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RESUMO

O Cálculo Discreto, também chamado Cálculo de Diferenças Finitas, trabalha diretamente com

sequências e somatórios. O primeiro contato com esse assunto aparece nas primeiras séries na

educação básica com a sequência dos números naturais. Ao longo do tempo as contagens e as

somas vão ficando mais trabalhosas. No entanto, a matemática vem auxiliar e facilitar essas

operações. No ensino médio, há as progressões aritmética e geométricas que aprofundam mais

o conhecimento do assunto. Na graduação, tem-se o Cálculo Diferencial e Integral (Cálculo

Tradicional) que nos fornece a derivada e integral como ferramentas para o estudo de funções.

Todavia, esse trabalho pretende fazer algo semelhante, porém os objetos a serem analisados

são as sequências e os somatórios. Para isso, são construídas e desenvolvidas as ferramentas:

derivada discreta e integral discreta para calcular esses somatórios. Assim, foi feita uma pesquisa

bibliográfica em que se investiga os principais resultados do Cálculo Discreto, se verifica uma

analogia com o Cálculo Tradicional e se espera aplicar tais técnicas nas resoluções de somatórios.

Palavras-chave: Sequências. Somatórios. Cálculo Discreto. Cálculo de Diferenças Finitas.



ABSTRACT

The Discrete Calculus, also called Calculus of Finites Differences, work directly with sequence

and sums. The first contact with this subject shows up in the first years of the primary and

secondary education with the sequence of natural numbers. Throughout the time, counting and

sums become very hard. However, the Mathematics comes to assist and to ease these operations.

In High School, there are arithmetic and geometric progression which deepen the knowledge of

a subject. In college, there is the Differential and Integral Calculus (traditional calculus) which

give us the derivative and integral as tools for the study of functions. Nevertheless, this study

intends to do something similar, but the analyzed objects are the sequences and sums. For this, it

was built and developed the tools discrete derivative and integral for calculate the sums. Then, it

was done a bibliographic research in which investigate the mains results of Discrete Calculus,

checks analogy with Traditional Calculus and it is expected to aplly such techniques in sums

resolutions.

Keywords: Sequences. Sums. Discrete Calculus. Differences Finite Calculus.
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1 INTRODUÇÃO

Somar e contar foram tarefas importantes para o ser humano. Ao longo da história

essa atividade foi ficando cada vez mais complexa. No entanto, o homem sempre veio desenvol-

vendo técnicas que o ajudasse nesse trabalho. De fato, a Matemática veio para facilitar a vida do

homem. Com o crescimento do conhecimento matemático, vários ramos foram criados para dar

suporte ao que diz respeito a contar e somar.

Segundo Morgado e Carvalho (2013), realizar uma contagem nada mais é que

enumerar, fazer uma lista dos objetos a serem contados. Usando conceitos matemáticos, contar

é identificar objetos com os números do conjunto {1, 2, 3, ..., n, ...}, onde n será a quantidade

de objetos. Da mesma forma, somar é juntar todos os objetos para depois assim contá-los.

Pode parecer algo simples e mecânico, mas a história mostrou que isso sempre fascinou a todos

aqueles que o faziam, principalmente quando as contagens e as somas eram complicadas.

Segundo Renze e Wiessten (2002), o Cálculo Discreto é uma área de estudo da

Matemática Discreta, também chamada Matemática Finita, que estuda diversos tópicos relativos

aos números naturais e inteiros, como sequências, progressões e recorrências, matemática

financeira, combinatória, grafos, probabilidade e teoria dos números.

É nesse campo que temos o Cálculo Discreto, em que estudaremos as sequências e os

somatórios. Muitas vezes, também é chamado de Cálculo de Diferenças Finitas ou apenas Cálculo

Finito, pois essa área se firma no contexto finito, em que não se leva em consideração limites no

infinito, áreas ou variações em intervalos contínuos. Este texto também mostra como a relação

entre o Discreto e o Contínuo pode ser bonita, principalmente por serem conceitos distintos,

mas em alguns momentos apresentarem diversas semelhanças e ainda há muitas aplicações do

Cálculo Discreto na Ciência da Computação, Engenharias, Combinatória, Estatística e vários

outros campos.

Dessa forma, temos os estudos de funções, em que temos as ferramentas de limi-

tes, derivadas e integrais em que tudo é feito do ponto de vista do Contínuo, que diz respeito

a intervalos de números reais e o Cálculo Diferencial e Integral (ou Cálculo Tradicional) é

responsável por isso. O intuito desse trabalho é adaptar estas ferramentas citadas para o manuseio

prático de somatórios, os enxergando como integrais e em conjunto com o estudo de sequências,

ou seja, vamos desenvolver a derivada e integral discreta para conhecer o comportamento de

sequências.

Sequências e somatórios são muito importantes, porque eles são instrumentos básicos
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que estão presentes em toda matemática. No entanto, a notação ∑ de somatório parece dar medo

ou ser confusa, pois condensa muitos símbolos. Talvez isso aconteça por causa do desconheci-

mento e da falta de prática com esse assunto. Mas nesse texto conheceremos um pouco mais

sobre os somatórios e como manuseá-los.

Entretanto, teremos como embasamento teórico para o presente estudo os três

seguintes autores: Gleich (2005), Miller (1960) e Richardson (1954). Embora os três façam um

comparativo entre o Cálculo Diferencial e Integral com o Cálculo Discreto, o primeiro aborda

isso buscando calcular somatórios um pouco difíceis. O segundo e o terceiro basicamente trazem

a mesma abordagem, no entanto, Richardson (1954) é mais detalhista que Miller (1960).

O artigo de Gleich (2005) foca no cálculo de somatórios e no desenvolvimento

das ferramentas necessárias para isso. No texto, o autor começa falando da dificuldade dessa

operação através de exemplos e da importância dos somatórios nos dias de hoje. Depois ele

expõe as principais ferramentas do Cálculo Discreto: a derivada e a integral discreta. Dessa

forma, é feito um paralelo com o Cálculo Tradicional com suas devidas adaptações. (GLEICH,

2005).

Gleich (2005) define a derivada e integral discreta e um tipo de expressão de uso

frequente que é a potência modificada. Ele também demonstra alguns teoremas que são análogos

aos do Cálculo Tradicional e o teorema fundamental do Cálculo Discreto. O autor continua

o artigo falando sobre os números de Stirling1 de segundo tipo, que são necessários para a

transformação de potências comuns em somas de potências modificadas. Tópicos esses que

serão abordados nesse trabalho. Ele ainda dá um significado combinatório para tais números e

uma forma de calculá-los efetivamente. Adiante, são resolvidos alguns exemplos de somatórios,

usando todas as ferramentas desenvolvidas no artigo. (GLEICH, 2005).

Já Miller (1960), em seu livro, pretende apresentar de fato o Cálculo Discreto com

mais semelhanças ao Cálculo Tradicional. Dessa maneira, o autor faz as definições de derivada

discreta, potências modificadas (que também é chamada de polinômio fatorial), números de

Stirling de primeiro e segundo tipo e a fórmula de Newton2, sempre tendo em vista as versões

semelhante do Cálculo Tradicional. Em vários momentos, ele ilustra essas situações com

exemplos de funções e sequências.

