

the second amplexant pair approached the first amplexant pair. In the meantime, after ca. 15 min, a second male initiated amplexus with the female of the first pair. With this, the breeding activity unfolded rapidly, resulting in the formation of foam nests facilitated by coordinated hind limb movements of all five individuals. Within minutes, three more male *P. teraiensis* joined the group, increasing the total to two females and six males (with two males on one female and four males on another female; Fig. 1A). The hind limb movement of all the frogs occurred every 15–20 s, averaging 3–4 beats/s.

The first female secreted white cloacal fluid along with eggs, while the males released seminal fluid for fertilization. The females' up-and-down hind limb movements facilitated foam nest construction, aided by the rhythmic hind limb motions of the males. The breeding activity was initiated at ca. 1202 h and concluded at ca. 1253 h for the first female, after which it departed the area. Meanwhile, the second female continued with three males for an additional 3 min, completing the breeding process in 54 min.

On 23 April 2024, PN encountered another group spawning at the same spot at ca. 0915 h. This time, six males were observed attempting amplexus with a lone female positioned on a metal pole (Fig. 1B) in the middle of the water tank. The breeding process was completed in 44 min, and the ambient temperature was 23°C.

Group spawning of frogs has been documented in a number of instances, where multiple males release sperm in the water when the female releases her eggs (*Crinia georgiana*: Byrne and Roberts 2004. *Behav. Ecol.* 15:872–882; *Chiromantis xerampelina*: Byrne and Whiting 2008. *Anim. Behav.* 76:1157–1164; *Rhacophorus omeimontis*: Liao and Lu 2010. *J. Nat. Hist.* 44:2929–2940; Roberts and Byrne 2011. *Adv. Stud. Behav.* 43:1–53). This case of group spawning in *P. teraiensis* was similar; no physical aggression or intra-male competition was observed for the custody of the females, a fact also observed in other frog species (Liao and Lu 2010, *op. cit.*).

PRASANTA NANDA, Department of Zoology, Dera Natung Government College, Itanagar 793113, Arunachal Pradesh, India (e-mail: nandapz71@gmail.com); **BHASKAR SAIKIA**, Zoological Survey of India, North Eastern Regional Centre, Shillong 793003, Meghalaya, India (e-mail: bhaskar-saikia7@gmail.com).

PSEUDACRIS REGILLA (Pacific Chorus Frog). **PREDATION.** Among the smallest frogs widely distributed in western North America (Storer 1925. *A Synopsis of the Amphibia of California*. University of California Press, Berkeley, California. 343 pp.), *Pseudacris regilla* ranges from coastal British Columbia, Canada, to Baja California, Mexico, and inland throughout the Great Basin in Nevada, Oregon, and Idaho, USA (Stebbins 2003. *A Field Guide to Western Reptiles and Amphibians*. Houghton-Mifflin Company, Boston, Massachusetts. 560 pp.). This is a highly vagile frog, often found far from water in vegetation and under various objects (Storer 1925, *op. cit.*), yet individuals gather in large numbers in ponds, streams, and wetlands to reproduce each spring, and their cacophonous vocalizations can be heard from great distances (Storer 1925, *op. cit.*). As biphasic amphibians, the larval form of *P. regilla* are fast-growing forms that exploit the rich, temporary resources provided by explosive algal growth in resource-rich aquatic habitats each spring (Wilbur 1980. *Ann. Rev. Ecol. Syst.* 11:67–93). At metamorphosis, froglets are vulnerable to predation due to small size and incomplete development of aerobic capacity, which retards sustained movement (Pough and Kamel 1984. *Oecologia* 65:138–144). Some birds tend to attack frogs at

their breeding sites during this time of transition (Wells 2007. *The ecology and behavior of amphibians*. University of Chicago Press, Chicago, Illinois. 1148 pp.). One such bird species is *Euphagus cyanocephalus* (Brewer's Blackbird), which is a dietary generalist, but can commonly be found seasonally in wetland habitats (Martin 2020. *Birds of the World: an Online Reference*. Version 1.0; <https://birdsoftheworld.org>, 19 June 2024). *Euphagus cyanocephalus* has been observed preying upon small vertebrates, including small *Rana pipiens* (Northern Leopard Frog; Beasley and Carothers 1974. *Wilson Bull.* 86:478–479). Here, we report a novel case of an *E. cyanocephalus* feeding a *P. regilla* froglet to nestlings in a wetland setting.

On 15 June 2024, we conducted an amphibian-focused workshop at the Big Gun Mitigation site near Michigan Bluff in Placer County, California, USA. The mitigation site is owned by Westervelt Ecological Services and is the focal point of *Rana draytonii* (California Red-legged Frog) monitoring efforts. The site features several ponds, the largest of which are artifacts of placer (hydraulic) mining that occurred in the 1800s. Habitat in the general vicinity includes vast tracts of coniferous forest interspersed with residential houses, small towns, roadways and highways, and the American River. During the late afternoon, while conducting dip net surveys for larval *R. draytonii* at Pond 4, we observed an adult male *E. cyanocephalus* land on a willow (*Salix* sp.) branch ca. 3 m away at the shoreline. In his bill, we could clearly see a *P. regilla* froglet held with legs and head protruding from its bill on either side. We discovered the *E. cyanocephalus* nest in that same willow during a previous visit and observed three nestlings in the nest cup. After a few moments the male *E. cyanocephalus* flew into the willow toward the nest, and a noisy commotion was heard from the vicinity of the nest. Shortly thereafter, the male retreated to perch where we first observed him; his bill empty. He remained a short while and then flew off after the commotion from the nest site settled.

Westervelt Ecological Services manages the Big Gun Mitigation site and has generously offered access to the site for many years. We acknowledge permitting through the California Department of Fish and Wildlife (SCP-000040) and the US Fish and Wildlife Service (TE-24524).

JEFFERY T. WILCOX, Mitsui Ranch Preserve, 3124 Sonoma Mountain Road, Petaluma, California 94954, USA (e-mail: jtwilcox@comcast.net); **SABRINA MEDRANO**, Stantec Consulting, 200 East Carrillo Street Suite 101, Santa Barbara, California 93101, USA (e-mail: sabrinamedrano@gmail.com); **JEFF A. ALVAREZ**, The Wildlife Project, P.O. Box 188888, Sacramento, California 95818, USA (e-mail: jeff@thewildlife-project.com).

RHINELLA HORRIBILIS (Mesoamerican Cane Toad). **PARASITES.** *Rhinella marina* and *R. horribilis* are closely related terrestrial bufonids that are widely invasive and difficult to distinguish (Mittan-Moreau et al 2022. *Mol. Ecol.* 31:6440–6456). Recent studies indicate that along with being invasive species, cane toads have transported their parasites to new areas (Selechnik et al. 2017. *Inter. J. Parasitol. Parasitol. Wildl.* 6:375–385). In Florida, USA, invasive toads appear to be primarily derived from *R. horribilis* rather than *R. marina* (Mittan-Moreau et al. 2022, *op. cit.*).

Here, we report the infection of *R. horribilis* from two locations with *Rhabdias pseudosphaerocephala*, a nematode worm that infects both species of cane toads from various parts of the toads' native and invasive ranges (Kuzmin et al. 2007. *J. Parasitol.* 93:159–165; Pizzatto et al. 2013. *Int. J. Parasitol.* 43:753–761). This lung-dwelling parasite has not been previously reported from the United States. *Rhabdias pseudosphaerocephala* has a simple life