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RESUMO

O Cdlculo Discreto, também chamado Calculo de Diferencas Finitas, trabalha diretamente com
sequéncias e somatorios. O primeiro contato com esse assunto aparece nas primeiras séries na
educacdo basica com a sequéncia dos niimeros naturais. Ao longo do tempo as contagens e as
somas vao ficando mais trabalhosas. No entanto, a matematica vem auxiliar e facilitar essas
operagdes. No ensino médio, ha as progressdes aritmética e geométricas que aprofundam mais
o conhecimento do assunto. Na graduacao, tem-se o Cédlculo Diferencial e Integral (Célculo
Tradicional) que nos fornece a derivada e integral como ferramentas para o estudo de funcoes.
Todavia, esse trabalho pretende fazer algo semelhante, porém os objetos a serem analisados
sdo as sequéncias e os somatorios. Para isso, sdo construidas e desenvolvidas as ferramentas:
derivada discreta e integral discreta para calcular esses somatdrios. Assim, foi feita uma pesquisa
bibliografica em que se investiga os principais resultados do Calculo Discreto, se verifica uma

analogia com o Calculo Tradicional e se espera aplicar tais técnicas nas resolucoes de somatorios.

Palavras-chave: Sequéncias. Somatdrios. Célculo Discreto. Calculo de Diferencas Finitas.



ABSTRACT

The Discrete Calculus, also called Calculus of Finites Differences, work directly with sequence
and sums. The first contact with this subject shows up in the first years of the primary and
secondary education with the sequence of natural numbers. Throughout the time, counting and
sums become very hard. However, the Mathematics comes to assist and to ease these operations.
In High School, there are arithmetic and geometric progression which deepen the knowledge of
a subject. In college, there is the Differential and Integral Calculus (traditional calculus) which
give us the derivative and integral as tools for the study of functions. Nevertheless, this study
intends to do something similar, but the analyzed objects are the sequences and sums. For this, it
was built and developed the tools discrete derivative and integral for calculate the sums. Then, it
was done a bibliographic research in which investigate the mains results of Discrete Calculus,
checks analogy with Traditional Calculus and it is expected to aplly such techniques in sums

resolutions.

Keywords: Sequences. Sums. Discrete Calculus. Differences Finite Calculus.
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1 INTRODUCAO

Somar e contar foram tarefas importantes para o ser humano. Ao longo da histéria
essa atividade foi ficando cada vez mais complexa. No entanto, o homem sempre veio desenvol-
vendo técnicas que o ajudasse nesse trabalho. De fato, a Matemadtica veio para facilitar a vida do
homem. Com o crescimento do conhecimento matematico, varios ramos foram criados para dar
suporte ao que diz respeito a contar e somar.

Segundo Morgado e Carvalho (2013), realizar uma contagem nada mais é que
enumerar, fazer uma lista dos objetos a serem contados. Usando conceitos matemadticos, contar
¢ identificar objetos com os nimeros do conjunto {1, 2, 3, ..., n, ...}, onde n serd a quantidade
de objetos. Da mesma forma, somar € juntar todos os objetos para depois assim conté-los.
Pode parecer algo simples e mecanico, mas a histéria mostrou que isso sempre fascinou a todos
aqueles que o faziam, principalmente quando as contagens e as somas eram complicadas.

Segundo Renze e Wiessten (2002), o Célculo Discreto é uma area de estudo da
Matemaitica Discreta, também chamada Matemadtica Finita, que estuda diversos topicos relativos
aos numeros naturais e inteiros, como sequéncias, progressdes e recorréncias, matematica
financeira, combinatoria, grafos, probabilidade e teoria dos numeros.

E nesse campo que temos o Célculo Discreto, em que estudaremos as sequéncias e os
somatorios. Muitas vezes, também é chamado de Célculo de Diferencas Finitas ou apenas Célculo
Finito, pois essa drea se firma no contexto finito, em que nao se leva em consideracao limites no
infinito, dreas ou variagdes em intervalos continuos. Este texto também mostra como a relacao
entre o Discreto e o Continuo pode ser bonita, principalmente por serem conceitos distintos,
mas em alguns momentos apresentarem diversas semelhancas e ainda ha muitas aplicagdes do
Calculo Discreto na Ciéncia da Computacao, Engenharias, Combinatoéria, Estatistica e varios
outros campos.

Dessa forma, temos os estudos de fungdes, em que temos as ferramentas de limi-
tes, derivadas e integrais em que tudo € feito do ponto de vista do Continuo, que diz respeito
a intervalos de nimeros reais e o Cédlculo Diferencial e Integral (ou Calculo Tradicional) é
responsavel por isso. O intuito desse trabalho € adaptar estas ferramentas citadas para o manuseio
prético de somatorios, os enxergando como integrais € em conjunto com o estudo de sequéncias,
ou seja, vamos desenvolver a derivada e integral discreta para conhecer o comportamento de
sequéncias.

Sequéncias e somatdrios sao muito importantes, porque eles sdo instrumentos basicos



que estdo presentes em toda matemadtica. No entanto, a notacdo ) de somatodrio parece dar medo
ou ser confusa, pois condensa muitos simbolos. Talvez isso aconteca por causa do desconheci-
mento e da falta de pratica com esse assunto. Mas nesse texto conheceremos um pouco mais
sobre 0s somatorios € como manused-los.

Entretanto, teremos como embasamento tedrico para o presente estudo os trés
seguintes autores: Gleich (2005), Miller (1960) e Richardson (1954). Embora os trés fagcam um
comparativo entre o Célculo Diferencial e Integral com o Célculo Discreto, o primeiro aborda
isso buscando calcular somatérios um pouco dificeis. O segundo e o terceiro basicamente trazem
a mesma abordagem, no entanto, Richardson (1954) € mais detalhista que Miller (1960).

O artigo de Gleich (2005) foca no cdlculo de somatérios e no desenvolvimento
das ferramentas necessdrias para isso. No texto, o autor comeca falando da dificuldade dessa
operacgdo através de exemplos e da importancia dos somatérios nos dias de hoje. Depois ele
expoe as principais ferramentas do Célculo Discreto: a derivada e a integral discreta. Dessa
forma, € feito um paralelo com o Célculo Tradicional com suas devidas adaptag¢des. (GLEICH,
2005).

Gleich (2005) define a derivada e integral discreta e um tipo de expressao de uso
frequente que € a poténcia modificada. Ele também demonstra alguns teoremas que sdo andlogos
aos do Célculo Tradicional e o teorema fundamental do Célculo Discreto. O autor continua
o artigo falando sobre os nimeros de Stirling! de segundo tipo, que sdo necessdrios para a
transformacao de poténcias comuns em somas de poténcias modificadas. Tépicos esses que
serdo abordados nesse trabalho. Ele ainda d4 um significado combinatdrio para tais niimeros e
uma forma de calculd-los efetivamente. Adiante, sdo resolvidos alguns exemplos de somatorios,
usando todas as ferramentas desenvolvidas no artigo. (GLEICH, 2005).

Ja Miller (1960), em seu livro, pretende apresentar de fato o Calculo Discreto com
mais semelhancas ao Calculo Tradicional. Dessa maneira, o autor faz as definicdes de derivada
discreta, poténcias modificadas (que também é chamada de polindmio fatorial), nimeros de
Stirling de primeiro e segundo tipo e a férmula de Newton?, sempre tendo em vista as versoes
semelhante do Célculo Tradicional. Em varios momentos, ele ilustra essas situacdes com
exemplos de funcdes e sequéncias.

Para os numeros de Stirling, Miller (1960) ndo da um significado combinatério como

o primeiro autor, mas uma relacdo de recorréncia para assim conseguir uma férmula geral a

1
2

James Stirling (1692 - 1770): Matemadtico inglés e contemporaneo de Isaac Newton.
Sir Isaac Newton (1642 - 1727): Matematico inglés que deu grande contribuicdes para matematica, entre elas
estd o desenvolvimento do Calculo.
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partir da férmula de Newton. Este autor chama integral discreta simplesmente de soma, prova
alguns teoremas andlogos a integral tradicional e calcula varias somas de sequéncias ja usadas
anteriormente. Ele ainda deixa diversos exercicios para o leitor aplicar as técnicas adquiridas.
(MILLER, 1960).

De maneira semelhante a Miller (1960), porém mais abrangente, Richardson (1954)
inicia seu livro de imediato falando sobre derivada discreta definindo primeira diferenca, segunda
diferenca etc., e a aplica nas principais sequéncias trabalhadas no texto. Assim sdo demonstrados
diversos teoremas relacionados e resolvidos alguns exemplos, chegando a defini¢do de operador
diferenca, em que o primeiro autor o chama de derivada discreta. Ele mostra diversas tabelas
com essas diferencas para ilustrar melhor o conceito de enésima diferenca. (RICHARDSON,
1954).

Richardson (1954) também define a integral finita, que € integral discreta tratada
pelos demais autores. Ele também traz aplicagdes da integral finita no calculo de somatdrios,
com alguns métodos mais avangados de integracdo. Também sdo apresentados os nimeros de
Stirling de primeiro e segundo tipo, relacionando-os com a integral finita. Praticamente em cada
topico abordado, o autor propde alguns exercicios. (RICHARDSON, 1954).

Contudo, esse trabalho se faz importante, pois traz consigo o conceito de Discreto,
que dentro da matematica, como mencionado anteriormente, tem outro significado além do usual.
Segundo Dossey (2001), o Discreto se ocupa de conjuntos enumeraveis e fun¢des definidas
em tais conjuntos, diferente do Continuo que esta relacionado com intervalos de nimeros reais.
Na educacao bésica, o contato que se tem com a matematica discreta é no estudo dos numeros
naturais, inteiros, racionais, sequéncias e progressdes, andlise combinatdria, probabilidade,
estatistica e matemadtica financeira.

Por isso, se faz necessario um estudo mais aprofundado nesse elemento aparente-
mente tdo temivel que € o somatdrio, pois pode ajudar também ao aluno do ensino médio que
tem dificuldade em entender, por exemplo, o assunto de progressdes aritméticas e geométricas
(P.A’s e P.G’s) ou matemadtica financeira ou precisa calcular algum tipo de média que envolva
muitos valores ou usar algum tipo de medida estatistica ou também manusear o bindmio de
Newton, pois estes se utilizam dos conceitos de sequéncia e somatorios.

Ainda na escola regular, como j4 foi comentado, também € visto como se calcula a
soma dos termos de P.A’s e P.G’s, porém h4 diversos outros tipos de sequéncias e progressdes em
que se € possivel manused-las também, por exemplo, progressdes aritméticas de ordem superior,

progressoes aritmético-geométrica, recorréncias lineares, etc. Alguns desses pontos sdo tratados
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em nossa pesquisa. O Calculo Discreto é uma dessas ferramentas que auxilia nessa tarefa e mais,
tais ferramentas sao andlogas ao Cdlculo Tradicional, facilitando bastante a tarefa.

Assim, um aluno que deseja se aprofundar no estudo de progressdes e somatorios
pode se utilizar deste trabalho, mesmo sem conhecer o Calculo Tradicional, pois nao ha pré-
requisitos que ndo sejam assuntos vistos no ensino médio. Ele também pode ser usado para a
pesquisa em Célculo Discreto, pois sdo poucos e raros os livros e trabalhos em lingua portuguesa
que tratam desse assunto de maneira objetiva e efetiva do ponto de vista estritamente matematico.

Em diversos cursos da graduacgao, ele também pode complementar o curso de Célculo
Tradicional e auxiliar na disciplina de Andlise Real, também na disciplina de Combinatdria,
Probabilidade e Estatistica, mais precisamente no estudo de sequéncias, somatorios e séries
(somatdrios infinitos). Ainda esse trabalho pode ser estendido no estudo e aprofundamento das
Equacdes Diferenciais Discretas.

Em virtude disso, o objetivo principal desse trabalho é conhecer o conceito de
discreto a partir do desenvolvimento de técnicas semelhantes do Célculo Diferencial e Integral,
estendendo alguns teoremas para o Célculo Discreto. Assim, os objetivos especificos sdo: a)
Descrever sequéncias e somatorios e seus principais exemplos e propriedades; b) Reconhecer
a derivada discreta e integral discreta como semelhantes a derivada e integral tradicional e
manused-los; c) Calcular férmula geral para os somatorios, usando as ferramentas apresentadas
nesse trabalho.

Para concretizarmos esses objetivos, tracamos um método, uma metodologia que nos
leve a realizagc@o do que € proposto. Segundo o minidiciondrio da lingua portuguesa, metodologia
significa: “Tratado dos métodos; arte de dirigir o espirito da investigacdo da verdade; orientacao
para o ensino de uma disciplina” (BUENO, 2007, p. 510). Podemos entender que metodologia é
a ciéncia que estuda os métodos, que estuda os caminhos de uma investiga¢do e 0s meios para se
chegar em um fim. Assim, esse estudo também tem como finalidade desenvolver métodos de
calcular somas. Por isso de certo modo, este texto pode ser considerado como uma metodologia,
um estudo da forma de como se resolver somatorios.

A metodologia usada é a pesquisa descritiva, em que abordamos e detalhamos as
ferramentas do Calculo Discreto, na qual fazemos também um comparativo, verificando as
semelhangas com Calculo convencional. Este trabalho € de natureza tedrica, em que fazemos,
segundo Lakatos e Marconi (2003), uma sintese de conhecimento e apresentamos conceitos em
conjuntos com a teoria. E também qualitativa, pois, para Prodanov e Freitas (2013), analisamos

e descrevemos o fendmeno e o que ele significa, para assim se ter um melhor entendimento.
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O conceito Discreto estd ao longo de todo texto, por isso foi feita uma pesquisa sobre
esse conceito e alguns tépicos relacionados, principalmente no que diz respeito as sequéncias
e somatorios. Dessa forma, chegamos ao ponto principal desse trabalho em que tomamos a
pergunta diretriz: como calcular somatorios de maneira efetiva, usando ferramentas andlogas
do Célculo Tradicional? Realizar somas sempre foi uma atividade comum para o cotidiano do
homem. Quando essas somas ficam maiores e complexas, se recorre de fato a matemadtica e suas
técnicas que visam dar uma solug@o ao problema.