Para os números de Stirling, Miller (1960) não dá um significado combinatório como

o primeiro autor, mas uma relação de recorrência para assim conseguir uma fórmula geral a

1 James Stirling (1692 - 1770): Matemático inglês e contemporâneo de Isaac Newton.
2 Sir Isaac Newton (1642 - 1727): Matemático inglês que deu grande contribuições para matemática, entre elas

está o desenvolvimento do Cálculo.
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partir da fórmula de Newton. Este autor chama integral discreta simplesmente de soma, prova

alguns teoremas análogos a integral tradicional e calcula várias somas de sequências já usadas

anteriormente. Ele ainda deixa diversos exercícios para o leitor aplicar as técnicas adquiridas.

(MILLER, 1960).

De maneira semelhante a Miller (1960), porém mais abrangente, Richardson (1954)

inicia seu livro de imediato falando sobre derivada discreta definindo primeira diferença, segunda

diferença etc., e a aplica nas principais sequências trabalhadas no texto. Assim são demonstrados

diversos teoremas relacionados e resolvidos alguns exemplos, chegando a definição de operador

diferença, em que o primeiro autor o chama de derivada discreta. Ele mostra diversas tabelas

com essas diferenças para ilustrar melhor o conceito de enésima diferença. (RICHARDSON,

1954).

Richardson (1954) também define a integral finita, que é integral discreta tratada

pelos demais autores. Ele também traz aplicações da integral finita no cálculo de somatórios,

com alguns métodos mais avançados de integração. Também são apresentados os números de

Stirling de primeiro e segundo tipo, relacionando-os com a integral finita. Praticamente em cada

tópico abordado, o autor propõe alguns exercícios. (RICHARDSON, 1954).

Contudo, esse trabalho se faz importante, pois traz consigo o conceito de Discreto,

que dentro da matemática, como mencionado anteriormente, tem outro significado além do usual.

Segundo Dossey (2001), o Discreto se ocupa de conjuntos enumeráveis e funções definidas

em tais conjuntos, diferente do Contínuo que está relacionado com intervalos de números reais.

Na educação básica, o contato que se tem com a matemática discreta é no estudo dos números

naturais, inteiros, racionais, sequências e progressões, análise combinatória, probabilidade,

estatística e matemática financeira.

Por isso, se faz necessário um estudo mais aprofundado nesse elemento aparente-

mente tão temível que é o somatório, pois pode ajudar também ao aluno do ensino médio que

tem dificuldade em entender, por exemplo, o assunto de progressões aritméticas e geométricas

(P.A’s e P.G’s) ou matemática financeira ou precisa calcular algum tipo de média que envolva

muitos valores ou usar algum tipo de medida estatística ou também manusear o binômio de

Newton, pois estes se utilizam dos conceitos de sequência e somatórios.

Ainda na escola regular, como já foi comentado, também é visto como se calcula a

soma dos termos de P.A’s e P.G’s, porém há diversos outros tipos de sequências e progressões em

que se é possível manuseá-las também, por exemplo, progressões aritméticas de ordem superior,

progressões aritmético-geométrica, recorrências lineares, etc. Alguns desses pontos são tratados
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em nossa pesquisa. O Cálculo Discreto é uma dessas ferramentas que auxilia nessa tarefa e mais,

tais ferramentas são análogas ao Cálculo Tradicional, facilitando bastante a tarefa.

Assim, um aluno que deseja se aprofundar no estudo de progressões e somatórios

pode se utilizar deste trabalho, mesmo sem conhecer o Cálculo Tradicional, pois não há pré-

requisitos que não sejam assuntos vistos no ensino médio. Ele também pode ser usado para a

pesquisa em Cálculo Discreto, pois são poucos e raros os livros e trabalhos em língua portuguesa

que tratam desse assunto de maneira objetiva e efetiva do ponto de vista estritamente matemático.

Em diversos cursos da graduação, ele também pode complementar o curso de Cálculo

Tradicional e auxiliar na disciplina de Análise Real, também na disciplina de Combinatória,

Probabilidade e Estatística, mais precisamente no estudo de sequências, somatórios e séries

(somatórios infinitos). Ainda esse trabalho pode ser estendido no estudo e aprofundamento das

Equações Diferenciais Discretas.

Em virtude disso, o objetivo principal desse trabalho é conhecer o conceito de

discreto a partir do desenvolvimento de técnicas semelhantes do Cálculo Diferencial e Integral,

estendendo alguns teoremas para o Cálculo Discreto. Assim, os objetivos específicos são: a)

Descrever sequências e somatórios e seus principais exemplos e propriedades; b) Reconhecer

a derivada discreta e integral discreta como semelhantes a derivada e integral tradicional e

manuseá-los; c) Calcular fórmula geral para os somatórios, usando as ferramentas apresentadas

nesse trabalho.

Para concretizarmos esses objetivos, traçamos um método, uma metodologia que nos

leve à realização do que é proposto. Segundo o minidicionário da língua portuguesa, metodologia

significa: “Tratado dos métodos; arte de dirigir o espírito da investigação da verdade; orientação

para o ensino de uma disciplina” (BUENO, 2007, p. 510). Podemos entender que metodologia é

a ciência que estuda os métodos, que estuda os caminhos de uma investigação e os meios para se

chegar em um fim. Assim, esse estudo também tem como finalidade desenvolver métodos de

calcular somas. Por isso de certo modo, este texto pode ser considerado como uma metodologia,

um estudo da forma de como se resolver somatórios.

A metodologia usada é a pesquisa descritiva, em que abordamos e detalhamos as

ferramentas do Cálculo Discreto, na qual fazemos também um comparativo, verificando as

semelhanças com Cálculo convencional. Este trabalho é de natureza teórica, em que fazemos,

segundo Lakatos e Marconi (2003), uma síntese de conhecimento e apresentamos conceitos em

conjuntos com a teoria. É também qualitativa, pois, para Prodanov e Freitas (2013), analisamos

e descrevemos o fenômeno e o que ele significa, para assim se ter um melhor entendimento.
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O conceito Discreto está ao longo de todo texto, por isso foi feita uma pesquisa sobre

esse conceito e alguns tópicos relacionados, principalmente no que diz respeito às sequências

e somatórios. Dessa forma, chegamos ao ponto principal desse trabalho em que tomamos a

pergunta diretriz: como calcular somatórios de maneira efetiva, usando ferramentas análogas

do Cálculo Tradicional? Realizar somas sempre foi uma atividade comum para o cotidiano do

homem. Quando essas somas ficam maiores e complexas, se recorre de fato a matemática e suas

técnicas que visam dar uma solução ao problema.

O Cálculo Diferencial e Integral dá essa resposta, mas apenas no contexto Contínuo,

pois as integrais calculam somas contínuas (áreas e volumes). O que esse trabalho quer propor é

uma solução para o problema no contexto Discreto. Assim, para cumprir os objetivos propostos,

apresentamos um estudo sistemático das derivadas e integrais discretas com suas propriedades e

aplicações que são fundamentais para responder à pergunta norteadora.

