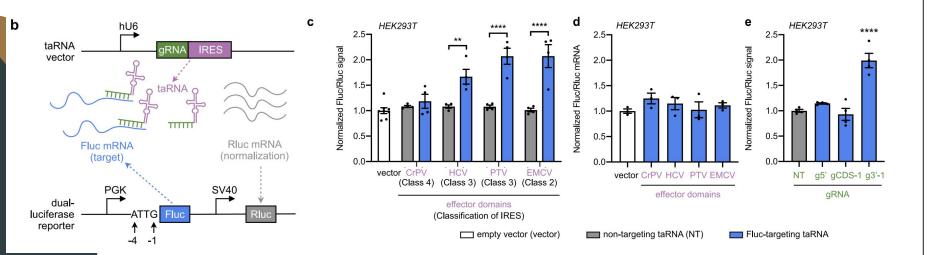

Journal Presentation - June 17

Impact Factor: 33.1

Background

- The regulation of gene expression is fundamental to cell function and is controlled at multiple levels—including transcription, mRNA processing, mRNA stability, and translation.
- This paper introduces RNA-based technology called taRNAs (translation activation RNA) that enhance gene expression

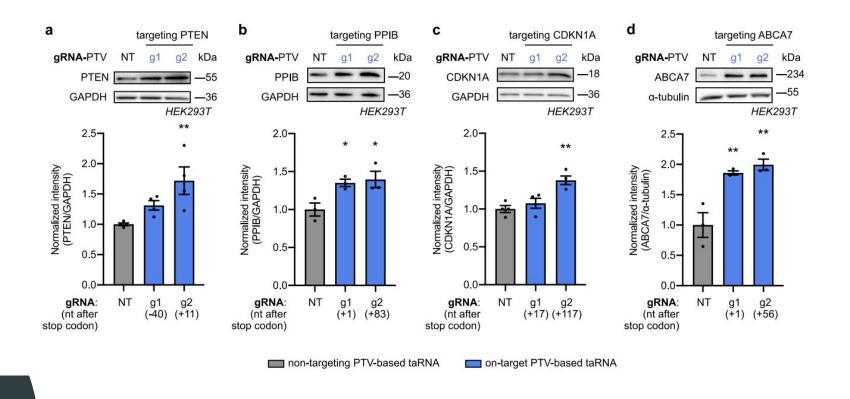
Key Features of taRNA


- A guide RNA (gRNA) that binds a specific target mRNA.
- A short linker (5nt)
- An effector domain derived from an internal ribosome entry site (IRES) that recruits translation initiation factors (like eIF3 or eIF4G).

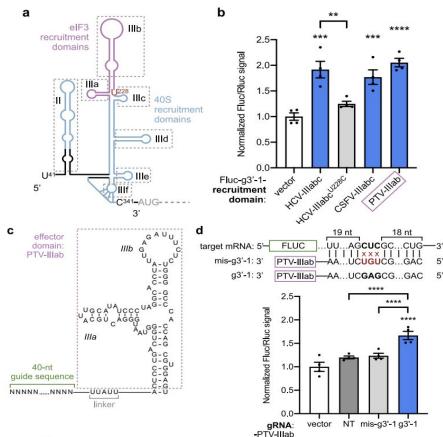
Aim and Objective

- 1. Show that taRNA are capable of translational enhancement
- 2. Test a variety of IRES-derived effector domains for their ability to recruit translation machinery.
- 3. Identify optimal guide RNA sequences
- 4. Validate taRNAs in multiple biological contexts, including:
 - a. Cell lines (HEK293T, N2a, MDA-MB-231),
 - b. Primary rat neurons,
 - c. In vivo mouse liver models,
 - d. And importantly, iPSC-derived neurons from a SYNGAP1 haploinsufficient patient.

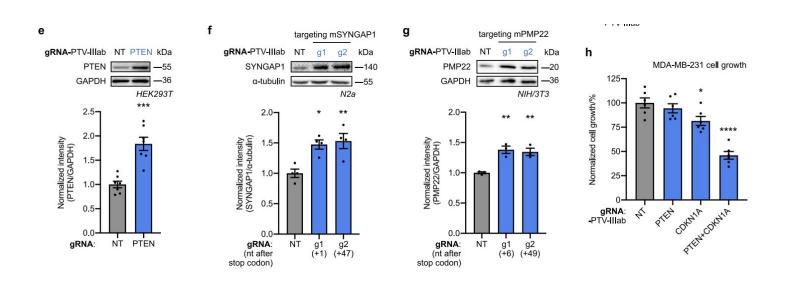
Initial screening of taRNAs for translational enhancement


