

Electrifi Conductive PE Filament

Recommended Printing Parameters (FFF/FDM)

Electrifi Conductive PE Filament is a copper-filled polyethylene composite optimized for electrical performance and moderate thermal stability. The following parameters prioritize print reliability, dimensional control, and conductivity rather than print speed.

1. Printer & Hardware Configuration (Critical)

- **Extruder type:**
 - **Direct-drive extruder strongly recommended**
 - Bowden-style extruders not recommended for best results
 - AMS / shared-path multi-material feed systems not compatible
- **Filament path:**
 - Short, straight, and well-constrained
 - Avoid sharp bends, long PTFE tubes, or high filament drag
- **Nozzle:**
 - Brass or hardened steel
 - **Minimum diameter:** 0.4 mm
 - **Preferred diameter:** 0.6 mm for improved flow and reliability

2. Temperature Settings

Parameter	Recommended Range
Nozzle temperature	170–200 °C
Bed temperature	40–60 °C
Chamber temperature	Ambient (enclosure highly recommended)

Notes:

- Use the lowest nozzle temperature that provides stable extrusion
- Avoid prolonged dwell time at elevated nozzle temperature to reduce heat creep
- Lower standby nozzle temperature in start G-code when possible

3. Print Speed & Motion

Parameter	Recommended Value
Print speed	10–30 mm/s
First-layer speed	5–15 mm/s
Travel speed	Moderate
Acceleration	Low to moderate

Lower speeds reduce compressive stress in the filament and improve electrical consistency.

4. Retraction & Extrusion Control

Parameter	Recommendation
Retraction	Minimize or disable
Retraction distance	≤ 0.5 mm (if required)
Retraction speed	Slow
Coasting / wipe	Use cautiously

Excessive retraction is a common source of jams with conductive PE filaments.

5. Layer & Geometry Settings

Parameter	Recommended Range
Layer height	0.2–0.3 mm
Line width	\geq nozzle diameter (preferably +10–20%)
Wall count	≥ 2 perimeters
Infill	100% for conductive features

Electrical performance improves with:

- Wider and thicker traces
- Shorter conductor lengths
- Fewer inter-layer interfaces

6. Cooling

- **Part cooling fan:**
 - **OFF (0%) at all times**

- Part cooling is not recommended, as forced cooling can reduce interlayer bonding and negatively impact electrical performance
- **Hotend cooling:**
 - Strong, continuous cooling of the heat break is essential to prevent heat creep

7. Adhesion & Multi-Material Printing Notes

- Conductive PE adheres well to **PE and PP substrates**
- Adhesion to **PLA, ABS, PETG**, or other polymers may be limited without surface treatment or mechanical interlocking
- For multi-material designs, mechanical features (dovetails, press-fit slots) are recommended over reliance on chemical adhesion

8. Material Handling

- Filament is moderately flexible; avoid tight bends
- Use low-drag spool holders
- Keep filament clean and dry
- Drying is typically not required

9. Recommended Applications

- Printed conductors and interconnects
- Embedded heaters (≤ 85 °C continuous use)
- EMI shielding and grounding features
- Antennas and RF structures
- Functional electrical prototypes on PE/PP substrates

10. Practical Note

Electrifi Conductive PE performs best when treated as a **conductive structural material**, not a solder replacement. Electrical performance is strongly influenced by **trace geometry, contact pressure, and interface design**, in addition to bulk conductivity.

For troubleshooting guidance, printer-specific profiles, or application support, please contact Multi3D, Inc.