

FIG. 1. A larval *Rana draytonii* cannibalizing a conspecific at the surface of a stock pond.

FIG. 2. Two size cohorts (frog on right is approx. 25 mm; frog on left is approx. 50 mm) of *Rana draytonii*, with the larger cannibalizing the smaller shortly after the photo was taken.

both pre- and post-metamorphic *R. draytonii* and are taken by cannibalistic feeding. This cannibalism likely is opportunistic and provides a seasonally abundant source of protein for larvae and post-metamorphic frogs.

These observations contribute to the greater understanding of the natural history and population dynamics within occupied breeding habitat for *R. draytonii*. Cannibalism witnessed in this species is likely common among many anurans, but may confound attempts to increase populations of this rare species.

JEFF A. ALVAREZ, The Wildlife Project, PO Box 579805, Modesto, California 95357, USA; e-mail: jeff@thewildlifeproject.com.

RANA DRAYTONII (California Red-legged Frog). ASSOCIATION WITH BEAVER. A number of new observations are being reported on microhabitat use by California Red-legged Frogs. Among these, Cook (1997. MS thesis, Sonoma State Univ., Rohnert Park, California. 23 pp.) reported on the use of microhabitat in a freshwater marsh by this species; Alvarez (2004. Herpetol. Rev. 35:85–86) documented the use of desiccation cracks in the bottoms of dry ponds by *R. draytonii* seeking shelter from extreme climatic conditions, and Alvarez et al. (*in press*. Amphibian Conservation and Biology) detailed the microhabitat use by ovipositing *R. draytonii* at several aquatic breeding habitats. Nonetheless, many natural history details related to this species remain unknown or unreported, and land managers continue to use scant

information to make management decisions in habitat occupied by *R. draytonii*. This potentially creates conditions under which this federally listed species may be harmed or killed during land management activities. Here we report the use of dams and burrows (bank-lodges) constructed by beaver (*Castor canadensis*) as refugia for the *R. draytonii*.

In Spring 2000, it was discovered that beaver naturally colonized the upper portion of Kellogg Creek, downstream from Los Vaqueros Reservoir in Contra Costa Co., California, USA. This colonization was considered potentially damaging to mitigation developed for the construction of the reservoir, and catalyzed the design and implementation of a program to indirectly control the beavers through the removal of at least 24 beaver dams.

Two monitoring biologists were posted on-site during each dam removal to document any “take” of *R. draytonii*. Dams were removed with the aid of a backhoe equipped with a thumb. Twigs, branches, logs, and mud were grasped and pulled from the creek bed, and material was placed on the upper bank. Biologists maintained positions downstream of the dam and collected *R. draytonii* that were in harm’s way from debris or inundation (Fig. 1). Collected frogs were released unharmed within the creek channel after each dam was removed.

During removal of the 24 beaver dams, 60 adult and subadult *R. draytonii* were collected and subsequently returned to the creek. Four *R. draytonii* larvae were also detected when a large portion of one beaver dam was removed and stranded the tadpoles in the previously inundated areas.

Over subsequent months, post-removal surveys were conducted along Kellogg Creek at various times to determine if beavers had restored their dams and if *R. draytonii* and other species were present. On one occasion, *R. draytonii* were observed utilizing a previously inundated burrow of a bank-lodge dug into the bank of Kellogg Creek. This burrow afforded refuge not only to the beavers and the *R. draytonii*, but also to Western Pond Turtles (*Actinemys marmorata*), as observed during previous management actions (Alvarez 2006. Herpetol. Rev. 37:339).

It is clear that the infrastructure—both dams and burrows associated with bank-lodges—resulting from beaver activity provides refuge microhabitat for *R. draytonii*. Beaver-dammed water bodies also provide breeding habitat for *R. draytonii* adults and rearing habitat for tadpoles. These sites should be treated as critical to the survival of local populations of this species;

FIG. 1. Two adult *Rana draytonii* well-hidden within a beaver dam that was being removed along Kellogg Creek, Contra Costa Co., California.

removal of beavers or their dams within the range of *R. draytonii*, although potentially beneficial under certain circumstances, is likely to temporarily or permanently affect habitat suitability for this federally threatened species. Such removals should be avoided to the greatest extent possible.

Considering that beavers are native to the Central Valley of California and some streamcourses in surrounding foothills (Grinnell et al. 1937. *Fur-bearing Mammals of California: Their Natural History, Systematics, and Relations to Man*. Univ. of California Press, Berkeley. 777 pp.), beavers and *R. draytonii* likely co-evolved over much of the range of both species. Careful consideration should be made before controlling beavers within the range of this rare anuran species.