O Cdlculo Diferencial e Integral d4 essa resposta, mas apenas no contexto Continuo,
pois as integrais calculam somas continuas (4reas e volumes). O que esse trabalho quer propor é
uma solugdo para o problema no contexto Discreto. Assim, para cumprir os objetivos propostos,
apresentamos um estudo sistematico das derivadas e integrais discretas com suas propriedades e
aplicacdes que sao fundamentais para responder a pergunta norteadora.

Fizemos uma pesquisa bibliogrifica em que foram escolhidos os autores menciona-
dos anteriormente, com seus trabalhos em Célculo Discreto e juntamos os principais topicos
sobre o assunto, fazendo um copilado do que julgamos necessério para esse trabalho introdutério.
Assim, como ja foi dito, o desenvolvimento desse texto serd unicamente tedrico, em que faremos
defini¢des e demonstraremos teoremas. H4 também diversos exemplos e aplicagOes para ilustrar
0 assunto.

O trabalho tem trés capitulos tedricos. No primeiro € introduzido os principais
objetos de estudos: sequéncias e somatdrios. N6s demonstramos os principais resultados
elementares sobre o tema e tratamos de alguns exemplos e propriedades.

No capitulo seguinte, iniciamos de fato o Calculo Discreto com a derivada discreta,
ferramenta essa que provém do Calculo Tradicional. Construimos a teoria que € importante para
o proximo capitulo e demonstramos teoremas e aplicagdes, seguidos de exemplos importantes.

No ultimo capitulo, vemos de fato como calcular somatorios, usando as técnicas
desenvolvidas, vendo principalmente a relagdo do somatdrio com a integral discreta definida.
Ainda temos um tépico relacionado as equacdes diferenciais discretas e a resolucio de alguns

somatorios para concluir o trabalho.
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2 SEQUENCIAS E SOMATORIOS DE NUMEROS REAIS

Ao contar uma colecao de objetos, estamos associando um ndmero natural para
cada objeto contado, ou seja, se temos em uma caixa uma bola, um lapis, uma colher e um
tapete, seguramente se dird que had 4 objetos na caixa. Nessa contagem foi feita a seguinte
correspondéncia: 1-bola, 2-14pis, 3-colher e 4-tapete. De maneira informal, essa associacao
€ o que chamamos de sequéncia e uma das primeiras sequéncias que se tem contato na vida
¢ a sequéncia dos ndmeros naturais (1,2,3,4,5,6,---). Se em outra caixa hd 4 ldpis e foram
colocados outros 3 14pis, prontamente se dird que, no total, hd 7 1apis na caixa. A operagdo feita
foi 443 = 7. Por isso, podemos concluir intuitivamente que a soma € a contagem do total dos
objetos juntos.

Neste capitulo, vamos abordar as principais ferramentas associadas ao processo de
contar e somar que sao as sequéncias e somatorios, em que construimos 0s meios necessarios
para calcular somatérios. Demonstramos também vdrios resultados em que utilizamos ao
longo do trabalho e que foram retirados dos trabalhos de Carneiro e Moreira (2002), Courant
e Robbins (2000), Gleich (2005), Hefez (2009), Miller (1960), Morgado (2013), Neto (2013)
e Richardson (1954). Falamos também sobre alguns topicos relacionados as sequéncias e

somatorios, mostrando diversos exemplos para ilustrar e dar melhor compreensao ao assunto.

2.1 SEQUENCIAS DE NUMEROS NATURAIS

Na matemdtica, uma sequéncia €, segundo Lima (2013), uma fun¢do a: N — R
em que para cada nimero natural se associa um nimero real. Denota-se uma sequéncia por
(ay,a2,a3,--+ ,an,--+), enquanto que a, é o n-ésimo termo ou o termo geral da sequéncia e o
indice n é chamado de varidvel independente. Observamos que a, também se refere a propria
sequéncia.

Exemplo: (1,1,2,3,5,8,--);
Exemplo: (2,4,8,16,32,64,---).

No estudo de sequéncias em geral, assim como no de fung¢des, ha diversos topicos
para se abordar. Contudo, os pontos com mais frequéncia a serem tratados relativos as sequéncias
sdo:

a) Achar uma férmula para o termo geral, ou seja, "uma expressao matematica que

permita calcular s, a partir de n"(MORGADO; CARVALHO, 2013, p. 16), que

usa apenas operagdes elementares como, por exemplo, adicdo, multiplicacdo e



14

potenciacio;
b) Calcular também o termo geral da soma dos n primeiros termos (somatérios);
c¢) Verificar a convergéncia ou divergéncia.
No entanto, nossa abordagem é focada nos dois primeiros itens. Em particular,
buscamos por férmulas gerais para os somatorios, utilizando derivadas e integrais discretas, que
serdo temas dos capitulos 3 e 4, respectivamente. A seguir, apresentamos o principio de inducao,

que € usado com frequéncia nas demonstragdes desse estudo.
2.1.1 Principio de Indu¢io Matematica e Sequéncias Recorrentes

Uma ferramenta importante referente a nimeros naturais € o principio de indugdo
finita ou também chamado indu¢do matematica, em que "[...] € utilizada para demonstrar a
veracidade de um teorema matematico em uma sequéncia infinita [...]"(COURANT; ROBBINS,
2000, p. 11).

Segundo Morgado e Carvalho (2013), o principio de indugdo € o seguinte:
Seja P(n) uma propriedade referente ao nimero natural n. Se

i) P(1) é verdadeira;

ii) Para todo k € N, a veracidade de P(k) implica na veracidade de P(k+ 1).
Entdo, P(n) é verdadeira para todo n € N.
Observacdo: P(k) também é chamada de hipétese de indug@o.
Vejamos um exemplo retirado de Courant e Robbins (2000).

n-(n+1)-(2n+1)

Vamos demonstrar por indugdo que 12422 +3%2 4 ... +n? = 6 .

SejaP(n): 12422432 4+... 40> = n-(nt1)-2n+1)
: . _

1-(1+1)-(2-1+1 2-3
i) P(1) é verdadeiro, pois 12 = 1 = (1+ )6( + ): =

ii) Vamos supor que P(k) é verdadeira para algum k € N entdo temos:
k-(k+1)-(2k+1
124224324 4k* = (k+ >6( +1)

Para ver que P(k+ 1) também é verdadeira, somamos (k + 1)?> em ambos os membros da

expressao anterior. Dessa maneira, teremos:
5 k-(k+1)-(2k+1)

k+1)2
. +(k+1)

12422432+ k2 + (k+ 1)

Fatorando o segundo membro
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k12 = (k+1)- k-(2k+1)gr6-(k+1) _ (k+1)-(2l;2+7k+6) _

ke (k+1)- (2k+1)
6

(k+1)- K2 +Tk+6)  (k+1)-(k+2)-(2k+3)  (k+1)-[(k+1)+1]-[2- (k+1)+1]

6 6 6

Assim fica provado que P(k + 1) é verdadeiro e pelo principio de indug@o fica demonstrado a
igualdade. o

Em alguns momentos deste trabalho, escrevemos  para simbolizar que foi concluida
a demonstracdo. Também vamos fazer uso de somas e produtos telescopicos, pois construimos
uma técnica muito util no calculo de somas e produtos, que, segundo Neto (2013), encurta a
soma e o produto devido aos cancelamentos, por isso, vamos defini-los.

Segundo Neto (2013), chama-se soma telescOpica a seguinte expressao a; —aj +

az—ay+ag—az+---+ap—1 —ap—2 +a, —a,—1 com a, sendo uma sequéncia. De modo
) L. £ . ay diz a4 an—1 a
analogo, o produtdrio telescopico fica definido como — - — - — - ... ——.—_ com a, sendo
ap az aj an—2 dnp—1

uma sequéncia de termos ndo nulos. A seguir, temos duas proposi¢des importantes retirada de
Neto (2013), a respeito de somatdrio e produtdrios telescopicos, pois sao usadas em diversas
demonstracdes ao longo do trabalho.
Proposicao 1: Seja a,, uma sequéncia, entao
a—ay+ay—ay+---+a,—ay—1+ap1 —ap=apy1 —a; v eN.
A demonstracao € por inducio
SejaP(n):ay;—ay+a3—ay+--+ap—ayt1 +ans1 —an = aps1 —aj.
Vemos que P(1) é verdadeira, pois ay —a; = aj1 —aj.
Se P(k) é verdadeira para algum k € N, entdo vamos verificar P(k+ 1) também verdadeira.
ay—ay+taz—ay+---+ag 1 —ap = agy] —a.
Somaremos a igualdade anterior em ambos 0s membros > — dg+ -
ay—ay+az—ax+---+ a1 — g+ g2 — Qg1 = Qg1 — A1 + A2 — A1
Dessa forma obtemos a expressdo P(k+1).
ay —ajy+az—ay+---+agp1 — g+ g2 — gl = g2 —aj.
Assim verificamos a validade de P(k+ 1) e pelo principio de indugdo P(n) é verdadeiro Vn € N
e fica demonstrado o teorema.
a az daq CGnt1 Antl

Proposicao 2: Se a, é uma sequéncia de termos nao nulos, entdio — - — - — - ... =
ay az as an al

Demonstracao:

Procedemos de modo semelhante a demonstragdo anterior.

: ar as dntl _ dnyl
Seja P(n): — . — ... L = 2
a a an ai
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Verificando P(1), temos aiel _ @ logo P(1) é verdadeira.
a aj

Supondo que P(k) é vdlida para algum k, vamos verificar a validade de P(k+1):

@ a3 Gl Gl
o a 0

.. ~ . k42
Multiplicamos ambos 0os membros da expressao anterior por , temos

Ai+1

a aj A1 A2 A1 Aky2 A2 .
=2 e e TR T T o P(k+ 1) verdadeiro.
ap ap A Ayl ay  Aryi ai

Dessa maneira, pelo principio de indugido P(n) é verdadeiro para todo n natural e assim conclui-
mos a demonstracdo.

Segundo Neto et al. (2009), muitas vezes uma sequéncia vem definida em forma de
recorréncia, em que é dado o primeiro ou os primeiros termos e o termo geral € uma expressao
que depende do termo anterior ou dos termos anteriores, respectivamente.

Por exemplo: aj =7ea, =a,—1 +4, paran > 1
Dessa forma temos

ap=T7+4=11

az=114+4=15

as=15+4=19

Assim a sequéncia é (7,11,15,19,---). O tépico de recorréncia é tratado novamente
no capitulo de integral e equacdes diferenciais discretas. Na proxima secao, tratamos de alguns

dos principais tipos de sequéncias.

2.2 SEQUENCIAS E PROGRESSOES

Na vida contidiana, diversos fendmenos variam regularmente segundo uma constante.
Por exemplo, o tempo a cada segundo, os juros de um banco que crescem ou decrescem ao
dia, més ou ano, o crescimento populacional ao longo do ano, etc. Na matematica, esses
fendmemos sdo descritos por sequéncias, mais precisamente por progressdoes. No Ensino Médio,
sdo estudadas as progressoes aritméticas (P.A.) e geométricas (P.G.), em que detalhamos cada

uma delas agora.
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2.2.1 Progressao Aritmética

Segundo Morgado e Carvalho (2013), uma P.A. € uma sequéncia, em que a diferenca
de cada termo com o termo anterior € constante e essa constante é chamada de razao, denotada
por r. Ou seja, a,+1 —a, =r. Uma P.A. que tem a razdo igual a zero € chamada de PA constante.

Para verificar que a férmula do termo geral é a, = a; + (n— 1) - r, vamos escrever a
expressao que define uma P.A. a, 1| — a, = r para os valores de 1 até n.
a—ay=r

ay—ay=r

Qp_1—Qp_2 =7
apn—ap_1 =7
Somando as igualdades, temos a seguinte soma telescopica:
(aa—a1)+ (a3 —az)+-+(an-1—an-2) +(an—ap-1) = (n—1)-r
Assim obtemos a, —a; = (n—1)-r=a,=a;+(n—1)-r
Exemplo: Para calcular o termo geral do exemplo anterior (7,11,15,19,---), temos que a; =7
ea,—d,_1 =r=4%
ap=a1+n—1)r=a=7+n—-1)-4=a,=4n+3.
Da mesma forma, para calcular a soma S,, dos n primeiros termos usamos basica-

mente a ideia de Gauss!, que ¢ a mesma usada nos livros do ensino médio para encontrarmos
(a1 +ay)-n

—

SejaS, =ar+ay+az+---+a,—2+a,—1+a,.

que S, =

Escrevendo a soma dos termos na ordem contraria, o valor de S,, nio mudara.
Sy,=an+a, 1+a, »+---+az+ay+a.

Agora somaremos as duas equagdes, entao

28, =(ar+an) +(ax+an—1)+ (az+an—2)+--+ (ap—2+az)+ (ap—1 +a2) + (a, + ay).
Usando a férmula do termo geral, obtemos
an+ay=a1+ap=ar+a1+n—1)-r=2a,+nr—r
an1+ay=at+a,—1=a+r+a;+(n—-2)-r=2a,+nr—r

anotaz=a3+ay,—ry=a1+2r+a;+n—3)-r=2a,+nr—r

Dessa forma, cada parcela nos parénteses € igual a a; + a,

' Carl Friedrich Gauss (1777 - 1855): um dos maiores mateméticos de todos os tempos, considerado o principe da

Matematica
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28, = (a1 +an) + (a1 +ay) + -+ (a1 + a,), com n parcelas

(a1+ay)-

28, = (a1 +ay) n=8,= > " Assim, chegamos a férmula desejada. Agora vejamos

um exemplo.

Vamos calcular a soma dos n primeiros termos da sequéncia (7,11,15,19,---).

