

Biofluorescence in the Skeletal System of the Granite Night Lizard (*Xantusia henshawi*), in Baja California, Mexico

Jeff A. Alvarez, The Wildlife Project, P.O. Box 188888, Sacramento, CA; jeff@thewildlifeproject.com

Christian Noriega, University of California Berkeley, Blue Oak Ranch Reserve, 16070 Mt Hamilton Rd., Mt Hamilton, CA; chris.noriega@berkeley.edu

Jorge H. Valdez-Villavicencio, Conservación de Fauna del Noroeste, Ensenada, Baja California, Mexico; j_h_valdez@yahoo.com.mx

David F. Pérez-Cañas, Conservación de Fauna del Noroeste, Ensenada, Baja California, Mexico; david.perez@faunadelnoroeste.org

Biofluorescence in wildlife has been reported for numerous species, including mammals, birds, reptiles, amphibians, and invertebrates (Lawrence 1954, Babu et al. 2002, Honkavaara et al. 2002, Maxwell and Johnson 2002, McGraw and Nogare 2004, Lagorio et al. 2015). The phenomenon typically occurs when tissues absorb electromagnetic radiation (i.e., light) at relatively high wavelengths and re-emit that light at a lower wavelength, resulting in the emission of light that fluoresces. Recent studies have revealed biofluorescence in several amphibian (Deschepper et al. 2018, Whitcher 2020, Alvarez et al. 2022) and reptile species (Gruber and Sparks 2015, Seiko 2019, Fuentes Magallón et al. 2021) under ultraviolet light (UV) excitation (Lamb and Davis 2020). However, nearly all reports have reported that biofluorescence has been restricted to the skin/scales of herpetofauna, or in some cases, the eyes of frogs (Alvarez et al. 2022, Alvarez and Perpignani 2024). Goutte et al. 2018 found the bones of pumpkin toadlets (*Brachycephalus* spp.) fluoresced, and Prötz et al. (2018) found that the bones of chameleons (*Calumma* spp.) also fluoresced and suggested that the phenomenon may be a part of interspecific communication. Here we report on another squamate that possesses bones that fluoresce when exposed to UV light.

As part of a herpetofaunal workshop targeted to capture and identify herpetofauna in the northwestern region of Baja California, we attempted to find and capture the Granite Night Lizard (*Xantusia henshawi*) among expansive boulder and exposed bedrock formations on the Meling Ranch, Baja, California, Mexico. The site (30.966912 N, 115.745535 W) was comprised of a mix of chaparral and patches of grazed grassland, with a perennial arroyo flowing north/south through the site. Boulder fields were common in this area and Granite Night Lizards are equally common in appropriate microhabitat (the species is typically saxicolous). Our surveys began approximately 8 PM on 30 April 2025, where we searched boulder faces and cracks in boulders that were approximately 2 cm or less in width. Lizards we detected were captured by lizard loop (formerly lizard noose), and by hand.

We examined adult Granite Night Lizards with a white light—a 480-lumen (COAST® PX1 LED) flashlight. Lizards held in the hand were also exposed to a 365 nm ultraviolet (UV) light (*Convoy C8 + 365nm UV LED Flashlight with Patented Glass Filter) for 5 to 10 seconds. We immediately noted that granite night lizards showed biofluorescence that we described as light blue, nearly entirely from the skull, vertebrae (dorsal side), and from the hyoid bone (ventral side) (Figs. 1 and 2).

Authors have reported biofluorescence from the skin of several reptiles (Gruber and Sparks 2015, Seiko 2019, Fuentes Magallón et al. 2021) and the bones of chameleons (Prötz et al. 2018). The role of biofluorescence has been a subject of much speculation and consideration by researchers (Honkavaara et al. 2002, Lagorio et al. 2015, Prötz et al. 2018). Interspecific communication, and even general interaction (i.e., avoidance, attraction, identification, etc.) among conspecifics has been suggested by several authors (Lim et al. 2007, Sparks et al. 2014, Marshal and Johnsen 2017, Prötz et al. 2018, Lamb and Davis 2020). Currently it is unclear how biofluorescence in these squamates may affect each individual, either positively or negatively.