Fizemos uma pesquisa bibliográfica em que foram escolhidos os autores menciona-

dos anteriormente, com seus trabalhos em Cálculo Discreto e juntamos os principais tópicos

sobre o assunto, fazendo um copilado do que julgamos necessário para esse trabalho introdutório.

Assim, como já foi dito, o desenvolvimento desse texto será unicamente teórico, em que faremos

definições e demonstraremos teoremas. Há também diversos exemplos e aplicações para ilustrar

o assunto.

O trabalho tem três capítulos teóricos. No primeiro é introduzido os principais

objetos de estudos: sequências e somatórios. Nós demonstramos os principais resultados

elementares sobre o tema e tratamos de alguns exemplos e propriedades.

No capítulo seguinte, iniciamos de fato o Cálculo Discreto com a derivada discreta,

ferramenta essa que provém do Cálculo Tradicional. Construímos a teoria que é importante para

o próximo capítulo e demonstramos teoremas e aplicações, seguidos de exemplos importantes.

No último capítulo, vemos de fato como calcular somatórios, usando as técnicas

desenvolvidas, vendo principalmente a relação do somatório com a integral discreta definida.

Ainda temos um tópico relacionado às equações diferenciais discretas e a resolução de alguns

somatórios para concluir o trabalho.
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2 SEQUÊNCIAS E SOMATÓRIOS DE NÚMEROS REAIS

Ao contar uma coleção de objetos, estamos associando um número natural para

cada objeto contado, ou seja, se temos em uma caixa uma bola, um lápis, uma colher e um

tapete, seguramente se dirá que há 4 objetos na caixa. Nessa contagem foi feita a seguinte

correspondência: 1-bola, 2-lápis, 3-colher e 4-tapete. De maneira informal, essa associação

é o que chamamos de sequência e uma das primeiras sequências que se tem contato na vida

é a sequência dos números naturais (1,2,3,4,5,6, · · ·). Se em outra caixa há 4 lápis e foram

colocados outros 3 lápis, prontamente se dirá que, no total, há 7 lápis na caixa. A operação feita

foi 4+3= 7. Por isso, podemos concluir intuitivamente que a soma é a contagem do total dos

objetos juntos.

Neste capítulo, vamos abordar as principais ferramentas associadas ao processo de

contar e somar que são as sequências e somatórios, em que construimos os meios necessários

para calcular somatórios. Demonstramos também vários resultados em que utilizamos ao

longo do trabalho e que foram retirados dos trabalhos de Carneiro e Moreira (2002), Courant

e Robbins (2000), Gleich (2005), Hefez (2009), Miller (1960), Morgado (2013), Neto (2013)

e Richardson (1954). Falamos também sobre alguns tópicos relacionados às sequências e

somatórios, mostrando diversos exemplos para ilustrar e dar melhor compreensão ao assunto.

2.1 SEQUÊNCIAS DE NÚMEROS NATURAIS

Na matemática, uma sequência é, segundo Lima (2013), uma função a : N→ R

em que para cada número natural se associa um número real. Denota-se uma sequência por

(a1,a2,a3, · · · ,an, · · ·), enquanto que an é o n-ésimo termo ou o termo geral da sequência e o

índice n é chamado de variável independente. Observamos que an também se refere a própria

sequência.

Exemplo: (1,1,2,3,5,8, · · ·);

Exemplo: (2,4,8,16,32,64, · · ·).

No estudo de sequências em geral, assim como no de funções, há diversos tópicos

para se abordar. Contudo, os pontos com mais frequência a serem tratados relativos às sequências

são:

a) Achar uma fórmula para o termo geral, ou seja, "uma expressão matemática que

permita calcular sn a partir de n"(MORGADO; CARVALHO, 2013, p. 16), que

usa apenas operações elementares como, por exemplo, adição, multiplicação e
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potenciação;

b) Calcular também o termo geral da soma dos n primeiros termos (somatórios);

c) Verificar a convergência ou divergência.

No entanto, nossa abordagem é focada nos dois primeiros itens. Em particular,

buscamos por fórmulas gerais para os somatórios, utilizando derivadas e integrais discretas, que

serão temas dos capítulos 3 e 4, respectivamente. A seguir, apresentamos o princípio de indução,

que é usado com frequência nas demonstrações desse estudo.

2.1.1 Princípio de Indução Matemática e Sequências Recorrentes

Uma ferramenta importante referente a números naturais é o princípio de indução

finita ou também chamado indução matemática, em que "[...] é utilizada para demonstrar a

veracidade de um teorema matemático em uma sequência infinita [...]"(COURANT; ROBBINS,

2000, p. 11).

Segundo Morgado e Carvalho (2013), o princípio de indução é o seguinte:

Seja P(n) uma propriedade referente ao número natural n. Se

i) P(1) é verdadeira;

ii) Para todo k ∈ N, a veracidade de P(k) implica na veracidade de P(k+1).

Então, P(n) é verdadeira para todo n ∈ N.

Observação: P(k) também é chamada de hipótese de indução.

Vejamos um exemplo retirado de Courant e Robbins (2000).

Vamos demonstrar por indução que 12+22+32+ · · ·+n2 =
n · (n+1) · (2n+1)

6
.

Seja P(n) : 12+22+32+ · · ·+n2 =
n · (n+1) · (2n+1)

6
.

i) P(1) é verdadeiro, pois 12 = 1=
1 · (1+1) · (2 ·1+1)

6
=

2 ·3
6

;

ii) Vamos supor que P(k) é verdadeira para algum k ∈ N então temos:

12+22+32+ · · ·+ k2 =
k · (k+1) · (2k+1)

6
.

Para ver que P(k + 1) também é verdadeira, somamos (k + 1)2 em ambos os membros da

expressão anterior. Dessa maneira, teremos:

12+22+32+ · · ·+ k2+(k+1)2 =
k · (k+1) · (2k+1)

6
+(k+1)2.

Fatorando o segundo membro
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k · (k+1) · (2k+1)
6

+(k+1)2 =(k+1) ·

[
k · (2k+1)+6 · (k+1)

6

]

=
(k+1) · (2k2+7k+6)

6
=

=
(k+1) · (2k2+7k+6)

6
=

(k+1) · (k+2) · (2k+3)
6

=
(k+1) · [(k+1)+1] · [2 · (k+1)+1]

6
.

Assim fica provado que P(k+1) é verdadeiro e pelo princípio de indução fica demonstrado a

igualdade. �

Em alguns momentos deste trabalho, escrevemos � para simbolizar que foi concluída

a demonstração. Também vamos fazer uso de somas e produtos telescópicos, pois construimos

uma técnica muito útil no cálculo de somas e produtos, que, segundo Neto (2013), encurta a

soma e o produto devido aos cancelamentos, por isso, vamos defini-los.