Pelo exemplo anterior, temos que a; =7 € a, = 4n+ 3, entdo:
. 74+4n+3)-
5= +2“”) n_ 0% ”; S S = 2m 5

No entanto, voltando as dedugdes dessas formulas relacionadas a P.A., alguém pode
se perguntar: o que acontece de fato nas reticéncias dessas somas? Isso pode gerar duvidas,
porque esses métodos sdo um tanto quanto intuitivos. Por isso, essas formulas necessitam de

demonstracgdes rigorosas e assim vamos fazé-las pelo principio de indugdo a seguir.

Demonstracao da formula do termo geral de uma P.A.

Seja a seguinte propriedade P(n) : a, =a;+ (n—1).r.

Vejamos que a; = a; + (1 —1).r = a;. Logo P(1) é verdadeiro.

Para algum k € N, vamos supor que P(k) seja verdadeira.

ag=a;+ (k—1).r.

Vamos provar que P(k+ 1) também é verdadeiro. Assim temos pela defini¢do de P.A.

Qk+1 — Ak =T = Qjy] = Ak + T

Usando a hipdtese de indugdo, temos

ary1 =ar+r=a1+(k—1)r+r=a;+[(k+1)—1].r=a;+kr.

Dessa maneira P(k+ 1) é verdadeiro e pelo principio de indug@o P(n) é verdadeiro para todo n

natural. o

Demonstracao da formula da soma dos n primeiros termos de uma P.A.
(a1 +ap)-n

Seja P(n) :a;+ay+--+a, = 5

(aj+ap)-1

Para P(1), temos S| = >

= a;. Logo P(1) é verdadeira.

Agora vamos supor que P(k) seja verdadeira para algum k € N, assim
(ay +ai) -k
ay+ay+---+ap= #

Para provar a validez de P(k+ 1), vamos somar a;, | em ambos 0s membros
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-k
(a1+a2+.+ak)+ak+11:%

Skt1

+Ajey1-

Organizando e fatorando o segundo membro, temos
(a1 +ax) -k (a1 ta) k+2a  (a1+ag) k+ai +kr+agy

5 T g1 = 5 = 5 =

(a1 +ar+r)-k+ay+aps _ (a1 + ags1) -k+ay +agq _ (a1 +ags1) - (k+1)
2 2 2
provamos que P(k+ 1) é verdadeira. Portanto, pelo principio de inducdo P(n) é verdadeira

Vn e N. o

. Dessa forma

Vale salientar que uma P.A. também € escrita como a, =c+b-n,emque c=a; —r
e b =r, ou seja, € um polindmio de grau 1 em n. No préximo capitulo tratamos mais desse

assunto de maneira mais geral.
2.2.2 Progressao Geométrica

Segundo Morgado e Carvalho (2013), uma P.G. é uma sequéncia, em que o quociente
da divis@o de cada termo com o anterior € constante, sendo chamada de razdo, indicada por g.
Ou seja, ay41/an = q. Se ¢ = 1, a P.G. é dita constante.

Para chegarmos a férmula do termo geral a, = a; - ¢"~! da P.G., procedemos de

maneira andloga que na P.A.

~ Ap+1 p
Escrevemos a expressao que define a P.G. mtl q para valores de 1 até n.
an
a as an—1 an
— =4, —=4, - =49, =49
ai az an-2 an—1
Multiplicando as igualdades obtemos, o seguinte produto telescopico:
ay dajs an—1 a _ a _ _
—_— . n ._n:qnlél:qnléan:alqn 1.
ay az ap—2 dp—1 aj

Exemplo: Seja uma PG (3,15,45,225,---). Vamos encontrar o termo geral.

15 45

aj=3eqg= 31 =5. Como a, =a; -¢" ' Entdo a, =3-5"" 1.

(g —1

Vamos também deduzir que a soma dos n primeiros termos € S, = (g 1 ) para

q j—
q#1.SejaS, =ar+ay+az+---+a, 1 +a.
Usamos a féormula geral para cada parcela do segundo membro.
Sp=ai+ai-q+ar-¢*+---+ar-¢" *+tar-q"".
Pondo a; em evidéncia, multiplicamos o segundo membro por 1~ T pois g # 1.

-1

So=ar-(1+q++ - +q 2 +q") T—=

q—1
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(=144 —q+q—q-2++¢""'—¢"*+q"—¢""")
q—1 '

=S, =a-

Fazendo os devidos cancelamentos dessa soma telescopica, obtemos a igualdade desejada
(d"—1

S, = ai-(q )'
qg—1

Agora vejamos um exemplo. Vamos calcular a soma dos n primeiros termos do exemplo anterior.
S"—1 3.5 3
( ) =8 =

T p— p— t~ p— . .
emosa; =3eqg=>5,entdo S, =3 51 7] 2

Como mencionado anteriormente, as duas féormulas da P.G. requerem também uma
demonstracdo rigorosa pelo principio de indugdo, assim como foi feito da mesma maneira que as

formulas da P.A. Por isso, fazemos essas demonstracdes a seguir.

Demonstracao da formula do termo geral da P.G.

Seja P(n) :a, =ay-q" .

P(1) é verdadeiro, pois a; = a;-¢' ™' = aj.

Vamos supor que P(k) seja verdadeiro para algum k € N, assim temos

k—1
ag=ai-q .

Vamos provar que P(k+ 1) também é verdadeiro. Pela definicdo de P.G. temos
Ak+1
—— =q= Qg1 =ar 4.
Ak
Usando a hipétese de indugao, obtemos

a1 =ap-q=ar-¢" ' -g=a1-¢" = a1 =ar-q".
Logo P(k+ 1) também é verdadeiro e pelo principio de indugdo P(n) é verdadeiro para todo

neN.

Demonstracao da féormula da soma da P.G.

(" —1
Seja P(n): Sy, = wl)'
1
(g —1
Vejamos que P(1) é verdadeiro, pois S| = Ll) =aj.
q —_
Supondo que para algum k € N, P(k) é verdadeira.
ai(q"—1)
=T
qg—1

Vamos provar que P(k+ 1) também o é. Dessa forma, temos

k k k1 ko k
a-(g —1 —1 —¢*+q 1
Sk+1=ak+1+Sk:a1~qk+L:al.(qk+q_>:a1_<q q"+q )
qg—1 g—1 g—1

Dai resulta
a-(q
qg—1

k+1 _ 1)
Sk+1 =
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Assim provamos que P(k+ 1) é verdadeiro e pelo principio de indugdo P(n) é verdadeiro para
todon € N.
Vistas as progressdes aritméticas e geométricas, vemos agora uma proposicao,
retirada de Neto et al. (2009), em que se relaciona estes dois tipos de sequéncias.
Proposicao 3: Uma sequéncia a, ¢ uma P.G. de termos positivos se, somente se a sequéncia
b, =loga, € uma P.A., com r =logg, em que esse logaritmo estd em uma base qualquer.
Demonstracao:
a, éPG. & a, =a;-¢" ' & loga, =log(a; -¢" ') < loga, = loga; +logqg" ! &
< loga, =loga;+(n—1)-logg<= b, =b1+(n—1)-r< b, éPA., comr=1logqg o
Continuando no assunto de progressao aritmética, definimos, segundo Morgado e
Carvalho (2013), uma P.A. de segunda ordem como uma sequéncia a, onde a razao a,.| — a,
geram uma P.A. ndo-constante V n € N, que também ¢ chamada de P.A. de ordem 1.
Exemplo: (1,3,6,10,---,(n+1)-n/2).
a—a=3—-1=2;
az—as=6—3=23;
as—as =10—6 =4;

n+2)-(n+1 n+1)-n n+1
anﬂ—an:( )2( )—( 2) == -(n+2—n)=n+1.

De modo geral, definimos indutivamente uma P.A de ordem k como sendo uma

sequéncia onde as razdes a,; | —a, geram uma P.A de ordem k— 1V n € N. Outro exemplo usado

k com k sendo um natural

com frequéncia nesse estudo sdo as poténcias do nimeros naturais n
fixo. Dessa forma, (1,4,9,---,n%,---) e (1,8,27,---,n%,---), generalizando, a, = (c + bn)*
* 2 ) Y ) Y Y ) Y Y ) ) K 2 n 2

comce b €N, sao P.A’s de ordem 2, 3 e k, respectivamente.
Existem outros tipos de progressdes como, por exemplo, a progressao aritmético-geo-

n=1 com

métrica (P.A.G.), que é uma sequéncia que tem por termo geral a, = [a; + (n—1) 7] ¢
q # 1 er#0. Também temos a progressdo geométrico-aritmética (P.G.A.), cujo termo geral é
ap=ai-¢" '+ (n—1)-r,com g # 1 er+#0. Jduma sequéncia aritmético-geométrica (S.A.G.)
satisfaz a seguinte relacdo a, = ¢g-a,_1+r,comr# 0e g # 1. A progressdo harmonica (P.H.) é
uma sequéncia (ay,a,- - - ,a,) com todos os termos diferentes de zero em que (ail’ aiz’ s i)
forma uma progressado aritmética. Para maiores informacdes, consulte Carneiro e Moreira (2002),
Paiva (2010) e Neto et al. (2009). Agora concluimos a se¢ao com mais um tipo de sequéncia

que € utilizada bastante nesse texto: as poténcias modificadas.
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2.2.3 Poténcias Modificadas

Segundo Gleich (2005), chama-se uma poténcia modificada a seguinte expressao
nk=n-(n—1)-(n—2)-...-(n—k+1). A poténcia modificada é também chamada de polindmio
fatorial e € denotado por n®). De maneira geral, temos:

(a+bn)®) = (a+bn)-[a+b-(n—1)]-[a+b-(n—=2)]-...-[(a+b-(n—k+1)]

Exemplos:

80) =8.7-6-5-4=6720; n®=n-(n—1)-(n—2); 305 =3.2.1.0.(-1)=0;

(6+3n)*) = (64+3n)-[64+3-(n—1)]-[6+3-(n—2)]-[6+3-(n—3)]
=(6+3n)-(3+3n)-(3n)-(—=3+3n).

Apresentamos uma relacao entre as poténcias modificadas e os nimeros binomiais, que € usada

no préximo capitulo.

Entretanto, segundo Richardson (1954), existe um outro tipo de poténcia modificada
e definimos por !l =n- (n41)-(n+2)-...- (n+k—1). A forma geral fica definido como:
(a+bn)¥ = (a+bn)-la+b-(n+1)]-[a+b-(n4+2)]-...-[a+b-(n+k—1)]
Exemplos:
54 =5.6-7-8=1680
(64+3n)B = (64+3n) - [6+3-(n+1)]-[6+3-(n+2)] = (6+3n)-(9+3n)- (12+3n)
Fica definido também as poténcias modificadas com expoente nulo como
(a+bn) = (a+bn)l0l =1

Para poténcias modificadas com expoente negativo, definimos

1
)R —

(a+ n) (a+bn)[k]
Exemplos
a1 ! :

nd n-(n+1)-..-(n+k—1)
g L1

403 4-5-16 120° . .
3+2n)%) = = = :
(3+2n) (3+2n)2  (3+2n)-[3+2-(n+1)] (3+2n)-(5+2n)
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2.3 SOMATORIOS DE NUMEROS REAIS

Ao tratarmos sobre progressdes na secdo anterior, calculamos algumas somas, princi-
palmente a soma dos n primeiros termos. Nessa secdo, aprofundaremos mais sobre esse assunto
e algumas propriedades dessas somas.

Segundo Hefez (2009), para denotar a soma a; +as + --- +a,, em que a, € uma
sequéncia, usa-se esse simbolo ) (sigma maidsculo) em que chamamos de somatério. Dessa

forma temos
n
Y ai=ar+ar+--+ay
k=1

em que k € chamado de indice ou varidvel indexadora, a; € chamado de somando ou termo geral
e k =1 e n sdo os limites inferiores e superiores, respectivamente. Outra notacao: Z ay. Vale

1<k<n
ressaltar também que somatdrios podem ser definidos também pela recorréncia:

n+1 n
Zak:ak+l+ Zak
k=1 k=1

Podemos observar também que, segundo Neto (2013), temos uma notagdo para o
produto aj -as - ... - a,, com a, sendo uma sequéncia. Usamos o simbolo [] (pi maitsculo) para o

produto desses elementos, o chamamos de produtério e denotamos da seguinte forma

n
Hak:al ajy ... Ay
k=1

Para Graham, Knuth e Patashnik (1995), o uso de reticéncias para somas (respec-
tivamente produtos) pode ser ambiguo ou confuso. Por isso, nesse estudo € feito uso da letra
grega para somatorio (respectivamente produtdrio) para simplificar a notacao e deixar claro o
que deve ser somado (respectivamente multiplicado) e para Neto (2013), o somatoério € til para
cancelamento em somas, principalmente em somas telescopicas.

Por exemplo: Para somar os 10 primeiros termos da P.A. (7,11,15,---), temos que a; =7, r =4

e ay = 4k + 3 e o décimo termo € ajg = 43 e usando a notagdo de somatdrio, temos

10
Y (4k+3) =T+ 11+15+---+43
k=1
10 (7443)-10 .
Com a férmula da soma da P.A., resulta Z (4k +3) = — = 250. Os somatérios
k=1

possuem varias propriedades. Adiante, enunciamos e demonstramos algumas delas retiradas de

Hefez (2009) e Neto (2013), na qual tem uso frequente nesse texto.
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2.3.1 Algumas propriedades dos somatoérios de nimeros reais

Sejam a; e by sequéncias, entdo

n n n
D) Y (ax+b0) =Y ac+ Y b
k=1 k=1 k=1
n
Vale ressaltar aqui que Z (ax +by) = (a1 +by) + (ay + b))+ -+ + (ay + by), assim o que a

k=1
propriedade nos diz € que podemos reagrupar os elementos a ser somado de varias maneiras € o

valor da soma ndo mudara. Vamos demonstrar por indugdo
n
Seja P(n) : Z ag+by) = Zak~|—2bk
k=1

Vejamos que P(1) é Verdadelro p01s

Z(ak+bk )=a;+b = Zak-l-Zbk
k=1 k=1
Dessa maneira, se P(n) é Verdadelra para algum n € N, vamos provar que P(n+ 1) também o é.