Prötz et al. (2018) and Alvarez et al. (2022) reported that researchers should attempt to test additional wavelengths of light (e.g., blue light: 440–460 nm) or the use of ocular filters (yellow/orange, particularly for photography), which may increase detection probability in the field (Lamb and Davis 2020, Kong et al. 2023), potentially facilitating survey efforts for these declining species. In the case of the Granite Night Lizard, detectability does not appear to increase with the field use of a UV light (pers. obs.). Based on work by Moncrief and Dooley (2013) however, we suggest that it may be valuable to use UV light when investigating the fecal samples of predators of this species to determine if the species is present. This may be equally important for the similar and closely related Sandstone Night Lizard (*X. gracilis*)—a highly endemic species in California, and a California species of special concern. If the Sandstone Night Lizards also possess bones that fluoresce, it may be possible to detect additional predators that may be impacting this highly restricted lizard.

As part of a herpetofaunal workshop targeted to capture and identify herpetofauna in the northwestern region of Baja California, we attempted to find and capture the granite night lizard (*Xantusia henshawi*) among expansive boulder and exposed bedrock formations on the Meling Ranch, Baja, California, Mexico.

Fig. 1. Dorsal side of Granite Night Lizard showing vertebral and skull fluorescence under UV light (665 nm). Photo by Jeff Alvarez.

Fig. 2. Ventral side showing hyoid bone fluorescing (arrow) under UV light (665 nm). Photo by Jeff Alvarez.

Acknowledgements—We thank C. Meling of the Meling Ranch, Baja California, México, for his hospitality and support, and for allowing access to this site. Work conducted in Baja California and are grateful to the Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT) for permits allowing this work: SPARN/DGVS/01176/25. Field surveys were conducted with the assistance of Henry Harlow, Aubry McSweeny, David Mora, Lora Roame, Alex Single, Zacharia Tuthill, Santiago Valdez, and Michael Voeltz. The Wildlife Project provided support for the preparation of early drafts of this manuscript.

Literature Cited

Alvarez, J.A., and R. Perpignani. 2024. *Lithobates catesbeianus* (American Bullfrog) Ultra-violet reflectivity. *Herpetological Review* 55:74-75.

Alvarez, J.A., P. Lewis-Deweese, and J.T. Wilcox. 2022. Ocular biofluorescence due to ultra-violet excitation in California red-legged and foothill yellow-legged frogs, in Central California, USA. *Sonoran Herpetologist* 35:151-153.

Babu, B.G., and M. Kannan. 2002. Lightning bugs. *Resonance* 7:49-55.

Bachman, C.H., E.H. Ellis. 1965. Fluorescence of bone. *Nature* 206:1328-1331.

Deschepper, P., B. Jonckheere, and J. Matthys. 2018. A light in the dark: the discovery of another fluorescent frog in the Costa Rican rainforests. *Wilderness & Environmental Medicine* 29:421-422.

Fuentes Magallón, R., J. Ashcroft, H. Quintero-Arrieta, A. De Gracia, V. Gálvez, and A. Batista. 2021. First record of fluorescence in Colombian Long-tailed Snakes, (*Enuliophis sclateri*) (Squamata: Dipsadidae), from Panama. *Reptiles & Amphibians* 28:442-443.

Goutte, S., M.J. Mason, M.M. Antoniazzi, C. Jared, D. Merle, L. Cazes, L.F. Toledo, H. el-Hafci, S. Pallu, H. Portier, S. Schramm, P. Gueriau, and M. Thoury. 2019. Intense bone fluorescence reveals hidden patterns in pumpkin toadlets. *Scientific Reports* 29:5388.

Gruber, D.F., and J.S. Sparks. 2015. First observation of fluorescence in Marine Turtles. *American Museum Novitates* 3845: 1-8.

Honkavaara, J., M. Koivula, E. Korpimaki, H. Siitari, and J. Viitala. 2002. Ultraviolet vision and foraging in terrestrial vertebrates. *Oikos* 98:504-510.

Lagorio, M.G., G.B. Cordon, and A. Iriel. 2015. Reviewing the relevance of fluorescence in biological systems. *Photochemical & Photobiological Sciences* 14:1538-1559.

Lamb, J.Y., and M.P. Davis. 2020. Salamanders and other amphibians are aglow with biofluorescence. *Scientific Reports* 10:e2821.

Lawrence, R.F. 1954. Fluorescence in arthropoda, *Journal of the Entomological Society of South Africa* 17:167.

Lim, M.L.M., M.F. Land, and D. Li. 2007. Sex-specific UV and fluorescence signals in jumping spiders. *Science* 315:481.

Kong, B., K. Preston, M. Ishimatsu, and E. Adelsheim. 2023. Biofluorescence in the California tiger salamander, *Ambystoma californiense* (Amphibia: Ambystomatidae). *Herpetology Notes* 16:161-163.