Segundo Neto (2013), chama-se soma telescópica a seguinte expressão a2− a1+

a3− a2 + a4− a3 + · · ·+ an−1− an−2 + an− an−1 com an sendo uma sequência. De modo

análogo, o produtório telescópico fica definido como
a2

a1
·

a3

a2
·

a4

a3
· ... ·

an−1

an−2
·

an

an−1
, com an sendo

uma sequência de termos não nulos. A seguir, temos duas proposições importantes retirada de

Neto (2013), a respeito de somatório e produtórios telescópicos, pois são usadas em diversas

demonstrações ao longo do trabalho.

Proposição 1: Seja an uma sequência, então

a2−a1+a3−a2+ · · ·+an−an−1+an+1−an = an+1−a1 ∀ ∈ N.

A demonstração é por indução

Seja P(n) : a2−a1+a3−a2+ · · ·+an−an+1+an+1−an = an+1−a1.

Vemos que P(1) é verdadeira, pois a2−a1 = a1+1−a1.

Se P(k) é verdadeira para algum k ∈ N, então vamos verificar P(k+1) também verdadeira.

a2−a1+a3−a2+ · · ·+ak+1−ak = ak+1−a1.

Somaremos a igualdade anterior em ambos os membros ak+2−ak+1.

a2−a1+a3−a2+ · · ·+ak+1−ak +ak+2−ak+1 = ak+1−a1+ak+2−ak+1.

Dessa forma obtemos a expressão P(k+1).

a2−a1+a3−a2+ · · ·+ak+1−ak +ak+2−ak+1 = ak+2−a1.

Assim verificamos a validade de P(k+1) e pelo princípio de indução P(n) é verdadeiro ∀n ∈ N

e fica demonstrado o teorema. �

Proposição 2: Se an é uma sequência de termos não nulos, então
a2

a1
·

a3

a2
·

a4

a3
· ... ·

an+1

an
=

an+1

a1
.

Demonstração:

Procedemos de modo semelhante a demonstração anterior.

Seja P(n):
a2

a1
·

a3

a2
· ... ·

an+1

an
=

an+1

a1
.
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Verificando P(1), temos
a1+1

a1
=

a2

a1
, logo P(1) é verdadeira.

Supondo que P(k) é válida para algum k, vamos verificar a validade de P(k+1):

a2

a1
·

a3

a2
· ... ·

ak+1

ak

=
ak+1

a1
.

Multiplicamos ambos os membros da expressão anterior por
ak+2

ak+1
, temos

a2

a1
·

a3

a2
· ... ·

ak+1

ak

·
ak+2

ak+1
=

ak+1

a1
·

ak+2

ak+1
=

ak+2

a1
⇒ P(k+1) verdadeiro.

Dessa maneira, pelo princípio de indução P(n) é verdadeiro para todo n natural e assim conclui-

mos a demonstração. �

Segundo Neto et al. (2009), muitas vezes uma sequência vem definida em forma de

recorrência, em que é dado o primeiro ou os primeiros termos e o termo geral é uma expressão

que depende do termo anterior ou dos termos anteriores, respectivamente.

Por exemplo: a1 = 7 e an = an−1+4, para n > 1

Dessa forma temos

a2 = 7+4= 11

a3 = 11+4= 15

a4 = 15+4= 19
...

Assim a sequência é (7,11,15,19, · · ·). O tópico de recorrência é tratado novamente

no capítulo de integral e equações diferenciais discretas. Na próxima seção, tratamos de alguns

dos principais tipos de sequências.

2.2 SEQUÊNCIAS E PROGRESSÕES

Na vida contidiana, diversos fenômenos variam regularmente segundo uma constante.

Por exemplo, o tempo a cada segundo, os juros de um banco que crescem ou decrescem ao

dia, mês ou ano, o crescimento populacional ao longo do ano, etc. Na matemática, esses

fenômemos são descritos por sequências, mais precisamente por progressões. No Ensino Médio,

são estudadas as progressões aritméticas (P.A.) e geométricas (P.G.), em que detalhamos cada

uma delas agora.
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2.2.1 Progressão Aritmética

Segundo Morgado e Carvalho (2013), uma P.A. é uma sequência, em que a diferença

de cada termo com o termo anterior é constante e essa constante é chamada de razão, denotada

por r. Ou seja, an+1−an = r. Uma P.A. que tem a razão igual a zero é chamada de PA constante.

Para verificar que a fórmula do termo geral é an = a1+(n−1) · r, vamos escrever a

expressão que define uma P.A. an+1−an = r para os valores de 1 até n.

a2−a1 = r

a3−a2 = r

...

an−1−an−2 = r

an−an−1 = r

Somando as igualdades, temos a seguinte soma telescópica:

(a2−a1)+(a3−a2)+ · · ·+(an−1−an−2)+(an−an−1) = (n−1) · r

Assim obtemos an−a1 = (n−1) · r⇒ an = a1+(n−1) · r

Exemplo: Para calcular o termo geral do exemplo anterior (7,11,15,19, · · ·), temos que a1 = 7

e an−an−1 = r = 4

an = a1+(n−1) · r⇒ an = 7+(n−1) ·4⇒ an = 4n+3.

Da mesma forma, para calcular a soma Sn dos n primeiros termos usamos basica-

mente a ideia de Gauss1, que é a mesma usada nos livros do ensino médio para encontrarmos

que Sn =
(a1+an) ·n

2
.

Seja Sn = a1+a2+a3+ · · ·+an−2+an−1+an.

Escrevendo a soma dos termos na ordem contrária, o valor de Sn não mudará.

Sn = an +an−1+an−2+ · · ·+a3+a2+a1.

Agora somaremos as duas equações, então

2Sn = (a1+an)+(a2+an−1)+(a3+an−2)+ · · ·+(an−2+a3)+(an−1+a2)+(an +a1).

Usando a fórmula do termo geral, obtemos

an +a1 = a1+an = a1+a1+(n−1) · r = 2a1+nr− r

an−1+a2 = a2+an−1 = a1+ r+a1+(n−2) · r = 2a1+nr− r

an−2+a3 = a3+an−2 = a1+2r+a1+(n−3) · r = 2a1+nr− r

...

Dessa forma, cada parcela nos parênteses é igual a a1+an

1 Carl Friedrich Gauss (1777 - 1855): um dos maiores matemáticos de todos os tempos, considerado o príncipe da
Matemática
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2Sn = (a1+an)+(a1+an)+ · · ·+(a1+an), com n parcelas

2Sn = (a1+an) ·n⇒ Sn =
(a1+an) ·n

2
. Assim, chegamos a fórmula desejada. Agora vejamos

um exemplo.

Vamos calcular a soma dos n primeiros termos da sequência (7,11,15,19, · · ·).

Pelo exemplo anterior, temos que a1 = 7 e an = 4n+3, então:

Sn =
(a1+an) ·n

2
=

(7+4n+3) ·n
2

⇒ Sn = 2n2+5n

No entanto, voltando as deduções dessas fórmulas relacionadas a P.A., alguém pode

se perguntar: o que acontece de fato nas reticências dessas somas? Isso pode gerar dúvidas,

porque esses métodos são um tanto quanto intuitivos. Por isso, essas fórmulas necessitam de

demonstrações rigorosas e assim vamos fazê-las pelo princípio de indução a seguir.