- Researchers used a dual-luciferase reporter system
- Demonstrated that these taRNAs could enhance translation from exogenous mRNAs in a reporter system

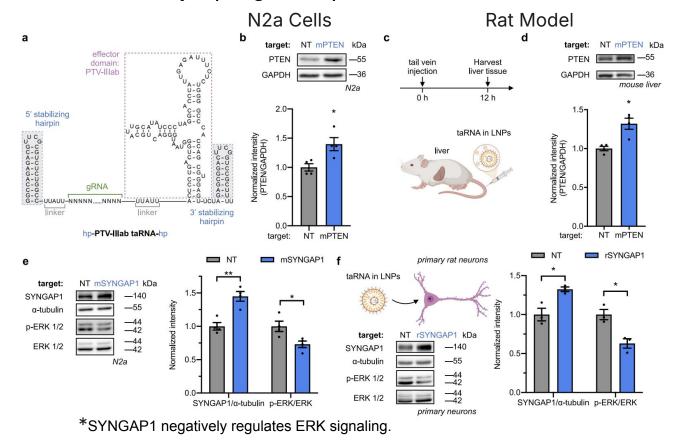
Optimization of taRNA gRNA position


- Target 3' UTR
- RNAfold: Used to avoid gRNA sequences with strong internal secondary structures.
- RNAup: Used to estimate the accessibility of the target mRNA region.
 - **BLAT**: Used to avoid potential off-target binding to other transcripts.
- Transcription considerations: Avoid sequences resembling RNA Pol III terminators (e.g., stretches of uridines) that could cause premature transcription termination.

taRNA enhances translation of endogenous mRNA

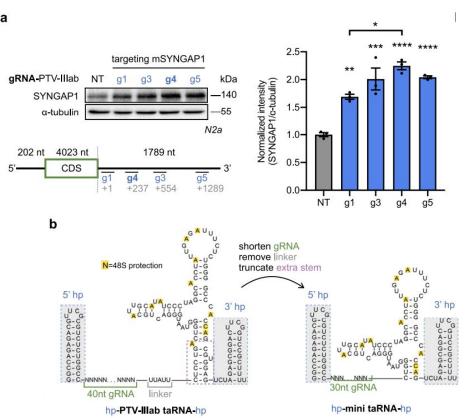

taRNA can be miniaturized using truncated domains

- a. Diagram of complete IRES structure of HCV
- Attached conserved domains of different IRES to taRNA and tested via dual-luciferase assay
- c. Schematic of taRNA PTV-llab
- d. Test for various gRNA positions c

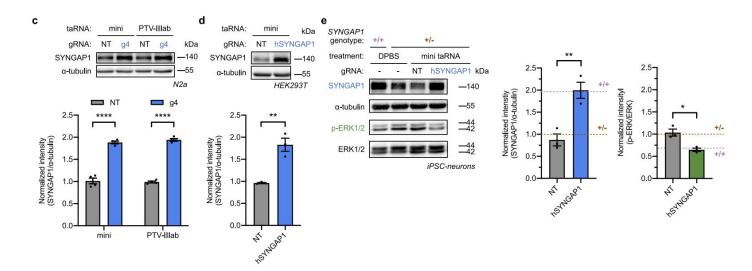


taRNA can be miniaturized using truncated domains

 After determination of optimal truncated IRES (PTV-IIab), taRNA was transfected into different cell models and targeted various disease related mRNA



taRNA can functionally upregulate proteins in cell and animal models


taRNA can rescue protein expression and function in SYNGAP1 haploinsufficient neurons

- a. Screened multipleSYNGAP1-targeting gRNAs in 3'UTR
- b. Constructed ta RNA with shorter gRNA and truncated IRES domain

taRNA can rescue protein expression and function in SYNGAP1 haploinsufficient neurons

- c. Compared full-size vs mini taRNA
- d. Tested mini taRNA on human SYNGAP1 in HEK293T
- e. Delivered mini taRNA to SYNGAP1+/- iPSC-derived neurons and Restored SYNGAP1 protein & rescued ERK signaling

Summary

- taRNAs are small, modular RNAs that enhance translation of target mRNAs by recruiting eukaryotic initiation factors (eIFs).
- They act post-transcriptionally, without altering mRNA levels or requiring genome editing.
- Function similar to PPR Proteins, however employ gRNA and IRES (RNA based effector domains) to increase translation.
- Can be employed in various cell and animal models.