Marshall, J., and S. Johnsen. 2017. Fluorescence as a means of colour signal enhancement. *Philosophical Transactions of the Royal Society of London B Biological Sciences* 372: e20160335.

Maxwell, K., and G.N. Johnson. 2000. Chlorophyll fluorescence-a practical guide. *Journal of Experimental Botany* 51:659.

McGraw, K.J., and M.C. Nogare. 2004. Carotenoid pigments and the selectivity of psittacofulvin-based coloration systems in parrots. *Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology* 138:229-233.

Moncrief, N.D., and A.C. Dooley. 2013. Using fluorescence of bones and teeth to detect remains of the Eastern Fox Squirrel (*Sciurus niger*) in archaeological deposits. *Southeastern Archaeology* 32:46-53.

Prötzel, D, M. Heß, M.D. Scherz, M. Schwager, A.V. Padje, and F. Glaw. 2018. Widespread bone-based fluorescence in chameleons. *Scientific Reports* 8:1-9.

Seiko, T., and Y. Terai. 2019. Fluorescence emission in a marine snake. *Galaxea* 21:7-8.

Sparks, J.S., R.C. Schelly, W.L. Smith, M.P. Davis, D. Tchernov, V.A. Pieribone, and D.F. Gruber. 2014. The covert world of fish biofluorescence: a phylogenetically widespread and phenotypically variable phenomenon. *PLoS One* 9:e83259.

Whitcher, C. 2020. New accounts of biofluorescence in several anuran genera (Hylidae, Microhylidae, Ranidae, Leptodactylidae) with comments on intraspecific variation. *Herpetology Notes* 13:443-447.

NATURAL HISTORY NOTE

Further Evidence of Range-wide Overwintering in the Larvae of the California Tiger Salamander (*Ambystoma californiense*)

Francesca Cannizzo, Westervelt Ecological Services, 3636 American River Drive, Sacramento, CA; francesca.cannizzo@yahoo.com

Jeff Alvarez, The Wildlife Project, PO Box 188888, Sacramento, CA; jeff@thewildlifeproject.com

With some exceptions, the larval form of biphasic amphibians transition through a larval phase lasting one to three seasons, or more, following hatching from the egg (Gilbert and Frieden 1981, Duellman and Trueb 1994, Dodd 2013, Petranka 1998). Metamorphosis normally follows the larval phase and can be highly variable among amphibians in timing and duration, becoming extreme in the urodels—permanently remaining in the larval form (i.e., neoteny, paedogenesis, and paedomorphosis; Gould 1977, Alberch et al. 1979). Facultatively paedomorphic salamander populations vary both locally and annually in their frequency of metamorphs and paedomorphs (Eagleson 1976, Patterson 1978, Sexton and Bizer 1978, Collins 1981, Semlitsch 1985). Semlitsch (1985) and Whitman (1994) reported that facultatively paedomorphic individuals retain the ability to metamorphose, suggesting that populations can be a mix of terrestrial adult forms as well as paedomorphs. In California, members of the Ambystomatidae show signs of paedomorphosis with members of the genus *Dicamptodon* known to

be paedomorphic (Stebbins and Cohen 1995). Other Ambystomids in California, particularly the non-native Barred Tiger Salamander (*Ambystoma mavortium*) also shows signs of paedomorphism (Petranka 1998). Additionally, the California Tiger Salamander (*A. californiense*) has been reported to overwinter as larvae, but the behavior was thought to be isolated to areas of the eastern San Francisco Bay Area (i.e., Alameda, Contra Costa, Alameda, and Santa Clara counties; Alvarez 2004, Wilcox et al. 2015). Here we report on overwintering larvae of the California Tiger Salamander in a disparate area relative to initial reports, and remark on management implications.

Focal surveys for California Tiger Salamander larvae in eastern Merced County were conducted for five consecutive years from 2017 to 2021 within the range of the Central Valley Recovery Unit of the California Tiger Salamander (management unit determined by the U.S. Fish and Wildlife Service [USFWS 2017]). Surveys were conducted in vernal pool grassland habitat, specifically in aquatic features, including natural playa pools, as well as human-made cattle

With some exceptions, the larval form of biphasic amphibians transition through a larval phase lasting one to three seasons, or more, following hatching from the egg (Gilbert and Frieden 1981, Duellman and Trueb 1994, Dodd 2013, Petranka 1998).