Demonstração da fórmula do termo geral de uma P.A.

Seja a seguinte propriedade P(n) : an = a1+(n−1).r.

Vejamos que a1 = a1+(1−1).r = a1. Logo P(1) é verdadeiro.

Para algum k ∈ N, vamos supor que P(k) seja verdadeira.

ak = a1+(k−1).r.

Vamos provar que P(k+1) também é verdadeiro. Assim temos pela definição de P.A.

ak+1−ak = r⇒ ak+1 = ak + r.

Usando a hipótese de indução, temos

ak+1 = ak + r = a1+(k−1).r+ r = a1+[(k+1)−1].r = a1+ k.r .

Dessa maneira P(k+1) é verdadeiro e pelo princípio de indução P(n) é verdadeiro para todo n

natural. �

Demonstração da fórmula da soma dos n primeiros termos de uma P.A.

Seja P(n) : a1+a2+ · · ·+an =
(a1+an) ·n

2
.

Para P(1), temos S1 =
(a1+a1) ·1

2
= a1. Logo P(1) é verdadeira.

Agora vamos supor que P(k) seja verdadeira para algum k ∈ N, assim

a1+a2+ · · ·+ak =
(a1+ak) · k

2
.

Para provar a validez de P(k+1), vamos somar ak+1 em ambos os membros
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(a1+a2+ · · ·+ak)+ak+1
︸ ︷︷ ︸

Sk+1

=
(a1+ak) · k

2
+ak+1.

Organizando e fatorando o segundo membro, temos
(a1+ak) · k

2
+ak+1 =

(a1+ak) · k+2ak+1

2
=

(a1+ak) · k+a1+ kr+ak+1

2
=

=
(a1+ak + r) · k+a1+ak+1

2
=

(a1+ak+1) · k+a1+ak+1

2
=

(a1+ak+1) · (k+1)
2

. Dessa forma

provamos que P(k+ 1) é verdadeira. Portanto, pelo princípio de indução P(n) é verdadeira

∀n ∈ N. �

Vale salientar que uma P.A. também é escrita como an = c+b ·n, em que c = a1− r

e b = r, ou seja, é um polinômio de grau 1 em n. No próximo capítulo tratamos mais desse

assunto de maneira mais geral.

2.2.2 Progressão Geométrica

Segundo Morgado e Carvalho (2013), uma P.G. é uma sequência, em que o quociente

da divisão de cada termo com o anterior é constante, sendo chamada de razão, indicada por q.

Ou seja, an+1/an = q. Se q = 1, a P.G. é dita constante.

Para chegarmos a fórmula do termo geral an = a1 · q
n−1 da P.G., procedemos de

maneira análoga que na P.A.

Escrevemos a expressão que define a P.G.
an+1

an
= q para valores de 1 até n.

a2

a1
= q,

a3

a2
= q, · · · ,

an−1

an−2
= q,

an

an−1
= q.

Multiplicando as igualdades obtemos, o seguinte produto telescópico:
a2

a1
·

a3

a2
· ... ·

an−1

an−2
·

an

an−1
= qn−1⇒

an

a1
= qn−1⇒ an = a1 ·q

n−1.

Exemplo: Seja uma PG (3,15,45,225, · · ·). Vamos encontrar o termo geral.

a1 = 3 e q =
15
3

=
45
15

= 5. Como an = a1 ·q
n−1 Então an = 3 ·5n−1.

Vamos também deduzir que a soma dos n primeiros termos é Sn =
a1 · (q

n−1)
q−1

, para

q 6= 1. Seja Sn = a1+a2+a3+ · · ·+an−1+an.

Usamos a fórmula geral para cada parcela do segundo membro.

Sn = a1+a1 ·q+a1 ·q
2+ · · ·+a1 ·q

n−2+a1 ·q
n−1.

Pondo a1 em evidência, multiplicamos o segundo membro por
q−1
q−1

, pois q 6= 1.

Sn = a1 · (1+q+q2+ · · ·+qn−2+qn−1) ·
q−1
q−1

⇒
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⇒ Sn = a1 ·
(q−1+q2−q+q3−q−2+ · · ·+qn−1−qn−2+qn−qn−1)

q−1
.

Fazendo os devidos cancelamentos dessa soma telescópica, obtemos a igualdade desejada

Sn =
a1 · (q

n−1)
q−1

.

Agora vejamos um exemplo. Vamos calcular a soma dos n primeiros termos do exemplo anterior.

Temos a1 = 3 e q = 5, então Sn = 3 ·
(5n−1)
5−1

⇒ Sn =
3 ·5n

4
−

3
4
.

Como mencionado anteriormente, as duas fórmulas da P.G. requerem também uma

demonstração rigorosa pelo princípio de indução, assim como foi feito da mesma maneira que as

fórmulas da P.A. Por isso, fazemos essas demonstrações a seguir.

Demonstração da fórmula do termo geral da P.G.

Seja P(n) : an = a1 ·q
n−1.

P(1) é verdadeiro, pois a1 = a1 ·q
1−1 = a1.

Vamos supor que P(k) seja verdadeiro para algum k ∈ N, assim temos

ak = a1 ·q
k−1.

Vamos provar que P(k+1) também é verdadeiro. Pela definição de P.G. temos
ak+1

ak

= q⇒ ak+1 = ak ·q.

Usando a hipótese de indução, obtemos

ak+1 = ak ·q = a1 ·q
k−1 ·q = a1 ·q

k ⇒ ak+1 = a1 ·q
k.

Logo P(k+1) também é verdadeiro e pelo princípio de indução P(n) é verdadeiro para todo

n ∈ N.

Demonstração da fórmula da soma da P.G.

Seja P(n) : Sn =
a1 · (q

n−1)
q−1

.

Vejamos que P(1) é verdadeiro, pois S1 =
a1 · (q

1−1)
q−1

= a1.

Supondo que para algum k ∈ N, P(k) é verdadeira.

Sk =
a1(q

k−1)
q−1

.

Vamos provar que P(k+1) também o é. Dessa forma, temos

Sk+1 = ak+1+Sk = a1 ·q
k +

a1 · (q
k−1)

q−1
= a1 ·

(

qk +
qk−1
q−1

)

= a1 ·

(
qk+1−qk +qk−1

q−1

)

.

Dai resulta

Sk+1 =
a1 · (q

k+1−1)
q−1

.
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Assim provamos que P(k+1) é verdadeiro e pelo princípio de indução P(n) é verdadeiro para

todo n ∈ N. �

Vistas as progressões aritméticas e geométricas, vemos agora uma proposição,

retirada de Neto et al. (2009), em que se relaciona estes dois tipos de sequências.

Proposição 3: Uma sequência an é uma P.G. de termos positivos se, somente se a sequência

bn = logan é uma P.A., com r = logq, em que esse logaritmo está em uma base qualquer.