Zak—i—bk ZakJerk

k=1
Somaremos a expressao (anﬂ + b,+1) em ambos os membros e agruparemos da seguinte forma
n n n

(@ni1+bur1) + Y (@ +b1) = anp1 + Y ax+bay1 + Y by =

n+1 n+1 n+1
= Y (a+b) = Zak+2bk
k=1 k=1
Assim que P(n+1) tambem e verdadeira. Logo, pelo principio de indugao, P(n) é verdadeiro

paratodon € N. o

n n
ii) Z(c-ak) =c- Zak, comc€R
k=1 k=1 .
Demonstracao: Vamos provar novamente por inducao
n n

Seja P(n) : Z(c-ak) =c- Zak
k=1 k=1
1 1
Para P(1) temos: Y (c-ax) =c-a; =c- Y _ a. Portanto, P(1) é verdadeira.

k=1 k=1
Supondo que P(n) seja verdadeira para algum n natural, temos
n n

Yica)=c-Ya
k=1 k=1
Para provar que P(n+ 1) também é verdadeira, somaremos c - @, em ambos os membros da

igualdade anterior.
n+1 n+1

n
c-an+1+2(c-ak) (c-apy1)+c- Zak:Z c-ay)=c- Zak
k=1
Chegamos assim a validez de P(n+ 1). Logo pelo principio de 1ndugao, P(n) é verdadeira para

todo nimero natural.;

n

iii) Y (apy1 —a) = anp1 —ai
k=1
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Essa propriedade é a mesma soma telescOpica que ja foi provada na proposicao 1.

n
v) Z ¢ = ¢-n com c constante.
k=1
Demonstraremos também por indugdo

n
Seja P(n): Z c=c-n
k=1

1
Vejamos que P(1) é verdadeira, porque Z c=c=c-1
k=1
Se P(n) é verdadeira para algum n natural, vamos verificar que P(n+ 1) também o é.

n
Vamos somar ¢ em ambos os membros da expressdo de P(n): Z ¢ = c-n, dessa maneira obtemos

k=1
n n+1
c+Zc:c+c~n:> Zc:c-(n+l)
k=1 k=1

Verificado que P(n—+ 1) é verdadeira, concluimos que pelo principio de indugio, P(n) é verdadeira

paratodon € N. g
2.3.2 Binomio de Newton

Na maioria das vezes o simbolo de somatdrio aparece no ensino médio quando se
estuda a seguinte expressdo (x+y)", que é chamada de Bindmio de Newton, e tem a expansio,

segundo Neto (2013), como

(x+y)n:§0 (Z)x”—P.yp: (g)xn+ <’I)xn—1 Yt (Z)x”—l’.yp_|_...+ (Z)yn

!
em que x e y sdo ndmeros reais, 7 um nimero natural e <n> = L.
p) (n=p)'p!
Demonstracao:
Vamos demonstrar por indugdo em n
n
Seja P(n) : (x+y)" =) (n)xn_p -yP
p=0 \P
Vejamos que P(1) é verdadeiro, pois (x+y) =x+y= 0 x+ = Z x P.yP
p=0

Supondo que P(k) seja verdadeira para algum k natural

k

k
p=0 \P

Vamos provar que P(k+ 1) também € verdadeiro. Assim multiplicamos por (x+ y) a expressdo

anterior € obtemos

k
k
() b = (etn)- ¥ (5]
p=0
Aplicando a distributiva no segundo membro, temos
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k k
k k
(x+y)t = Z ( )xk—erl 3P Z ( )xk—p.ypﬂ
p=0 \P p=0 \P
Separando o primeiro termo do primeiro somatdério, e o ultimo termo do segundo somatorio,
resulta
et _ (K g1, v (K sepe Y (KN s i1 (K k1
(x+y) = NE +Z xkr .yp+z xKPyP L)Y
p=1\P p=0 \P

Fazemos a seguinte mundancga de varidvel no segundo somatdrio: trocar p por p — 1
k k
k _ k _
(x+y)k+1 :xk+1 4+ Z ( )(xk p+1 .yp)_i_ Z < 1> (xk p+1 .yp) +yk+1
p=1\P p=1 \P~
Juntando os dois somatorios, temos
k

(x4 ) =2 +§1 Ki) + (p— 1)} (KPHL Py ]

Usando a relacdo?® de Stifel® para os bindmios e colocando coeficientes para x**! e y**! sem
alterar a igualdade, resulta

k+1 ko k41 B k+1
k1 _ +1 k—p+1 _p k+1
(x+Y) ( 0 )xk +Z< ) )(x y)+<k+1)y

p=1
Assim chegamos a igualdade desejada

k+1
(x+y)k+1 — Z (k—i_l)xk—i-l—p‘yp
p=0\ P

Dessa forma provamos que P(k+ 1) é verdadeiro. Logo, pelo principio de inducio, P(n) também
¢ verdadeiro para todo n natural.

Portanto, como ja foi mencionado antes, uma sequéncia € uma restricdo de uma
funcdo real ao dominio do conjunto dos nimeros naturais. Por isso, o Cdlculo de fun¢des de uma
variavel real pode ser adaptado ao contexto discreto de sequéncia. Assim, P.A. é uma funcao
afim restrita aos nimeros naturais, uma P.G. € do tipo exponencial, P.A’s de ordem k sdo como
polindmios, etc. Nos préximos capitulos, vemos que as derivadas sdo como diferencas finitas e
integrais como somatorios. No entanto, somatorios nem sempre sao simples de serem calculados,

mas o Cdlculo Discreto fornece ferramentas muito uteis para trabalharmos com essas somas.

2 Demonstramos essa relacdo no final do préximo capitulo.

3 Michael Stifel (cerca de 1487 - 1567): Matematico alemio.
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3 DERIVADA DISCRETA DE UMA SEQUENCIA

No Célculo Convencional, vemos uma ferramenta importante: a derivada, que estuda
a variacio de uma fun¢do em um dado ponto. Segundo Guidorizzi (1987), a derivada € definida
por

f(x) = lim

fleth) = f(x)
h

com f sendo uma funcao real. Também denotamos % para derivada com y = f(x).

No capitulo anterior, vimos diversos exemplos de sequéncias e somatérios, bem
como suas propriedades. Agora definimos a derivada discreta, que € uma adaptacio da derivada
para o contexto discreto. Vemos também suas principais propriedades para estudarmos o
comportamento de algumas sequéncias. As defini¢des, propriedades e a maioria dos exemplos
e demonstracdes foram baseadas de Gleich (2005), Miller (1960), Neto (2012), Neto (2013) e
Richardson (1954).

3.1 DEFINICAO E EXEMPLOS DE DERIVADAS DISCRETAS

Para Richardson (1954), a derivada discreta € o estudo da variacao dos valores assu-
midos por uma sequéncia a,, quando n varia conforme os valores de uma P.A. Para estabelecer o
intervalo de diferenca, escolhemos o menor deles como sendo 1. Assim, os valores de variacao
que estdo associados a P.A. (1,2,3,--+) sd0 ap —ay, az —az, -+ ,dp41 — ap.

Ja Miller (1960) tem uma ideia diferente, porém equivalente, pois ao se estudar a
fx+h) —f(x)
h
para valores de & bem préximo de zero, onde f(x) é uma dada fungdo e i é chamado de

derivada do Calculo Tradicional, precisamos verificar a variagdo do quociente

incremento. Para uma sequéncia a, tomemos & = 1 e o quociente fica apenas a,.1 — a,.
Dessa maneira no Calculo Discreto, este quociente também € muitas vezes chamado

de operador diferenca ou derivada discreta, que fica definido como:

Aa, = ay1 —ay

Aa, ayip—a

, . . . . +h n

Também expressamos de maneira mais geral a derivada discreta: Ay 7 ,
n

em que 7 € um inteiro ou racional positivo. Vale observar que, da mesma forma que no

.. d . A
Célculo Tradicional em que o simbolo T nao € visto como fragdo, v também nao o é, mas
x n

destacamos que esse quociente depende de . Agora vejamos alguns exemplos, retirados de
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Miller (1960) e Richardson (1954), em que as formulas das derivadas sdo bem semelhantes ao
Calculo Convencional.

a) Ac = ¢ —c =0, com ¢ sendo uma constante;

A derivada discreta de uma P.A. é sempre constante e € igual a razdo r.

b)Alay +(n—1)rl=a;+nr—[a;+(n—1)rl=a;+nr—ay —nr+r=r,

Para a derivada de uma P.G. a, = a; - q”_l, temos

n—1

9 A(al.q”_l) =a1.q"—a1.q" = al.q”_l(q— 1)=an(g—1);
Em particular, temos A2" = 2"+ 21 — 27
De maneira geral, temos

A(c) = b+t — cfn = ¢ . (cn1=n — 1) = ¢ . (cAdn — 1)

dnp

d) Allog,(an)] = log,(an+1) —log(a,) = log, ( = ), comb>0eb#1;

An

a 1

e) Asen(a.n) =2- sen(i) - COS [a (n + 5)] ,coma € R;

De modo geral, temos:

A[Sen(an)] — Sen(an+l) _ Sen(an) — 2Sel’1 <an+12_ a}’l) - COS <an+12+ an) =

Aay
= Alsen(a,)] = 2sen(%> - COS (an%—i—an)‘

f) Alcos(a.n)] = —2- sen<g) -sen [a <n+ %)] ,coma € R;

Da mesma forma, temos:

Alcos(an)] = cos(an1) — cos(an) = —2sen(an+12+an) -sen(an+1 _an> =

2
A n
= Alcos(a,)] = —2sen<%) -sen(%).

) (1) ()= ) )

relacdo de Stifel

h) An! = (n+1)! —n! =n.(n!);
DA(a+ay++ay) = (a1 +ay+-+ap1) — (a1 +ar+ - +ay)

Assim temos uma soma telescopica que resulta
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Alai+ar+---+ay) = apy1.
Este item é muito importante, pois mostra que toda sequéncia é derivada discreta de uma outra
sequéncia.

Para derivarmos a sequéncia a,, = n, precisamos modificar a sequéncia para b, = nk)

d
(poténcia modificada), se quisermos obter um resultado semelhante! a d—(xk )=k- 1. Vamos
X

demonstrar que isso € védlido para essas poténcias modificadas:

Ab, = (n+1)0_,®
= [(n+1)n-(n—=1)-..-(n—k+2)]—[n-(n=1)-...-(n—k+2)- (n—k+1)]
= n+l—(n—k+D]n-(n—1)-...-(n—k+2)

= kn-(n—=1)-...-(n—k+2)=k-n&V 4

Uma forma geral é a seguinte: A(a+bn)®) =b-k-(a+bn)*V. No entanto,
podemos generalizar mais ainda. Seja a, uma sequéncia e definamos
[an](k) =dy-dy_1-Ay_3 ... Ay 11, para derivd-la, temos:
Alan)®) = (aps1-an- ... ayni2) = (an-po1 - oo Aygr - Ap—gs1)

k1)

Alan)® = (ani1 — anss1)  (@po1 - oo Gpis2) = (A1 — Gnis1) - [an—1]% D g

Para a derivacgao discreta de poténcias modificadas negativas temos:

1 1 1
(k) A ) =~
An A(n["}> (n+ 1)K plk =

k) __ 1 - :
= an k)_(n+1)-(n+2)....-(n—|—k—1)'(n+k) n it D) k1)

= An(h) = ! —l . ! =
n+k n) (n+1)-(n+2)-...-(n+k—1)

= An(-h)

[n—(n+k) 1 N

(n+k)-n ] (n+1)-(n+2)-...-(n+k—1)
—k —k

(—k) — — — k.- pl=k=1)
= An n-(n+1)-...-(n+k—1)-(n+k) nk+1l ken -

Com esse resultado, concluimos que An®) = k. n*&=1) Yk € 7. Como a derivada
comum satisfaz certas propriedades, da mesma maneira, a derivada discreta possui algumas

propriedades anédlogas. Citamos e demonstramos algumas delas, retiradas de Miller (1960) e

Neto (2012).

1

Para maiores detalhes sobre o assunto, consultar Guidorizzi (1987)
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3.2 PROPRIEDADES DAS DERIVADAS DISCRETAS

As propriedades aritméticas de derivada discreta sdo praticamente as mesmas asso-
ciadas as fungdes do Calculo Tradicional. Vejamos algumas delas. Seja a, € b, sequéncias e
c € R, entdo:

i) Alan +bn) = Aay + Ab,
Demonstracao:

A(an+bn) =api1+bup1 — (an _bn) = apy1 —ap+ by — by = Aay, +Ab, o

i) A(c-a,) = c-Aay
Demonstracao:

A(c.ap) = c.aps — c.ap = c.(aps1 — ap) = c.Aay O

i) Aa, = 0 < a, é constante
Demonstracao:

Aay, =ay1—ap=0&app1 =ay

iv) A(ay - b,) = (Aay) - byt +ay - (Ab,) (Regra do Produto de Leibniz)
Demonstracao:
A(an.by) = apy1.byi1 — an.by
Adicionando e subtraindo a,.b, 1, temos:
Aayn.by) = apy1.bys1 — ay.bps1 +an.byiy — ay.by =
= Aay.by) = (ant1— an)-bpi1 + an(bps1 —by) =
= A(an.by) = (Aay).bpy1 +an.Ab, o

Y A(@) _ (Aay) by —ay - (Aby,)
bn bn 'bn+1

,parab, e by 1 #0
Demonstracao:
an ap+1  Qn
Al — | = - =
(bn) bn—H bn

an api1 by —an by
=Al— | =
<bn> bn'bn—H

Adicionando e subtraindo a,, - b,,, temos

A(a_n) _ Ani1 by —ay-by~+ay-by—ay by N
bn bn'bn—}—l
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:>A(@) _ (an—i-l_an)'bn_an'(bn—i—l_bn) N
bn'bn—i—l

= O

:>A<an> (Aay) by —ay - (Aby)
bn : bn+1

n
vi) Y Aay = a1 —a;
k=1
Demonstracao:

n
Y Aay = Aay+Aay +Aaz + - -+ Aa, =
k=1

= ) Agp=(ar—a1)+ (a3 —ax)+(as—a3)+--+ (an—ap—1) + (any1 —an)

n
k=1
Fazendo os devidos cancelamentos dessa soma telescOpica pela proposi¢ao 1 do capitulo 2,

obtemos:

n
Y Aaqy=ap1—aig
k=1

Esta dltima propriedade ja nos mostra um prelidio do Teorema Fundamental do

Calculo Discreto, que € visto no proximo capitulo. A maioria dessas propriedades sdo usadas

com frequéncia no decorrer desse trabalho. A seguir, definimos as derivadas de ordem superior.