JEFF A. ALVAREZ, The Wildlife Project, PO Box 579805, Modesto, California 95357, USA (e-mail: jeff@thewildlifeproject.com); **MARY A. SHEA**, Contra Costa Water District, 100 Walnut Blvd. Brentwood, California 94513, USA (e-mail: MShea@CCWater.com); **SARAH M. FOSTER**, The Wildlife Project, PO Box 579805, Modesto, California 95357, USA (e-mail: aspetree@yahoo.com).

RANA LUTEVENTRIS (Columbia Spotted Frog). MAXIMUM SIZE. Similar to other species in the *Rana boylii* group (Hillis and Wilcox 2005. *Mol. Phylogenet. Evol.* 34:299–314), *Rana luteiventris* is size-dimorphic in favor of females (Davis and Verrill 2005. *Can. J. Zool.* 83:702–711; Reaser 2000. *Can. J. Zool.* 1158–1167; Turner 1960. *Ecol. Monogr.* 30:251–278), so females reach the body-size maximum. Bull (2005. *Ecology of the Columbia Spotted Frog in Northeastern Oregon*. USDA, Forest Service, PNW-GTR-640. 45 pp.) reported the maximum body size for *R. luteiventris*, a 100 mm SVL female. Here, we augment that maximum.

While examining western North American ranid frogs for misidentifications at the Charles R. Conner Museum (CRCM), Washington State University (WSU), Pullman, Washington, we noted an unusually large female *R. luteiventris* (CRCM 42-34; Fig. 1). Conveniently preserved flat, this female measured 127 mm

FIG. 1. Large female *Rana luteiventris* (CRCM 42-34) collected at Pullman, Washington, USA on 26 March 1942.

SVL. The specimen's tags and the CRCM catalog give the collection locality as simply Pullman, Whitman County, Washington (~46°73'N, 117°17'W, WGS 84; elev. ~750 m). However, the catalog also reveals that Roy D. Shenefelt, curator of the entomology collection at WSU (then Washington State College) around that time, collected this animal on 26 March 1942. No further details are available for this specimen, but the catalog provides locality modifiers for the two other vertebrates collected by Shenefelt, so the Pullman locality likely means Pullman proper rather than somewhere in the vicinity.

Three aspects of this observation merit comment. Recent phylogenetic work on *R. luteiventris* has revealed deep genetic subdivisions that may warrant taxonomic recognition (Funk et al. 2008. *Mol. Phylogenet. Evol.* 49:198–210). Based on locality, our large *R. luteiventris* falls within the area of what Funk et al. (2008, *op. cit.*) label as the Northern clade, which extends from southeastern Oregon to the Yukon Territory, Canada. Maximum sizes reported for *R. luteiventris* attributable to the remaining two clades of Funk et al. (2008, *op. cit.*) differ substantially (79 mm SVL for the Utah clade: Morris and Tanner 1969. *Great Basin Nat.* 29:45–81; and 90 mm SVL for the Great Basin clade: Reaser 2000, *op. cit.*), but whether variation among clades reflects any phylogenetic signal is unclear. Second, among native ranid frogs in western North America, the size of this female is exceeded only by *R. draytonii*, for which the maximum is 138 mm SVL (Hayes and Miyamoto 1984. *Copeia* 1984:1018–1022). Lastly, given that shrinkage is a typical artifact of long-term preservation (Deichmann et al. 2009. *Phyllomedusa* 8:51–58), our measurement of this 70-year-old specimen likely underestimates its size in life.

Richard Zack generously provided information on R. Shenefelt. A USFWS Competitive State Wildlife Grant (CFDA# 15.634) supported the work of MPH.

MARC P. HAYES, Washington Department of Fish and Wildlife, Habitat Program, 600 Capitol Way North, Olympia, Washington 98501-1091, USA (e-mail: hayesmph@dfw.wa); **KELLY M. CASSIDY**, Charles R. Conner Museum, School of Biological Sciences, Washington State University, Pullman, Washington 99164-4236, USA (e-mail: connermuseum@wsu.edu).

RANA SYLVATICA (Wood Frog). LEUCISM. On 2 June 2012 a single leucistic *Rana sylvatica* was captured by Campbell Schneider in a pond in Vanderhoof, British Columbia, Canada (54.026022°N, 124.049758°W). Luce and Moriarty (1999. *Herpetol. Rev.* 30:94)

FIG. 1. Leucistic *Rana sylvatica*, British Columbia, Canada.