Demonstração:

an é P.G.⇔ an = a1 ·q
n−1⇔ logan = log(a1 ·q

n−1)⇔ logan = loga1+ logqn−1⇔

⇔ logan = loga1+(n−1) · logq⇔ bn = b1+(n−1) · r⇔ bn é P.A., com r = logq �

Continuando no assunto de progressão aritmética, definimos, segundo Morgado e

Carvalho (2013), uma P.A. de segunda ordem como uma sequência an onde a razão an+1−an

geram uma P.A. não-constante ∀ n ∈ N, que também é chamada de P.A. de ordem 1.

Exemplo: (1,3,6,10, · · · ,(n+1) ·n/2).

a2−a1 = 3−1= 2;

a3−a4 = 6−3= 3;

a4−a5 = 10−6= 4;
...

an+1−an =
(n+2) · (n+1)

2
−

(n+1) ·n
2

=
n+1
2
· (n+2−n) = n+1.

De modo geral, definimos indutivamente uma P.A de ordem k como sendo uma

sequência onde as razões an+1−an geram uma P.A de ordem k−1 ∀ n∈N. Outro exemplo usado

com frequência nesse estudo são as potências do números naturais nk, com k sendo um natural

fixo. Dessa forma, (1,4,9, · · · ,n2, · · ·) e (1,8,27, · · · ,n3, · · ·), generalizando, an = (c+ bn)k,

com c e b ∈ N, são P.A’s de ordem 2, 3 e k, respectivamente.

Existem outros tipos de progressões como, por exemplo, a progressão aritmético-geo-

métrica (P.A.G.), que é uma sequência que tem por termo geral an = [a1+(n−1) · r] ·qn−1, com

q 6= 1 e r 6= 0. Também temos a progressão geométrico-aritmética (P.G.A.), cujo termo geral é

an = a1 ·q
n−1+(n−1) · r, com q 6= 1 e r 6= 0. Já uma sequência aritmético-geométrica (S.A.G.)

satisfaz a seguinte relação an = q ·an−1+ r, com r 6= 0 e q 6= 1. A progressão harmônica (P.H.) é

uma sequência (a1,a2, · · · ,an) com todos os termos diferentes de zero em que

(
1
a1

,
1
a2

, · · · ,
1
an

)

forma uma progressão aritmética. Para maiores informações, consulte Carneiro e Moreira (2002),

Paiva (2010) e Neto et al. (2009). Agora concluimos a seção com mais um tipo de sequência

que é utilizada bastante nesse texto: as potências modificadas.
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2.2.3 Potências Modificadas

Segundo Gleich (2005), chama-se uma potência modificada a seguinte expressão

nk = n · (n−1) · (n−2) · ... · (n−k+1). A potência modificada é também chamada de polinômio

fatorial e é denotado por n(k). De maneira geral, temos:

(a+bn)(k) = (a+bn) · [a+b · (n−1)] · [a+b · (n−2)] · ... · [(a+b · (n− k+1)]

Exemplos:

8(5) = 8 ·7 ·6 ·5 ·4= 6720; n(3) = n · (n−1) · (n−2); 3(5) = 3.2.1.0.(−1) = 0;

(6+3n)(4) = (6+3n) · [6+3 · (n−1)] · [6+3 · (n−2)] · [6+3 · (n−3)]

= (6+3n) · (3+3n) · (3n) · (−3+3n).

Apresentamos uma relação entre as potências modificadas e os números binomiais, que é usada

no próximo capítulo.

n(k)

k!
=

(
n

k

)

Entretanto, segundo Richardson (1954), existe um outro tipo de potência modificada

e definimos por n[k] = n · (n+1) · (n+2) · ... · (n+ k−1). A forma geral fica definido como:

(a+bn)[k] = (a+bn) · [a+b · (n+1)] · [a+b · (n+2)] · ... · [a+b · (n+ k−1)]

Exemplos:

5[4] = 5 ·6 ·7 ·8= 1680

(6+3n)[3] = (6+3n) · [6+3 · (n+1)] · [6+3 · (n+2)] = (6+3n) · (9+3n) · (12+3n)

Fica definido também as potências modificadas com expoente nulo como

(a+bn)(0) = (a+bn)|0| = 1

Para potências modificadas com expoente negativo, definimos

(a+bn)(−k) =
1

(a+bn)[k]

Exemplos

n(−k) =
1

n[k]
=

1
n · (n+1) · ... · (n+ k−1)

;

4(−3) =
1

4[3]
=

1
4 ·5 ·6

=
1

120
;

(3+2n)(−2) =
1

(3+2n)[2]
=

1
(3+2n) · [3+2 · (n+1)]

=
1

(3+2n) · (5+2n)
.
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2.3 SOMATÓRIOS DE NÚMEROS REAIS

Ao tratarmos sobre progressões na seção anterior, calculamos algumas somas, princi-

palmente a soma dos n primeiros termos. Nessa seção, aprofundaremos mais sobre esse assunto

e algumas propriedades dessas somas.

Segundo Hefez (2009), para denotar a soma a1+ a2+ · · ·+ an, em que an é uma

sequência, usa-se esse símbolo ∑ (sigma maiúsculo) em que chamamos de somatório. Dessa

forma temos

n

∑
k=1

ak = a1+a2+ · · ·+an

em que k é chamado de índice ou variável indexadora, ak é chamado de somando ou termo geral

e k = 1 e n são os limites inferiores e superiores, respectivamente. Outra notação: ∑
1≤k≤n

ak. Vale

ressaltar também que somatórios podem ser definidos também pela recorrência:

n+1

∑
k=1

ak = ak+1+
n

∑
k=1

ak

Podemos observar também que, segundo Neto (2013), temos uma notação para o

produto a1 ·a2 · ... ·an, com an sendo uma sequência. Usamos o símbolo ∏ (pi maiúsculo) para o

produto desses elementos, o chamamos de produtório e denotamos da seguinte forma

n

∏
k=1

ak = a1 ·a2 · ... ·an

Para Graham, Knuth e Patashnik (1995), o uso de reticências para somas (respec-

tivamente produtos) pode ser ambíguo ou confuso. Por isso, nesse estudo é feito uso da letra

grega para somatório (respectivamente produtório) para simplificar a notação e deixar claro o

que deve ser somado (respectivamente multiplicado) e para Neto (2013), o somatório é útil para

cancelamento em somas, principalmente em somas telescópicas.