3.3 DERIVADAS DISCRETAS DE ORDEM SUPERIOR

De forma semelhante ao Célculo Tradicional, podemos derivar mais de uma vez,
assim a segunda derivada discreta ou derivada discreta de ordem 2 € a aplicacdo do operador
diferenca duas vezes na mesma sequéncia.

A(Aayp) = Aans1 — an) = ap2 — apg1 — (A1 — @) = Apgr — 2ap41 + ay.

Onde denotamos também A’a,, = A(Aay,)

ANa, = ANAN%ay) = Aaps2 —2an 1 +ay) = any 3 —20n12 +ani1 — (Anio — 20,41 +ay)
Nay = apy3 —3ani2+3an11 — an

Definimos indutivamente a derivada discreta de ordem k ou k-ésima derivada discreta
como AXa, = A(A¥"1a,), para k > 2. Assim de maneira mais geral, chegamos a seguinte
proposig¢do, retirado de Neto (2012).

Proposicao 4: Seja a, uma sequéncia, entdo

Vamos demonstrar por indu¢@o em k.
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Seja a, uma sequéncia, temos

s o pom () ()

p=0
Vamos provar que P(1) é verdadeiro.
1
1 1 1
Aa, =Y ( )(_1)p'an+l—P: < )(—l)oan+1+< )(—1)1 “Apg1-1
=0 \P 0 1
Dessa forma obtemos

Aa, = ap+1 — ay. Logo P(1) é verdadeiro.

Vamos supor que P(k) é verdadeiro para algum k € N, entdo
k
k
a3 ()0
Vamos provar que P(k+ 1) também é verdadeiro.

k
k
AHa, = A(Aka,) = A{ Z < > (=1)P- an+k_p] (aqui foi usado a hipédtese de indugdo) =

p=0 \P

k+1 k+1 k k
A, = Y ( )(—1>P~an+k+1_p— y ( )(—1>P-an+k_,,

Separando o primeiro termo do primeiro somatorio e trocando p por p — 1 no segundo somatdrio,

temos
k+1 k41 k+1 k |
Ny = apip + Y, ( )(—1)p'an+k+1p— Y ( >(—1)p Apik—prl =
p=1 p p=1 p
k+1 k41 k
= NMHa, = a1+ ) [( ) + ( )] (=DPaniir1-p
p=1 P p

Usando a relacdo de Stifel, chegamos a igualdade desejada

k+1 k+1 k+1 k+1
Aty = —1)? = —1)? _
a an+k+1+l;1 (p+1>( )Pl ki1—p p;)<p+1)( VP aniki1—p

Logo P(k+ 1) é verdadeiro e pelo principio de indugdo P(k) é verdadeiro para todo k natural.

Essa proposi¢do nos mostra uma relagio entre a derivada discreta e recorréncias
lineares. Essa relacdo € explorada com mais detalhes no capitulo seguinte. Adiante, temos mais
algumas proposicoes relativas as derivadas de ordem k que s@o usadas também nas demonstracdes
do préximo capitulo.

Proposicao 5: Se a, e b, sdo sequéncias, entdo Vk e Nec € R
A¥(a, + c.by) = Afa, + c.A¢D,.

Vamos demonstrar por inducio em k.

Seja P(k) : A¥(a, +c-b,) = Aa,+c-A¢b,

Para k =1 temos

Alap+c-by)=ayi1+c-bpy1— (an+c-by) =ani1 —an+c- (bys1 —by) = Aay,+c - Aby,
Logo P(1) é verdadeiro.
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Vamos supor que P(k) seja valido para algum k € N, entdo

A¥(a, +c-b,) = Aa,+c-Ab,

Vamos provar a validez de P(k+ 1)

A a, +c-b,) = A[A(a, +c - by)]

Usando a hipdtese de inducio, temos

A[A(a, + by)] = A[Aka, + ¢ - A*b,] = A(A*a,) + A(c- A*D,) = A a, +c- A1,
Assim provamos que P(k+ 1) também ¢é verdadeiro, logo pelo principio de indugdo P(n) é
verdadeiro para todo n natural. o

Proposicdo 6: Se Akn* é constante, entio Afnk = k!

Demonstracao:

Vamos demonstrar por inducio forte?. Seja P(k) : Akn* = k!

Parak =1 temos Aln' = An=n+1—-n=1=1! Assim P(1) é verdadeiro.
Vamos supor que P(k) é valida 1,2,--- ,k, com k € N ou seja, que A*n* = k!Vk < n
Provamos que P(k + 1) também é verdadeiro, desse temos:

AR = AR (AR = AF[A(nK - )]

Usando a férmula de Leibniz, obtemos:

A(n*-n) = An* - (n+1)+nF-An = Ank - (n+ 1) +n

Para calcular An¥, usamos o bindmio de Newton

An* = (n+ 1)k —nk = zk: (k)np—nk:ki (k)np

p=0 p p=0 p

Assim resulta

An* - (n41) +nk = ril (ﬁ)nl’} -(n+1)+n":ki"l (zlj) [0t 4 nP) 4 nf

p=0 p=0

Faremos uma mudanca de varidvel, trocando p + 1 por p e p por p — 1 em que obtemos

kf (;) [P 4 nP] 4k = i <pfl>[np+npl]+nk

p=0 p=1

Vamos separar do somatdrio o tltimo termo e reorganizar a expressao

(kf 1) [n* 1 +n"+kf (pf 1> [n? +nP~ 1)

p=1

Por fim vamos calcular A¥ da expressio obtida na linha anterior.

Ak{(kfl)[n’%n“]qtn’%]f (pfl>[nl’+n1’1]} =

p=1

2 O principio de indugio forte diz: Seja uma proposicio P(n), entdo i) P(1) verdadeira e ii) P(n) é verdadeira para

n=12,- k,comk <n= P(k+1) também € verdadeira. Para mais detalhes, consultar Morgado e Carvalho
(2013)
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_ ([ Kk Ak k Ak=1 L Akpk o AR kzl k P +nP 1)
k—1 k—1 p—1

N . p=1
TV J
=0 v

=0

Essas derivadas discretas s@o iguais a zero, pois as sequéncias em questdao tem grau menor ou

k
) AFpk + Afpk

igual a k — 1, sobrando apenas ( r—1

Usando a hipétese de inducdo, temos
k

ARHL kL
" k—1
dadeiro. Logo pelo principio de indugdo, P(k) é verdadeiro Vk € N e portanto, concluimos a

)Aknk + AfnF = k- k! 4+ k! = (k+1)! Assim provamos que P(k+ 1) é ver-

demostragdo. O

Proposicio 7: Para as poténcias modificadas, também temos A*n(K) = k!
Demonstracao:
A prova é por indugdo. Entdo seja P(k): Akn®) = k!
Para k = 1 temos Anl) = An =n+1—n =1, assim P(1) é verdadeiro.
Supondo que P(k) seja vélida para algum k, vamos provar que P(k+ 1) também ¢ valida.
AR D] = AMARKHED] = AR[(k4+-1) -nW)] = (k+ 1) - A0 = (k+1) k! = (k+1)!
Nessa igualdade =" usamos a hipdtese de indugao (Akn(k) = k!) e, por fim, pelo principio de
inducdo P(k) é verdadeiro Vk € N. Assim terminamos a demonstragdo.

Definimos uma P.A. (a,) de ordem k, quando Aa, é uma P.A de ordem k — 1. De
maneira geral, uma P.A. é de ordem k, quando A¥a,, é constante # 0. Provamos isso na proposi¢io
8. Vejamos um exemplo.

APA. (1,8,27,64,125,--- ,n°) é de ordem 3, pois

Aoy =8—1=7 Ao, =19-7=12 Aar,=18—12=6
Aaz =27—8=19 A’az =37—19=18 Aaz=24—18=6
Aag = 64 —27 =37 Alas =61 —-37=24

Aas = 125 — 64 = 61

A partir de tudo isso, chegamos as seguintes proposi¢des que, de maneira mais geral,
relacionam P.A.’s, polindmios e derivadas discretas de ordem k, pois a maioria dos somatorios
usados no texto sdao de expressdes polinomiais, por isso, se faz necessdria essa ligacao.
Proposiciio 8: a, é uma PA. de ordem k < A*a, é constante # 0.

Demonstracao:
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Vamos provar por indug@o em k a implicagdo de ida (=). Se a, € uma P.A. de ordem k, entdo
Aka, é constante. Para k = 1, temos que a, ¢ uma P.A. de ordem 1 = Aa,,.1 —a, =r que é
constante.
Supondo que toda P.A. de ordem , a,,, satisfaz A¥a, = ¢ # 0, para algum k € N, vamos provar
que para k + 1, o resultado também é verdadeiro.
Seja a, uma P.A. de ordem k + 1, por definicao temos que b, = Aa, é uma P.A. de ordem k.
Por hipétese de inducio, Ak, = ¢ com ¢ constante # 0.
Assim, resulta Akb, = A¥(Aa,) = A" la, = ¢

Vamos também provar a reciproca da implica¢io (<) por inducdo k. Se Akq, é
constante # 0, entdo a, é uma P.A de ordem k.
Para k = 1, temos que Aa, = ¢ = a,4+1 — a, = ¢ = por defini¢do, a, € uma P.A de ordem 1.
Logo, a proposi¢ao é verdadeiro para k = 1.
Supondo que esse resultado é verdadeiro para algum k, temos que: Afa, = ¢ # 0 = a, P.A. de
ordem k. Vamos provar que a proposi¢cdo também € vélida para k+ 1, temos
AFla, = c = A¥(Aa,) = A*b, = ¢, com Aa,, = b,,.
Pela hipétese de inducao, b, = Aa, é uma P.A. de ordem k. Dessa maneira, por defini¢do, a, é
uma P.A. cujo grau € k+ 1. Pelo principio de inducao, a proposi¢do é verdadeira para todo k
natural. o
Proposiciio 9: a, é um polindmio em n de grau k < Afa, é constante # 0.
Demonstracao:

Vamos provar a implicagéo de ida (=) por indug¢do em k. Se p,, é um polindmio em
n de grau k, entio Afp, = ¢ com ¢ constante # 0.
Para k =1, seja p, = c-n+d, com c e d constantes # 0.

Temos que Ap, =c(n+1)+d— (cn+d) = c. Logo, a proposi¢ao é verdadeira para k = 1.

k
Supondo que cada polindmio em n de grau k, p, = Z b;n’ satisfaz A*p, = ¢ # 0 para algum
j=0
k € N.
1
pn=Y b;n’ tem grau k+ 1, vamos provar que A¥" p, = ¢, com ¢ constante # 0.
j=0
k1 kel .
Assim temos que A¥p, = AFFH! Z bjn' = Z bJ-AanJ.
J=0 J=0

Pela proposi¢do 6, obtemos

. k+1)!, para j=k+1
AR — { ( )P / . Portanto, A1 p, = by (k+1)!, que é constante # 0.

0, para j<k
Assim, demonstramos a primeira parte.
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Vamos entdo provar, por indu¢io em k, a reciproca da proposigio (< ). Se A¥p,, é
constante # 0, entdo p, € um polindmio em n de grau k

Para k = 1, temos que Ap,, = ¢ = p,+1 — pn = ¢, aplicando o somatério em ambos 0s membros,

resulta

m

Z (Pn+1— Z ¢. Usando a proposi¢do 1 e a propriedade iv) da subse¢do 2.4.1, temos
n=1 n=1

Pm+1— P1 = c¢m, ou, trocando m por n, p,+| = cn+ p1, que € um polindmio de grau 1.

Supondo que para algum k € N, se tenha
k

Ap,=c=p,= ijnj
Vamos provar que ]0: (r)esultado € vélido para k+ 1
Seja p, um polindmio, tal que Akl Pn = ¢, com ¢ constante # 0, temos
A p, = AY(Apy) = A¥r, = ¢, em que 1, = Ap,
Pela hipotese de indugdo, temos r, = zk: b jnj , que resulta
Jj=0

m

Y (Puri—p Z Zb n!

n=1 n=1 j=
Calculando a soma telescoplca do primeiro membro (proposicao 1) e invertendo os somatério do

segundo membro obtemos

k
Pm+1 — ZZ’?”’ Zb Zn = pus1 = p1+ Y. bjgj(n), com g;(n an

j=0n= j=0
Assim concluimos que p, 1 = p1 + Z bj-q;(n) é um polindmio de grau k+ 1. Isso
Jj=0
necessita de uma demonstragdo, por isso no préximo capitulo provamos esse resultado. Dessa
maneira, encerramos o topico de derivadas de ordem superior € seguimos nosso estudo para o

assunto de nimeros de stirling e poténcias modificadas, para entender a relagcdo existente entre

OS meSmos.

3.4 NUMEROS DE STIRLING E POTENCIAS MODIFICADAS

Foi visto no capitulo anterior que as poténcias modificadas foram definidas como
n® =n.(n—1).(n—2).--- .(n—k+1). No entanto, se efetuarmos as multiplicacdes, obtemos
um polindmio em n de grau igual a k. Segundo Gleich (2005), podemos transformar um
polindmio de poténcias modificadas de grau kK em um polindmio de poténcias comuns de grau k.
O préximo resultado generaliza esse fato.

