

morphological traits and variation, venom composition and resistance are aspects that deserve a closer look by biologists.

We thank María del Cisne Sánchez and Darío Nole for their help and contribution to citizen science and biological collections in the MUTPL. Research permits were issued by Ministerio del Ambiente y Agua del Ecuador: MAAE-ARSFC-2020-0960, granted to Diego Armijos-Ojeda.

AMARU LOAIZA-LANGE, Museo de Zoología, Universidad Técnica Particular de Loja, San Cayetano Alto, calle París s/n, Loja, Ecuador (e-mail: amaru.loaiza@gmail.com); **DIEGO ARMIJOS-OJEDA**, Laboratorio de Ecología Tropical y Servicios Ecosistémicos (EcoSs-Lab), Departamento de Ciencias Biológicas y Agropecuarias, Universidad Técnica Particular de Loja, Loja 110107, Ecuador (e-mail: darmijos1@utpl.edu.ec); **DIEGO MARÍN-ARMIJOS**, Museo de Zoología, Universidad Técnica Particular de Loja, San Cayetano Alto, calle París s/n, Loja, Ecuador (e-mail: dsmarin@utpl.edu.ec).

TANTILLA PLANICEPS (Western Black-headed Snake). **DIET.** *Tantilla planiceps* is a small fossorial species endemic to California and Baja California (Stebbins and McGinnis 2012. *Field Guide to Amphibians and Reptiles of California. Revised Edition*. University of California Press, Berkeley, California. 538 pp.), for which very little dedicated research has been focused. Among the four published works dedicated to *T. planiceps*, none are focused on diet. Much of what is known is from Stebbins (1954. *Amphibians and Reptiles of Western North America*. McGraw-Hill Book Company, Incorporated, New York, New York. 536 pp.), who reported an observation of a centipede being eaten, and earthworms being fed to a captive specimen. The remaining authors that report food items appear to be speculating, either inferring possible diet from the closely related and adjacently distributed *Tantilla hobartsmithi* (Smith's Black-headed Snake; Holycross and Mitchel 2020. *Snakes of Arizona*. ECO Publishing, Rodeo, New Mexico. 837 pp.) or indirectly referencing prior observations without citation or reference. For example, Miller and Stebbins (1964. *The Lives of Desert Animals in Joshua Tree National Monument*. University of California Press, Berkeley, California. 452 pp.) also reported *T. planiceps* to feed on "insects, centipedes, and probably spiders, often ingesting particles of soil with their prey." Shaw and Campbell (1974. *Snakes of the America West*. Knopf Publishing, New York, New York, 332 pp.) speculated that the species "appears to feed on millipedes and earthworms." Brown (1997. *A Field Guide to Snakes of California*. Gulf Publishing Company, Houston, Texas. 215 pp.) suggested that the species feeds on centipedes and beetle larvae. Flaxington (2021. *Amphibians and Reptiles of California: Field Observations, Distribution, and Natural History*. Field Notes Press, Anaheim, California, 294 pp.) recently stated that *T. planiceps* feeds on, "centipedes, spiders, insect larvae, and other arthropods." Primary citations for the food items or stomach contents of this species are scant or absent.

I examined the stomach contents of 19 *T. planiceps* specimens housed at the Museum of Vertebrate Zoology (MVZ), Berkeley, California (MVZ 25331, 33661, 38955, 45598, 71098, 71099, 72257, 72492, 74889, 80044, 80923, 99390, 111123, 116426, 116427, 128794, 150314, 171758, 187696) using a 10× stereo dissecting scope and identified to the nearest taxonomic level possible. Among the 19 stomachs examined, one was empty and seven contained only sand/grit. One stomach contained only small vegetation fragments. Four stomachs contained up to three unidentified nematodes, and four stomachs included fragments or parts of larval rove beetles (Staphylinidae). One stomach included the fragments of the exoskeleton of an unidentified arthropod.

The stomach contents of the 19 *T. planiceps* from the MVZ included two items not previously reported. Although beetle larvae have been suggested by Brown (1997, *op. cit.*), this examination was able to identify the larvae as those from a single beetle family (i.e., Staphylinidae). Round worms (Nematoda) were also noted in four snake stomachs from two different counties (San Joaquin and Santa Clara). Is not clear if these nematodes were parasitic or phoretic; further study is required to identify them to species. Nine specimens (50%) included sand/grit in their stomach contents. This mirrors that reported by Miller and Stebbins (1964, *op. cit.*) who found that this species often ingests this material, likely secondarily, while swallowing prey.

Understanding the natural history of this enigmatic species is critical to developing a plan for management (Thomson et al. 2016. *California Amphibian and Reptile Species of Special Concern*. University of California Press, Berkeley, California. 408 pp.). It should be noted that all specimens examined here were collected from four counties in the northern portion of the species' range. To better understand the diet of this species, stomach contents from specimens collected from across its range would be valuable.

Carol Spencer at the Museum of Vertebrate Zoology granted access to the author to examine the specimens. Harry Greene facilitated examination of stomach contents by curating their removal and storage from the 19 *T. planiceps*, and Dwyte Wayne identified the larval Staphylinidae. Jeffery T. Wilcox facilitated visits to the Museum of Vertebrate Zoology and offered a helpful and constructive review of this manuscript.

JEFF A. ALVAREZ, The Wildlife Project, P.O. Box 188888, Sacramento, California 95818, USA; e-mail: jeff@thewildlifeproject.com.

THAMNOPHIS BRACHYSTOMA (Short-headed Gartersnake). **CLIMBING BEHAVIOR.** Snakes in the genus *Thamnophis* are not known to be highly arboreal (Rossman et al. 1996. *The Garter Snakes: Evolution and Ecology*. University of Oklahoma Press, Norman, Oklahoma. 332 pp.). *Thamnophis saurita* is an exception and frequently forages in low bushes and trees (Ernst and Ernst 2003. *Snakes of the United States and Canada*. Smithsonian Institution, Washington, D.C. 668 pp.). *Thamnophis sirtalis* occasionally feed on birds, suggesting that some level of arboreal activity occurs in some populations of this species (Halliday 2016. Can. Field Nat. 130:146–151). Comparatively, *T. brachystoma* is predominantly terrestrial, tends to inhabit open, non-forested habitats, and feeds almost entirely on earthworms (Rossman et al. 1996, *op. cit.*; Ernst and Ernst 2003, *op. cit.*). Consequently, the habitat and diet of *T. brachystoma* typically offers little opportunity or need for arboreal activity, making the following observation of their climbing ability unique and somewhat intriguing.

On 18 April 2021, at 1320 h, a 46 cm (total length) female *T. brachystoma* was released near its point of capture in Cranberry Township, Venango County, Pennsylvania, USA (41.34458°N, 79.65285°W; WGS 84; 436 m elev.) at the base of a large Norway Spruce (*Picea abies*; HT = 18 m, DBH = 64 cm). There was a small (25 cm) rock at the base of the tree which frequently harbored specimens of *T. brachystoma*. The snake was released at this site assuming it would take shelter under the rock, as several previously released *T. brachystoma* had done. Instead, the snake immediately began to ascend the tree vertically. It adroitly and deliberately maneuvered up the tree trunk using its body to anchor between the furrows of the rough tree bark (Fig. 1). We made no attempt to force or assist in the climbing and the