Por exemplo: Para somar os 10 primeiros termos da P.A. (7,11,15, · · ·), temos que a1 = 7, r = 4

e ak = 4k+3 e o décimo termo é a10 = 43 e usando a notação de somatório, temos

10

∑
k=1

(4k+3) = 7+11+15+ · · ·+43

Com a fórmula da soma da P.A., resulta
10

∑
k=1

(4k + 3) =
(7+43) ·10

2
= 250. Os somatórios

possuem várias propriedades. Adiante, enunciamos e demonstramos algumas delas retiradas de

Hefez (2009) e Neto (2013), na qual tem uso frequente nesse texto.
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2.3.1 Algumas propriedades dos somatórios de números reais

Sejam ak e bk sequências, então

i)
n

∑
k=1

(ak +bk) =
n

∑
k=1

ak +
n

∑
k=1

bk

Vale ressaltar aqui que
n

∑
k=1

(ak + bk) = (a1+ b1)+ (a2+ b2)+ · · ·+(an + bn), assim o que a

propriedade nos diz é que podemos reagrupar os elementos a ser somado de várias maneiras e o

valor da soma não mudará. Vamos demonstrar por indução

Seja P(n) :
n

∑
k=1

(ak +bk) =
n

∑
k=1

ak +
n

∑
k=1

bk

Vejamos que P(1) é verdadeiro, pois
1

∑
k=1

(ak +bk) = a1+b1 =
1

∑
k=1

ak +
1

∑
k=1

bk

Dessa maneira, se P(n) é verdadeira para algum n ∈ N, vamos provar que P(n+1) também o é.
n

∑
k=1

(ak +bk) =
n

∑
k=1

ak +
n

∑
k=1

bk

Somaremos à expressão (an+1+bn+1) em ambos os membros e agruparemos da seguinte forma

(an+1+bn+1)+
n

∑
k=1

(ak +bk) = an+1+
n

∑
k=1

ak +bn+1+
n

∑
k=1

bk ⇒

⇒
n+1

∑
k=1

(ak +bk) =
n+1

∑
k=1

ak +
n+1

∑
k=1

bk

Assim que P(n+1) também é verdadeira. Logo, pelo princípio de indução, P(n) é verdadeiro

para todo n ∈ N. �

ii)
n

∑
k=1

(c ·ak) = c ·
n

∑
k=1

ak, com c ∈ R

Demonstração: Vamos provar novamente por indução

Seja P(n) :
n

∑
k=1

(c ·ak) = c ·
n

∑
k=1

ak

Para P(1) temos:
1

∑
k=1

(c ·ak) = c ·a1 = c ·
1

∑
k=1

ak. Portanto, P(1) é verdadeira.

Supondo que P(n) seja verdadeira para algum n natural, temos
n

∑
k=1

(c ·ak) = c ·
n

∑
k=1

ak

Para provar que P(n+1) também é verdadeira, somaremos c ·an+1 em ambos os membros da

igualdade anterior.

c ·an+1+
n

∑
k=1

(c ·ak) = (c ·an+1)+ c ·
n

∑
k=1

ak ⇒
n+1

∑
k=1

(c ·ak) = c ·
n+1

∑
k=1

ak

Chegamos assim a validez de P(n+1). Logo pelo princípio de indução, P(n) é verdadeira para

todo número natural.�

iii)
n

∑
k=1

(ak+1−ak) = an+1−a1
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Essa propriedade é a mesma soma telescópica que já foi provada na proposição 1.

iv)
n

∑
k=1

c = c ·n com c constante.

Demonstraremos também por indução

Seja P(n):
n

∑
k=1

c = c ·n

Vejamos que P(1) é verdadeira, porque
1

∑
k=1

c = c = c ·1

Se P(n) é verdadeira para algum n natural, vamos verificar que P(n+1) também o é.

Vamos somar c em ambos os membros da expressão de P(n):
n

∑
k=1

c= c ·n, dessa maneira obtemos

c+
n

∑
k=1

c = c+ c ·n⇒
n+1

∑
k=1

c = c · (n+1)

Verificado que P(n+1) é verdadeira, concluimos que pelo princípio de indução, P(n) é verdadeira

para todo n ∈ N. �

2.3.2 Binômio de Newton

Na maioria das vezes o símbolo de somatório aparece no ensino médio quando se

estuda a seguinte expressão (x+ y)n, que é chamada de Binômio de Newton, e tem a expansão,

segundo Neto (2013), como

(x+ y)n =
n

∑
p=0

(
n

p

)

xn−p · yp =

(
n

0

)

xn +

(
n

1

)

xn−1 · y+ · · ·+

(
n

p

)

xn−p · yp + · · ·+

(
n

n

)

yn

em que x e y são números reais, n um número natural e

(
n

p

)

=
n!

(n− p)!p!
.

Demonstração:

Vamos demonstrar por indução em n

Seja P(n) : (x+ y)n =
n

∑
p=0

(
n

p

)

xn−p · yp

Vejamos que P(1) é verdadeiro, pois (x+ y)1 = x+ y =

(
1
0

)

x+

(
1
1

)

y =
1

∑
p=0

x1−p · yp

Supondo que P(k) seja verdadeira para algum k natural

(x+ y)k =
k

∑
p=0

(
k

p

)

xk−p · yp

Vamos provar que P(k+1) também é verdadeiro. Assim multiplicamos por (x+ y) a expressão

anterior e obtemos

(x+ y) · (x+ y)k = (x+ y) ·
k

∑
p=0

(
k

p

)

xk−p · yp

Aplicando a distributiva no segundo membro, temos
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(x+ y)k+1 =
k

∑
p=0

(
k

p

)

xk−p+1 · yp +
k

∑
p=0

(
k

p

)

xk−p · yp+1

Separando o primeiro termo do primeiro somatório, e o último termo do segundo somatório,

resulta

(x+ y)k+1 =

(
k

0

)

xk+1+
k

∑
p=1

(
k

p

)

xk−p+1 · yp +
k−1

∑
p=0

(
k

p

)

xk−p · yp+1+

(
k

k

)

yk+1

Fazemos a seguinte mundança de variável no segundo somatório: trocar p por p−1

(x+ y)k+1 = xk+1+
k

∑
p=1

(
k

p

)

(xk−p+1 · yp)+
k

∑
p=1

(
k

p−1

)

(xk−p+1 · yp)+ yk+1

Juntando os dois somatórios, temos

(x+ y)k+1 = xk+1+
k

∑
p=1

[(
k

p

)

+

(
k

p−1

)]

(xk−p+1 · yp)+ yk+1

Usando a relação2 de Stifel3 para os binômios e colocando coeficientes para xk+1 e yk+1 sem

alterar a igualdade, resulta

(x+ y)k+1 =

(
k+1
0

)

xk+1+
k

∑
p=1

(
k+1

p

)

(xk−p+1 · yp)+

(
k+1
k+1

)

yk+1

Assim chegamos a igualdade desejada

(x+ y)k+1 =
k+1

∑
p=0

(
k+1

p

)

xk+1−p · yp

Dessa forma provamos que P(k+1) é verdadeiro. Logo, pelo princípio de indução, P(n) também

é verdadeiro para todo n natural. �

Portanto, como já foi mencionado antes, uma sequência é uma restrição de uma

função real ao domínio do conjunto dos números naturais. Por isso, o Cálculo de funções de uma

variável real pode ser adaptado ao contexto discreto de sequência. Assim, P.A. é uma função

afim restrita aos números naturais, uma P.G. é do tipo exponencial, P.A’s de ordem k são como

polinômios, etc. Nos próximos capítulos, vemos que as derivadas são como diferenças finitas e

integrais como somatórios. No entanto, somatórios nem sempre são simples de serem calculados,

mas o Cálculo Discreto fornece ferramentas muito úteis para trabalharmos com essas somas.