Proposicdo 10: Seja o seguinte polindmio fatorial a, = c;n® + ¢ n* =Y 4. 4 ¢;n) + ¢,
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com ¢y,cy,- -+ ,C; constantes e ¢, # 0. Entdo existem constantes bg,by,- - ,b; com by # 0 tal

que a, = by +by_n* =1+ ... 4 bin+by. A demonstragio serd feita por indugdo em .

k k
Seja P(k) : a, = Z cpn(p) = Z b,n?
—0 —0

1
Para k = 1, temos Z cpn(p) = —|—cln(1) =co+cin,poisn' =n= n)
p=0

Dessa forma, obtemos ¢y = bg e ¢; = b;. Logo P(1) é verdadeiro.

Vamos supor que P(k) seja verdadeira para algum k € N
k

Z cpn(p) — Z b,n?
p=0 p=0

Vamos provar que P(k+ 1) também ¢ verdadeira. Seja o polin@mio fatorial de grau k+ 1
k41

Zcp-n(p):ck+1n( —|—Zcpnp—ck+1 n- n—l +Zcpnp
=0 p=0

Usando a hipétese de indugﬁo obtemos

cryr-n-(n—1)! Zcpnp—ck+1 n- Zepn—l Zcpnp:>
p=0
k k k—1 k
= Cpy1- M- Zep(n—l)p—I- Zcpnp:ck+1-n-ek-(n—l)k+n- Zep(n—l)p—i— Zcpnp
p=0 p=0 b g p=0 p=0
Q(n) N ~~ S ———
R(n) S(n)

Veja que Q(n) tem grau k+ 1 e R(n) e S(n) tem grau k. Logo Q(n) + R(n) + S(n) tem grau k+ 1.
Assim P(k+ 1) é verdadeira e pelo principio de induco P(k) é verdadeiro para todo k natural.
De forma particular, segundo Miller (1960), uma poténcia modificada nk) & expressa

como um polindmio de poténcias comuns. Dessa forma, temos

k
k) — Z Fip-n”
p=1

onde os coeficientes Fy , sdo chamados de nimeros de Stirling de primeiro tipo € também sdo
representados por [p} . Vejamos alguns exemplos:

n) =n Fi=1

n(z):n.(n—l):nz—n FBi=-1 khy=1

n® =n(n—1).(n—-2)=n*-3n+2n F,=2 Fr=-3 FK3=1



38

Segundo Miller (1960), podemos também reciprocamente transformar um polindmio

de poténcias comuns de grau kK em um polindmio de poténcias modificadas em n de mesmo grau.

A préxima proposi¢do demonstra isso.

Proposicio 11: Seja a sequéncia a, = cxn* +cp_1n* 1+ 4 cin+co sendo cg, cp_1, - -

,C1,€0
constantes e ¢, # 0, entdo existem constantes by, by_1,---,b1,by com by # 0 tal que a, =
bn® + by n* N 4 by 4 by,

Da mesma maneira vamos demonstrar por inducdo em k

Seja P(k) :ap = Z cpn? = Z b,n'P)

Parak =1, temos

21: cpn’ = ¢ +en' = co+cin, pois n' =n=n

i\:s(;im temos co = by e ¢; = by. Logo P(1) é verdadeiro.

Vamos supor que P(k) seja verdadeiro para algum k € N, ou seja, que existem by, by, - - - , by tal

que

a, = Z cpn? = Z bpn

Vamos provar que P(k+ 1) tambérn ¢ verdadeiro, assim

k+1 k
Seja Z cpn? = e n 4 Z cpn? = cpon- (n*) + Z cpn’
Usando a hipc’)tese de indugao, entﬁo existem dy,dy,- - ,d; e by,by,--- , by tais que

k
Crr1n - ( —l— Z cpn? = cpyn- Z dpn + Z bpn(p)
p=0 =0
k
Somaremos e subtrairemos ¢y 1 - Z a’pn(p ) 3 expressdo, assim resulta
p=0

k+1 k k
Z cpn? = cpyn- Z dpn + cp1 Z dpn + Z bpn(p) — Cka1 Z dpn(p)
p= p= p=0 p=0 p=0

Reagrupando os somatérios temos

k+1 k
Z cph’ =cpy1-(n+1)- den Z(bp—ck+1dp)-n(p) =
p=0 p=0 p=0

k41 k
= Z cph? = ¢y Z dpn “(n4+1)+ Z epn(p) come, =b,—crr1d, =
=0 p=0 p=0
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k+1
:>Zcpnp—ck+12d (n+1)K+D —I—Zepn
p=0 p=0 p=0

Separando o primeiro termo do primeiro somatério do lado direito da igualdade, obtemos
k+1

ZCp”p—Ck+1dk(”+1)(k+])+ck+1 Zd (n+1)P*HY "‘Zep”
p=0 p= p=

Fazendo ¢y 1dy = fr+1 € uma mudanca de varidvel p+ 1 para p e p para p — 1 no primeiro

somatorio do segundo membro, obtemos

k+1
Zcpnp fk+1(n+1) (k+1) —|—de (4 1) —|—Zepn 2
p= p=

Q(") ~ ~ W—’

R(n) S(n)

Assim temos R(n) e S(n) com grau k e Q(n) tem grau k+ 1. Logo, Q(n) + R(n) + S(n) tem
grau k + 1, provando que P(k + 1) é verdadeiro. Com isso, pelo principio de indugdo, P(k) é
verdadeiro V k € N, terminando a demonstracdo.

Particularmente da mesma forma, segundo Miller (1960), uma poténcia comum nk

pode ser expressa como um polindmio de poténcias modificada. Dessa forma, temos
k
p=1

k
onde Sy , € chamado de nimero de Stirling de segundo tipo. Outra nota¢do { } Alguns
p

exemplos:

n—n Sii=1

n2 =n() 4@ S0=1 So=1

23 = n() 13,2 4,03 S31=1  $3,=3 S33=1

Estas duas proposi¢des sdo bem relevantes, pois fica mais simples calcular integrais
discretas® de poténcias comuns, transformando-as em somas de poténcias modificadas. No
entanto, vemos isso apenas no proximo capitulo. Adiante apresentamos uma ferramenta andloga
a formula de Taylor, que € a féormula de Newton. Ela também é importante, pois nos ajuda a

encontrar os numeros de Stirling de segundo tipo.

3 No préximo capitulo, definimos a integral discreta e suas semelhancas com o somatério.
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3.5 FORMULA DE NEWTON E POLINOMIOS

No Célculo Tradicional "é mostrado que se f(x) é um polindmio de grau n, entdo

f(x) pode ser escrito na forma
2

2!

xl’l
S@) = FO)+£/(0)-x+1"(0) - 5y 4+ f(0) - =
(MILLER, 1960, p. 18, tradu¢do nossa), em que f (n) ¢ a n-ésima derivada no ponto 0. Essa
férmula também € conhecida como férmula de Taylor. No entanto, o Calculo Discreto, segundo
Miller (1960), tem uma férmula andloga que é chamada de Férmula de Newton, em que a,, ¢ um

polindmio em n de grau k expresso por:

2) (k)
an = ap+ Aag -n\V) + A2ay - nz_' 4+ Akgy - nk_"
. nk) n
em que Aag é a derivada discreta de a, de ordem k quando n = 0. Como T ( k) , a férmula

de Newton também € escrita com a notagdo de somatorio da seguinte forma

Kk /n )
an:ZpAam

p=0

em que Aag =ag e (g) =1

Para encontrar essa primeira férmula, usamos a proposi¢ao anterior, em que se a, é
um polindmio de poténcias comuns de grau k em 7, entdo a, pode ser escrito como polindmio
de poténcias modificadas de mesmo grau.
an = ag+binM +byn@ + ... 4 bn®
Vamos aplicar a derivada discreta em ambos membros na expressao anterior, para encontrar cada
b;
Aay = by + 20y + 36302 + - kb1
Para n = 0 temos Aag = by = b} = Aayp
Derivando mais uma vez temos

A%a, =2by+3-2b3nV) +4-3b4n™ 4 k- (k—1)bn*—2)

2 A2a0
Paran = 0, temos A“ag = 2by = by = X
kaq
Sucessivamente temos A¥ag = k! - by = by, = i Assim substituindo cada by pelos coeficientes
0 ) . ,
encontrados, obtemos a,, = ag + Aayg - n) 4+ A agp - ET8 +---A¥ayg - T Agora veja um exemplo

de como isso funciona na pratica.
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Exemplo: Seja a sequéncia a,, = n*.

Como é um polindmio de grau 4, basta calcular as derivadas até de quarta ordem, pois todas as
outras derivadas superiores sdao nulas (consequéncia da proposicdo 8 € 9).
Os termos da sequéncia a, sdo (0,1,16,81,256,625,1296,---).
A sequéncia da primeira derivada discreta: (1,15,65,175,369,671,---).
A sequéncia da segunda derivada: (14,50,110,194,302,---)
A sequéncia da terceira derivada: (36,60,84,108,---)
A sequéncia da quarta derivada: (24,24,24,---)
Assim, temos que a9 =0, Aag =1, A’ag= 14, Aag=36¢e A*ay =24
n2 n3) n®)

Logon*=0+1-n) 414. 36 S 24 = W + 703 4 6n) )

Entdo concluimos que S40 =0, S41 =1, S40 =7, S43=6 € S44=1

De maneira geral, para a,, = n* temos que

APag
Sk7p = |
p:

Com A’qg sendo a derivada discreta de ordem p de a,, para n = 0. Assim uma poténcia comum

também € escrita da sequinte forma
nk = Sk,l . n(l) +Sk,2 . n(z) + e +Sk,k . n(k)

Por fim, concluimos o capitulo com a demonstrac¢do da relagdo de Stifel, retirada de Neto (2013).

Proposicao 11: Seja n e p inteiros ndo-negativos, com n > p entao

() G) = ()

em que (n) n!
u =
p) (n—p)!p!

Demonstracao:
n! N n! _nlp+)+nln—p) _ (n+1)! _
(n=p)ip!  [n=(p+ 1 (p+1)! (n—p)i(p+1)! (n—p)i(p+1)!

B (n+1)! _(n+1)
Tl DR \p+1)”

Agora, ja temos em maos algumas ferramentas necessdrias para comegarmos o

célculo de somatdrios. Vimos que basicamente calcular uma derivada discreta € como calcular a
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"razdo" de uma sequéncia e que vdrias sequéncias cujas suas derivadas discretas e propriedades
sdo bem semelhantes as suas contrapartes no Calculo Tradicional. No préximo capitulo, vemos a
operacdo inversa da derivada discreta que € integral discreta. Vemos também algumas equagdes

que envolvem derivadas, chamadas equagdes diferenciais discretas.
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4 INTEGRAL DE UMA SEQUEN CIAE EQUA(;OES DIFERENCIAIS DISCRETAS

Continuando o nosso estudo de sequéncias e somatérios, chegamos a parte mais
importante do estudo, mas antes de falarmos das integrais discretas e dos somatorios, vamos
relembrar um conceito importante vindo do Calculo Tradicional: a integral. Segundo Guidorizzi

(1987), definimos integral indefinida (ou antiderivada) como:

com k constante e que f e F sdo fungdes reais, tal que F'(x) = f(x).

Dessa forma, vamos apresentar nesse capitulo uma extensdo, uma versao discreta da
integral citada acima e ainda associar ao somatdrio. Também apresentamos alguns resultados
que auxiliam no cdlculo de somatdrios e resolvemos varios exemplos. Concluimos com uma
breve exposi¢cao sobre equagdes diferenciais discretas. As defini¢des, os resultados, os teoremas
e alguns exemplos apresentados nesse capitulo foram retirados de Boole (1860), Gleich (2005),

Guidorizzi (1987), Guidorizzi (1988), Miller (1960), Poco (2008) e Richardson (1954).

4.1 ANTIDERIVADA DISCRETA DE UMA SEQUENCIA

Segundo Gleich (2005), uma sequéncia a,, ¢ dita antiderivada (ou primitiva) discreta
de b,, se Aa, = b,. Entendemos a integral discreta indefinida, denotada por Y b,0n, como a

familia das sequéncias cuja derivada discreta € b, e escrevemos assim:
Zb,ﬁn =a,+C

em que C € uma constante.

Vejamos que Ax, = Ay, < Ax, — Ay, =0 A(x, — y,) =0 < x,, —y, = C por iii)
da secdo 3.2. Ou seja, se duas sequéncias tem a mesma derivada, entdo elas diferem por apenas
uma constante. Segundo Richardson (1954), a antiderivada pode ser também denotada por A~!
ou 1/A. Vejamos alguns exemplos de antiderivadas, retirados de Miller (1960) e Richardson

(1954):

a) Zr6n = ZA(r~n)5n =rm+C

Pois A(r-n) =r-(n+1) —r-n=r, sendo r uma constante;

n n
b)Zq”SnzZA(q—l)Sn: q S+ Coparag # 1
q- q-
Pois A¢" =¢" - (¢—1);



_cosla(n—1/2)]
2sen(a/2)

Como Acos (an — —) = —sen(g) sen(a
—~ YA _ Y a
cos _a n 2| = —sen 5 sen(an)

i ~
Assim cos a(n—i) = —sen(%) -Y sen(an) +C;

senja(n—1/2)]
2sen(a/2)

+C

c) Zsen(an)(Sn

d) Y cos(an)én = +C

Asenla(n—1/2)]
2sen(a/2)

n n
on = C, > 1
e)z’(p) ! (p+1>+ para =Pt

PoisA( " ) = (n)’
p+1 P

f) Zn(n!)Sn =n!+C

Pois An! =n-n!;

Pois cos(an) =

(k+1)
K gy ="
2) Zn on T +C

Pois An* D) = (k+ 1)),
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Muitos desses exemplos acima sao bem semelhantes ao caso da integral tradicional.

A seguir, temos entdo o principal resultado desse trabalho: o Teorema Fundamental do Calculo

Discreto. Pois a partir disso, podemos calcular somatérios praticamente do mesmo jeito que

calculamos integrais convencionais.

4.2 TEOREMA FUNDAMENTAL DO CALCULO DISCRETO (TFCD)

Do Célculo Convencional, também relembramos um dos principais resultados sobre

a integral definida: o Teorema Fundamental do Célculo. Segundo Guidorizzi (1987), se f é uma
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fungdo integravel! em [a,b] com F'(x) = f(x), entdo:

[ reoax=Fp) - Fl@

Para a versdo discreta, temos o Teorema Fundamental do Célculo Discreto em que
relaciona o somatério com a antiderivada discreta. Mas primeiro, vamos definir a antiderivada

discreta definida e relaciond-la com o somatoério usual. Segundo Gleich (2005), definimos
k

antiderivada discreta definida como an5n em que Aa, = b,, e também temos
J

k k-1
Y bubn="Y by,
J n=j

em que o somatorio do lado direito € o somatério usual que foi citado na se¢do 2.4.
Agora vejamos o Teorema Fundamental do Célculo Discreto (TFCD), retirado de
Gleich (2005), Miller (1960) e Richardson (1954). Sejam a, e b, sequéncias tais que Aa, = by,

entao:

k
an5n =ax—aj,
J

Demonstragﬁo Temos que

k—1 k—1
Zb on = an— ZAan—Aa]+Aa]+1+ -+ Aap_p+ Ay =
=J =J
k—1
=Y by=(aj1—aj)+(aji2—aj1)+-+ (a1 —a2) + (@ — 1)
n=j

Resolvendo as somas telescOpicas (proposi¢do 1), temos

k
an5n:ak—aj 0
J

Dessa maneira, para calcular a forma geral de somatdrios, basicamente basta encon-
trar a antiderivada do somando, transforma-lo em uma integral discreta e usar o TFCD. Agora
para ilustar o assunto, vejamos alguns exemplos, retirado de Miller (1960), Gleich (2005) e Poco
(2008), em que aplicamos as técnicas desenvolvidas até aqui nesse estudo.

Vamos calcular a soma dos n primeiros niumeros naturais. Ela pode ser facilmente

calculada aplicando o TFCD.
kil n(> k1)@ 1@ (k1) k- 1.0 k(k+1)

Z”_Z” L 2 B 2 T2

1

Para maiores informagdes sobre fungdes integraveis, consultar Guidorizzi (1987)



Da mesma forma, podemos calcular a soma dos termos da P.G.

k+1 n—1 [k+1 k_ 0 gk -1
Za1-q"_l=al-zqn_l5n=a1~q —g L1 4 g ),comq#l-
n=1 n=1 q_l 1 q_l q_l

k k
Calculamos também a férmula geral para Z n’e Z n.
n=1 n=1

Usando o TFCD no primeiro somatdrio, temos
k+1

Zn —ZnZSn

Substltumdo o somando por poténcias modificadas (proposicio 11) n? = nM 4+ 1@ resulta

kel k+1 0. @ k-+ k+1 n( ) (kL (3) kL
Sn = +n?)]6n )8n+ +— =
Zn n= ; n'“/] nZ’ n Zn 1 3,
k+DPD-1@  k+1P=10  k+1)-k—=1-0 (k+1)-k-(k—1)—1-0-(—1)
2 3 2 3
(k1) k| (k1) ke (k—1) 1 k—1\  k-(k+1)-(2k+1)
= 5 + 3 =(k+1)-k 2+ 3 )= 3 .

k-(k+1)-(2k+1)

Assim temos que n* =
que ) c

n=1

Da mesma maneira, para calcular Z n3, temos:

n=1
Utilizando o Teorema Fundamental do Calculo Discreto, temos
k+1

Z n’ = Z n’8n
Substltulndo n3 =n 43,2 4 50) (proposi¢ado 11), resulta

k+1 k+1 k+1 k+1 k+1

Zn35n—2[n ) +3n2) 400 5n—2n —l—SZn 5+Zn
n=1

L(2) K+ X LG KL () k]
“2|, T, A, T

k+1)2 -1 k13 10 (k1Y% 1@
:(-+)2 +3_(+)3 +(+)4 _
(k1) (k1) k- (k—1)-(k—2)

F(k+1) k- (k—1)+

2 4

=(k+1)-k- %_{_k_l_{_(k_l)é‘l(k_z) :(k—l—l)J;

4H+mzvkgyﬂ2

46
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Assim temos que Z 2

n=1

- [yt

Finalizamos essa se¢do com o Teorema das Colunas, visto em Combinatoria.

!
Proposicao 12: Seja (n) = L, com n > p entdo
p) (n=p)'p!

()= ()= (7)== - (05

Demonstracao: Usando a notacdo de somatério e o TFCD, temos
i n+tj _"i‘ nt s (1t U k41 (n )\ (k]
o\ n _j:O n 1= n+1/|, S\ n+1 n+1) \ n+l1

. n . . ~
Pois < L 1) = (. Assim concluimos a demonstragao.
n

Vimos que todas as técnicas desenvolvidas até aqui foram para calcular esses soma-
térios de maneira pratica. Na proxima se¢do, vemos uma ultima ferramenta desse trabalho que é
a formula de somacao por partes que € o andlogo da férmula de integral por partes do Célculo e

vemos também sua utilidade ao se calcular somatdrios de produto de sequéncias.

43 FORMULA DE SOMACAO POR PARTES (FSP)

A férmula de integral por partes é muito usada para calcular a integral em que hd uma
multiplicacio de func¢des. Segundo Guidorizzi (1987), sejam f e g fungdes reais e derivaveis,

entao:

[ £ (= £ -5() = [ £)-g()d

Chamamos a versao discreta de formula de somacao por partes em que é muita usada
no caso que ha no somando alguma multiplicacdo de sequéncias. Segundo Miller (1960) e Poco

(2008), sejam a, e b, sequéncias, entdo:

Zan -(Aby)0n =ay b, — Z(Aan) by 16n

Demonstracao: Considere a derivada discreta do produto de duas sequéncias a, € by:
A(an.by) = (Aay).byy1 + an.(Aby)
Aplicamos a antiderivada discreta em ambos os membros

ZA(an.bn)&z = Z(Aan).bn+1 5n+Zan.(Abn)5n =
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= ay.b, = Z(Aan).anSn—I— Zan.(Abn)Sn

Organizando os termos, obtemos a férmula desejada:

Zan - (Aby)0n =ay b, — Z(Aan) by 16n O

Agora vamos fazer um exemplo para aplicar essa férmula e outros métodos ja

estudados, calculando a soma da seguinte P.A.G.:

k
Z n-2"
n=1
Se a, =ne Ab, = 2", temos que Aa, = 1 e b,, = 2", usando o TFCD e a FSP, obtemos que

k1 k1 gl ket 1
Zn 2" = Zn 2"én=n-2" —Z2"+1-15n:(n~2"—2”+1) =

n= 1 n=1 1
k+1

=2"n-2)| =2(k+1-2)-211-2)=2M1(k—-1)+2.
1

Dessa maneira, reduzimos o problema de calcular somatérios ao método de calcular
integrais. Antes de concluir essa se¢dao, damos a demonstragdo para um resultado pendente que
foi usado na proposi¢ao 8 do capitulo anterior.

n

Proposicao 13: Se p(n) é um polindmio em n de grau k, entdo g(n) = Z p(m) tem grau k+ 1

m=0
Demonstracao:
k
Seja um polindmio p(m) = Z a;m'
=0
n n k l ) k n ] k n )
Entdo Z p(m) = Z Zaim’ = Z Z am' = Za,- Z m'
m=0 m=0i=0 i=0m=0 i=0 m=0

Usando a proposi¢do 10 do capitulo anterior resulta

k n k noi ] k i n )
Yo Yom'=Ya Y Yo =Yaiy by} m”
=0 m=0 ' =0 j=0 m=0

Usando o Teorema Fundamental do Calculo Discreto no terceiro somatorio, obtemos

k i n . i ntl k i Ut
ZaiZbJ’ZmU):ZaiZbJ m(-’)5m:Za,~ZbJ- ;
i=0  j=0 m=0 i=0  j=0 m=0 = j=o  JT1
mUTD L G )UHD —oUHD (g 1)U
Temos que — = ; = .
J+1 j+1 j+1

: 1)U+
Veja que o polindmio ri(n) = Y b (nt DVTD

- tem grau i+ 1
=SV AN ¢
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k
Por fim, concluimos que Z a; - ri(n) é um polindmio de grau k+ 1 o
i=0

4.4 EQUACOES DIFERENCIAIS DISCRETAS (EDD)

No Calculo Tradicional, depois de se estudar derivadas e integrais de fungdes, temos

as Equacoes Diferenciais Ordindrias (EDO) que, segundo Miller (1960), sdo equacdes do tipo

F[xaf(x)af/(x)af//(x)v'" 7fk(x>] =0,

com f*(x) sendo a derivada de ordem k de f. Essas equacdes sdo importantes, pois muitos
movimentos fisicos na natureza sdo descritos por equacdes diferenciais.
No Célculo Discreto, temos as Equacdes Diferenciais Discretas (EDD) ou também

chamadas de equacdes de diferencas finitas que, segundo Miller (1960), sd@o equacdes do tipo
F(n7an7Aan7A2an7 T 7Akan) - 07

em que a, ¢ uma sequéncia.
Exemplos:
a) A’a, — Aa, —2a, = 8
b) Ala, + A%a, —2a, —a, =0
¢)3Ma, — [Aa,)* +5=n
d) (Aa,) - (a,)+5n=0
Segundo Richardson (1954), uma EDD se relaciona diretamente com uma equagao
de recorréncia, ou seja, cada derivada discreta é expressa em termos da sequéncia em questao,
assim temos
Aap, = ap+1 —ap
A2Cln = ap12 —2ap41 +ay
ANay = ani3 —3an2 + 3ans1 — an
A*ay = ayq —day3+6ay0 —day 1 +ay

De maneira geral, pela proposi¢ao 4 do capitulo 3, temos

k

k

Aa, = Z bi.p - anik—p, €M que by p = (p) (=1)”
p=0

Vejamos um exemplo. Vamos transformar a equacio A’a,, + Aa, — 2a, = 8 em uma recorréncia.
Substituindo as derivadas, temos

ant2 —2ap+1 +an — (apt1 —ay) —2a, =8 = apyo —3a, = 8
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Portanto, o problema de resolver uma EDD se reduz a resolver uma recorréncia, pois
as duas podem ser tratadas da mesma forma. Segundo Moreira (2007), o estudo de recorrencias é
muito usado na teoria dos Sistemas Dindmicos® e h4 também aplicacdes em teoria dos niimeros.
Embora existam vérias tipos de equacdes discretas, no entanto, nesse trabalho focamos nas

EDD’s Lineares que definimos a seguir.
4.4.1 Equacao Diferenciais Discretas Lineares

Segundo Richardson (1954), se a, e b, sdo sequéncias, entendemos por Equagao

Diferencial Discreta Linear (ou apenas equacao linear) uma expressao do seguinte tipo
k k—1 k=2 _

em que cy,cy,- - ,Cr SA0 sequéncias ou constantes que também chamamos de coeficientes.

Chamamos de EDD linear em n de ordem k (ou k-€sima) as equacdes em que a
derivada discreta de maior grau € igual a k. Vejamos alguns exemplos:

a) A2a, + Aa, — 2a, = 0 é uma EDD de ordem 2 ou de segunda ordem;

b) Ada, + Aa, — 3Aa, — a, = 0 é uma EDD de ordem 3 ou de terceira ordem;

¢) 3A%a, — Aa, +5 = n é uma EDD de ordem 5 ou de quinta ordem.

Também podemos redefinir uma equagdo linear aos moldes de uma recorréncia. Seja
a, uma sequéncia, segundo Richardson (1954), uma equacgdo diferencial discreta linear de ordem

k € uma equagado do seguinte tipo:
Anik+b1-apip—1+-+bp-anyg—p+-+bp-an=dy

com b, e d, sendo sequéncias ou constantes. Se d, =0, Vn € N, diremos que a EDD Linear é
chamada homogénea.
Exemplos:

a) dy+2 — dy+1 — a, = 0 € homogénea e tem ordem 2 ou de segunda ordem.

b) a,+1 —na, = 2 tem ordem 1

A solug@o de uma EDD, segundo Richardson (1954), é uma sequéncia que satisfaz a
equacgao de recorréncia. Basta substituir a solugdo e verificar a igualdade.
Exemplo;: Vejamos que a,, = c-2" € solugdo da seguinte equacio a, — 2a, = 0, com ¢ sendo
uma constante.

api1—2a,=c- 2" —2.¢.2"=2""(c—¢) =0

2

Area da Matématica que estuda movimentos cadticos
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Exemploy: a, = ¢y -3" 4+ ¢, -4" € uma solugdo de a,, 12 — 7a,+1 + 12a, =0
Substituindo a solug@o na EDD, resulta:
c1-3"2 4y 42— T (-3 g AT 112 (01 3" 40y - 4) =
=9.¢;-3"4+16-¢cr-4"—21-¢1-3"—=28-¢cp-4"+12-¢c; - 3"+ - 4" =
=3"(9-c;—2l-c;+12-¢;)+4"-(16-cy—28-cr+12-¢) =0

Ja para encontrar solu¢des de EDD’s, ha varios modos assim como nas EDO’s. Por
isso, dividimos por tipos. Primeiro vejamos alguns casos mais simples.

a) Vamos resolver a,,. 1 —a, = b"*, com b constante
Para b # 1, temos que
api1 —ap=b"= Aa, =b" = ZAaHSn = Zb"Sn =a, =

n

b
b—1

+ C, com C constante
Para b = 1, temos que

Aa, = 1= ZAaHSn = Z 16n = a, = n+C, com C constante.

b) Segundo Richardson (1954), para resolvermos a equagdo da P.G. a,4+1 —d-a, =0,
com d constante, multiplicamos a expressio pelo fator 4!, que resulta
dpp1d ™V —d "V d g, =0= ap1d” ) —d"a, = 0= Aa,-d" =0
Assim, por iii da secdo 3.2 temos
a,-d " =c= a, = c-d" com c constante.
¢) Vamos resolver a seguinte equacio A%a,, = 2
Usando a integral discreta em ambos os membros, temos que
ZAzan&i = 22511
Pelo TFCD temos que Aa, = 2n+ Cy, com C} constante

Aplicando novamente a integral discreta e TFCD, lembrando que n = nM) temos

(2)
ZAa,ZSn = Z(Zn(l) +C)on=a,=2- nT +C} -n+Cy, com C; e C, constante.
Assim a solugdo geral € a, = n? +Cin+Cyoua, =n*+Cin+Cy,comCs =C; — 1
Sao muitas as técnicas de resolucdo para as mais variadas EDD’s, mas vejamos agora
um tipo em particular, em que damos uma forma de achar uma solugdo geral para a equagao

linear de primeira ordem.
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4.4.2 EDD Linear de Primeira Ordem

Do Calculo Convencional, lembramos que, segundo Guidorizzi (1987), sejam fe g

funcdes reais e continuas, uma EDO Linear de primeira ordem € uma equagdo da seguinte forma

cuja a solugdo é

_ F). g(x)
y=e {k+/€F(x)dx}

em que F'(x) é uma antiderivada para f(x).
Analogamente no Calculo Discreto, temos a Equagao Diferencial Discreta Linear de

primeira ordem que €, segundo Boole (1860), uma equacao do tipo
ap1 —by-an =dy

com ay, b, e d, sendo sequéncias e a, # 0.
Para acharmos a solug@o completa, primeiros consideramos a EDD linear homogénea
associada. Assim temos

an+1
any1 —bp-ay =0=ay1 = bpa, = = by

Ap
Escreveremos a expressdo obtidas com indices variando de O até n.

a as as Qn
— = by, — =Dy, —=by, - =Dby-1
ao ai as an—1

Multiplicamos as expressoes, obtendo um produto telescopico

... :bO'b]'bZ'“"bi’l—]
apg ay ap an—1

Pela proposi¢ao 2 do capitulo 2, temos que Z—n = [by_1]" = a, = c-[bp_1]", com ¢ = a
Para resolver o caso geral, segunc(l)o Boole (1860), trocamos a constante ¢ por ¢, na

solucdo homogénea e substituimos a EDD linear geral para encontrarmos c;, assim

an=cn [bp-1]™ e ani1 = car1- [by) Y

Para a1 — b, - a,, = d,, temos

Cn+1 [bn](n+l) —by- Cn[bn—l](n) =d, = Cn+1 [bn](n_H) _cn[bn](n_H) =d, =

d d
= (Cn+l - Cn)[bn](n+l) = dn = Acn = = Cp = Z [b u on.
n

[bn] (n+1) ](n—H)
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Por fim, como a, = ¢, - [by,— 1](") concluimos que a solugdo geral é

an = [ba-1]") {Z[b]cf—zﬂ)én}

Vejamos um exemplo. Vamos resolver a seguinte equacdo: a,| — 2a, = 3"

Temos que b, =2 e d, = 3" assim [b,_1]") = 2" e [b,]"+1) = 27+1

A solugdo é a, =2"- | ) | =2n. ] Y N ou| =211 ) n+c
§a0C n = 19 T | &\ 2 —C 21 |\2
Portanto, a solugao geral fica a, = 3" + C-2", com C constante. A seguir, concluimos o capitulo

com uma breve explanacao sobre equacdes lineares de ordem k.
4.4.3 Solucao de uma EDD Linear de ordem k com coeficientes constantes

Segundo Guidorizzi (1988), a solu¢do completa da EDO linear de ordem k com

bi,by,--- by constantes e f uma funcdo real
dky dk—ly dy
Y i — T 4 b, - b=
Tk oot b A b fx)

€ y =y, +y, em que y, € uma solugdo particular e y, € solucdo geral da equagdo homogénea
associada. A solucio dessa EDO linear homogénea é y = ¢“1¥ 4 e2* + ... 4 ¢%* no caso’ em que
c1,¢2,- -+ ,Cx SA0 as k raizes reais e distintas do polindmio caracteristico associado.

Para o caso discreto, vimos anteriormente que uma equacao diferencial discreta

linear de ordem k pode ser escrita em termos da recorréncia
Anik+b1-apip—1+- -+ bp-anik—p+-+bp-an = dy,

com by,by,--- by e d, sendo sequéncias. No entanto, nesse trabalho vemos apenas o caso em
que os coeficientes by sdo constantes, pois no caso contrdrio, segundo Richardson (1954), a
solucdo dessas equacdes com grau maior do que 1 em geral ndo s@o encontradas.

Vejamos primeiro o caso em que a equacao € homogénea. Assim temos que a, . +
by-apik—1+-+bp-anik—p+---+bg-a, =0 com coeficientes constantes. Antes de chegarmos
a solugdo geral, vejamos uma propriedade importante para as EDD’s lineares homogéneas, que

nos dé a "cara"da solucdo geral desse tipo de equacao.

3 Para ver os outros casos, consultar Guidorizzi (1988)
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Proposicao 14: Se A,,,B,,- -+ , P, sdo solu¢des de uma EDD linear homogénea e cy,c2,--- ,¢p
constantes, entdo a expressao cy -A, +c2- B, + -+ ¢, B, também € solu¢do dessa mesma
equacao.
Demonstracao: Vamos provar por indu¢@o no nimero de solugdes.
Se tivermos 1 solugdo A, como solugdo da EDD linear homogénea, temos que
Aptr+Db1-App1+- -+ An =0
Multiplicando a equacdo por ¢y, obtemos
c1-Apprt+c1-by-Appp1+-Fcrb-Ay=c1-0=
= 1Ak +b1- (ClApii—1) + -+ bi- (c14,) =0
Assim c1A, também € soluciao da Equacao
Suponha que as p solugdes formam a solugdo c1A, + 2B, +---+cp P,
Vamos provar que se tivermos as p + 1 solugdes A,,B,, -+, P, e R,, entdo c{A, +c2B, +---+
cpPy + cp 1R, também € solugdo da equacdo homogénea.
Seja X, = c1Ap + 2By + - - + ¢ By, substituindo X, + ¢, 11 R, na EDD temos
Xotk + CpriRnik + 01 (Xnpk—1 + Cpr1Ruk—1) + -+ bp (X +cpRy) =
=Xprk 01 X1+ Xy +cpriRu1 +Cpr1tbiRy k-1 -+ Cpr1bRy =0
E igual a zero, pois, por hipétese, X, e R, sdo solucdes para a equagdo. Assim demonstramos a
proposicao. O

Entretanto, segundo Richardson (1954), para achar a solu¢do de uma EDD linear
homogénea, temos que resolver um polindmio caracteristico a ela associada, ou seja, se temos
anik+b1-ayip—1+-+br_1-ans1+by-a, =0, facamos a, 1, = x5 ay, que resulta
X ap+by XK a4 A b x-an+by-a, =0=
= (4 by - by x4+ by) - a, = 0. Assim obtemos que
Kby K b x4+ b =0

Chamamos esse polindmio obtido de polindmio caracteristico associado a EDD
linear homogénea. Se esse polindmio tiver as k raizes reais e distintas cy,cz,- -+, ¢y, €ntdo a

solug@o completa da EDD linear homogénea associada é

an = pi(cr)" +pa(e2)” +---+ pil(en)”

com pi,pa,- -+, Pk constantes.
Dessa forma, segundo Richardson (1954), a solu¢do geral da EDD linear € composta
por duas partes chamadas de sequéncia complementar (SC) e integral particular (IP). Dizemos

que SC € uma sequéncia complementar quando ela € solu¢cdo da EDD linear homogénea associada.
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J4 a integral particular € uma solug@o particular da EDD linear. Assim a solugdo geral € igual SC
+ IP.

Exemplo: Para resolver a, 12 — 5a,+1 + 6a, = 5" temos que

A equagio caracteristica da equacdo homogénea é x> — 5x+6 =0

n

Asraizes sio 2 e 3, SC =c¢12"+ 3" e IP = %
Portanto, a solucdo geral € a, = gn +c12" + 23", Nem sempre € simples achar uma IP para
uma equagdo em questdo. Porém existem alguns métodos para isso que podem ser encontrados
em Richardson (1954) e Boole (1860).

Realmente, o Cdlculo Discreto é bem semelhante ao Calculo Diferencial Integral.
No entanto, € necessario perceber também suas diferencas como foi notado nesse trabalho.
Vimos como os somatdrios sdo resolvidos usando as técnicas utilizadas nas integrais. Da mesma

forma, as equagdes discretas foram vistas e podem ser resolvidas da mesma maneira que EDO e

recorréncias.
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5 CONSIDERACOES FINAIS

Contar e somar fascinou o homem ao longo do tempo. Contar seus préprios pertences
ou objetos a sua frente, somar o dinheiro que tem. O objetivo sempre foi ter um resultado final,
um valor que expressasse uma quantidade total, um nimero. Adicionar nimeros e calcular dreas
de maneira geral também intrigava principalmente os matemadticos, especificamente quando
essas somas tornavam-se grandes e complexas. Nao precisava ter uma aplicagdo no cotidiano,
bastava um desafio, um tipo de quebra-cabeca. Nao € a toa que isso atraiu e ainda atrai as pessoas
para a matemadtica atualmente.

Por exemplo, calcular 1 42+ 3 +---+ 100 pode parecer de imediato algo mecanico
ou enfadonho, mas a empolgacdo esteve em tentar achar a maneira que facilitasse o cdlculo, um
padrdo de generalizacdo. No caso citado, a forma foi perceber que 1 +100 =2+99 =3498 =
-+-=50451 =101, que € a ideia atribuida a Gauss e também € usada para soma da P.A. Assim,
concluimos que o valor da soma foi 101 -50 = 5050. A ideia € transladar o problema que ainda
nao se conhece uma solugd@o para um caso em que ja se sabe como resolver. Isso torna o processo
pratico e motivador. Isso também nos impulsionou a pesquisar mais sobre o assunto. Também
nos motivou pelo tema, o pouco conhecimento sobre o tema e as dificuldades adquiridas no
inicio da graduacgdo, pois ao ingressar ao curso com pouco preparo matemdatico se tornou mais
complicado o desenvolvimento sem a devida ajuda e orientacao.

Ao se conhecer o Cdlculo Diferencial e Integral, buscou-se aprofundamento nos
estudos de somas de areas e volumes, principalmente no contexto do Continuo. Mas ainda
precisou-se de algo a mais para se calcular somatérios. E assim que entrou o Célculo Discreto,
pois ele que faz o elo entre somatdrios e as derivadas e integrais. Ainda mais, pudemos adaptar
as férmulas do Célculo Tradicional para o Célculo Discreto. Ou seja, basicamente reduzimos
o problema de calcular somatoérios, que ha diversos métodos diferentes, as técnicas basicas de
se calcular uma integral. Assim, um estudante de Calculo, que familiarizado com o assunto, vé
grande semelhanca entre o Calculo Discreto e Tradicional. J4, para os ndo familiarizados com o
tema, como por exemplo, os alunos do ensino médio, também ndo hé preocupagao, pois basta ter
um breve conhecimento sobre sequéncias para 0 acompanhamento do texto.

A partir de tudo isso, foi tracado um objetivo que foi, com essas ferramentas, calcular
os somatdrios, ou seja, achar uma férmula geral que usasse apenas operacdes elementares. Assim,
surgiu a necessidade de conhecer derivada e integral discreta e, com elas as suas propriedades e

teoremas relacionados.
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Para alcancar tal meta, comecamos uma pesquisa bibliografica, e verificamos que
havia pouco material em lingua portuguesa no Brasil sobre o assunto. Ja de imediato, também
houve a preocupacdo de deixar o texto acessivel, claro e objetivo para todos aqueles que tem um
conhecimento basico de matemadtica. O que parecia ser um obstdculo tornou-se um favorecimento,
pois uma vez concluido o trabalho, espera-se que o0 mesmo seja uma boa contribui¢do ao Célculo
Discreto para este idioma.

Uma das dificuldades enfrentadas ao longo dessa pesquisa foi o pouco material em
portugués sobre o Calculo Discreto, pois a maioria dos livros encontrados abordava apenas
alguns topicos de maneira bem objetiva e suscinta. Por isso, recorremos também a autores de
lingua inglesa, em que foi necessdria a traducao desses materiais. Também o texto foi produzido
na plataforma IATEX, assim tivemos o esfor¢o e o empenho para a formatacao do mesmo.

Apesar de haver referéncias externas, o texto € autocontido no geral. Assim, ndao
ha necessidade inicialmente de fontes exteriores para a compreensao, pois dentro do trabalho
houve toda uma construcao das ferramentas e métodos a serem usados. Pois, comegamos pelo
conceito de sequéncia e em seguida pelos somatoérios, onde foram dadas varias propriedades.
Ap0s isso, demonstramos varios resultados sobre derivadas discretas que foram a base para a
teoria. No capitulo de integral foi feito um paralelo do somatério com a integral discreta e assim
conseguimos a concretizacio dos objetivos tragados. Ainda fomos um pouco mais além, porque,
a principio, ndo estava prevista a secao de Equacdes Diferenciais Discretas.

Contudo, esperamos que esse texto possa ajudar na pesquisa e no estudo de Calculo
e Matematica Discreta e possa servir de referéncia a muitos outros que serdao produzidos. Este
estudo pode ser usado principalmente como curso complementar ao Calculo Diferencial e
Integral ou Andlise Matematica ou um aprofundamento ao assunto de progressdes. Esperamos
também que haja continuidade e um detalhamento dos tépicos abordados nessa pesquisa, seja
por nossa parte ou por terceiros, pois ha muito o que ser explorado sobre o tema, como por
exemplo, Geometria Discreta. Esperamos que os estudantes, ndo s6 de Matemadtica, mas também
de Fisica, Computacgdo, Estatistica e das Engenharias, bem como professores de Matematica e
estusiastas no geral, possam utilizar esse texto como instrumento e auxilio nas suas atividades
relacionadas ao tema.

Por fim, mesmo em meio as dificuldades e obstdculos enfrentados, para nés é
uma grande satisfacdo ter aprendido um assunto tdo fantdstico, mas pouco conhecido, e poder
contribuir com 0 mesmo na reunido e na divulgacao desses contetidos que resultaram nesse

estudo.
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