2 Demonstramos essa relação no final do próximo capítulo.
3 Michael Stifel (cerca de 1487 - 1567): Matemático alemão.
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3 DERIVADA DISCRETA DE UMA SEQUÊNCIA

No Cálculo Convencional, vemos uma ferramenta importante: a derivada, que estuda

a variação de uma função em um dado ponto. Segundo Guidorizzi (1987), a derivada é definida

por

f ′(x) = lim
h→0

f (x+h)− f (x)

h

com f sendo uma função real. Também denotamos
dy

dx
para derivada com y = f (x).

No capítulo anterior, vimos diversos exemplos de sequências e somatórios, bem

como suas propriedades. Agora definimos a derivada discreta, que é uma adaptação da derivada

para o contexto discreto. Vemos também suas principais propriedades para estudarmos o

comportamento de algumas sequências. As definições, propriedades e a maioria dos exemplos

e demonstrações foram baseadas de Gleich (2005), Miller (1960), Neto (2012), Neto (2013) e

Richardson (1954).

3.1 DEFINIÇÃO E EXEMPLOS DE DERIVADAS DISCRETAS

Para Richardson (1954), a derivada discreta é o estudo da variação dos valores assu-

midos por uma sequência an, quando n varia conforme os valores de uma P.A. Para estabelecer o

intervalo de diferença, escolhemos o menor deles como sendo 1. Assim, os valores de variação

que estão associados a P.A. (1,2,3, · · ·) são a2−a1, a3−a2, · · · ,an+1−an.

Já Miller (1960) tem uma ideia diferente, porém equivalente, pois ao se estudar a

derivada do Cálculo Tradicional, precisamos verificar a variação do quociente
f (x+h)− f (x)

h

para valores de h bem próximo de zero, onde f (x) é uma dada função e h é chamado de

incremento. Para uma sequência an tomemos h = 1 e o quociente fica apenas an+1−an.

Dessa maneira no Cálculo Discreto, este quociente também é muitas vezes chamado

de operador diferença ou derivada discreta, que fica definido como:

∆an = an+1−an

Também expressamos de maneira mais geral a derivada discreta:
∆an

∆n
=

an+h−an

h
,

em que h é um inteiro ou racional positivo. Vale observar que, da mesma forma que no

Cálculo Tradicional em que o símbolo
d

dx
não é visto como fração,

∆

∆n
também não o é, mas

destacamos que esse quociente depende de h. Agora vejamos alguns exemplos, retirados de
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Miller (1960) e Richardson (1954), em que as fórmulas das derivadas são bem semelhantes ao

Cálculo Convencional.

a) ∆c = c− c = 0, com c sendo uma constante;

A derivada discreta de uma P.A. é sempre constante e é igual a razão r.

b) ∆[a1+(n−1).r] = a1+nr− [a1+(n−1)r] = a1+nr−a1−nr+ r = r;

Para a derivada de uma P.G. an = a1 ·q
n−1, temos

c) ∆(a1.q
n−1) = a1.q

n−a1.q
n−1 = a1.q

n−1(q−1) = an(q−1);

Em particular, temos ∆2n = 2n+1−2n = 2n

De maneira geral, temos

∆(can) = can+1− can = can · (can+1−an−1) = can · (c∆an−1)

d) ∆[logb(an)] = logb(an+1)− logb(an) = logb

(
an+1

an

)

, com b > 0 e b 6= 1;

e) ∆sen(a.n) = 2 · sen

(
a

2

)

· cos

[

a

(

n+
1
2

)]

, com a ∈ R;

De modo geral, temos:

∆[sen(an)] = sen(an+1)− sen(an) = 2sen

(
an+1−an

2

)

· cos

(
an+1+an

2

)

⇒

⇒ ∆[sen(an)] = 2sen

(
∆an

2

)

· cos

(
an+1+an

2

)

.

f) ∆[cos(a.n)] =−2 · sen

(
a

2

)

· sen

[

a

(

n+
1
2

)]

, com a ∈ R;

Da mesma forma, temos:

∆[cos(an)] = cos(an+1)− cos(an) =−2sen

(
an+1+an

2

)

· sen

(
an+1−an

2

)

⇒

⇒ ∆[cos(an)] =−2sen

(
∆an

2

)

· sen

(
an+1+an

2

)

.

g) ∆

(
n

p

)

=

(
n+1

p

)

−

(
n

p

)

=

(
n

p−1

)

︸ ︷︷ ︸

relação de Stifel

, em que

(
n

p

)

=
n!

(n− p)!p!
;

h) ∆n!= (n+1)!−n!= n.(n!);

i) ∆(a1+a2+ · · ·+an) = (a1+a2+ · · ·+an+1)− (a1+a2+ · · ·+an)

Assim temos uma soma telescópica que resulta
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∆(a1+a2+ · · ·+an) = an+1.

Este item é muito importante, pois mostra que toda sequência é derivada discreta de uma outra

sequência.

Para derivarmos a sequência an = nk, precisamos modificar a sequência para bn = n(k)

(potência modificada), se quisermos obter um resultado semelhante1 a
d

dx
(xk) = k · xk−1. Vamos

demonstrar que isso é válido para essas potências modificadas:

∆bn = (n+1)(k)−n(k)

= [(n+1) ·n · (n−1) · ... · (n− k+2)]− [n · (n−1) · ... · (n− k+2) · (n− k+1)]

= [n+1− (n− k+1)] ·n · (n−1) · ... · (n− k+2)

= k ·n · (n−1) · ... · (n− k+2) = k ·n(k−1)
�

Uma forma geral é a seguinte: ∆(a+ bn)(k) = b · k · (a+ bn)(k−1). No entanto,

podemos generalizar mais ainda. Seja an uma sequência e definamos

[an]
(k) = an ·an−1 ·an−2 · ... ·an−k+1, para derivá-la, temos:

∆[an]
(k) = (an+1 ·an · ... ·an−k+2)− (an ·an−1 · ... ·an−k+2 ·an−k+1)

∆[an]
(k) = (an+1−an−k+1) · (an−1 · ... ·an−k+2) = (an+1−an−k+1) · [an−1]

(k−1)
�

Para a derivação discreta de potências modificadas negativas temos:

∆n(−k) = ∆

(
1

n[k]

)

=
1

(n+1)[k]
−

1

n[k]
⇒

⇒ ∆n(−k) =
1

(n+1) · (n+2) · ... · (n+ k−1) · (n+ k)
−

1
n · (n+1) · ... · (n+ k−1)

⇒

⇒ ∆n(−k) =

(
1

n+ k
−

1
n

)

·
1

(n+1) · (n+2) · ... · (n+ k−1)
⇒

⇒ ∆n(−k) =

[
n− (n+ k)

(n+ k) ·n

]

·
1

(n+1) · (n+2) · ... · (n+ k−1)
⇒

⇒ ∆n(−k) =
−k

n · (n+1) · ... · (n+ k−1) · (n+ k)
=

−k

n[k+1]
=−k ·n(−k−1)

�

Com esse resultado, concluimos que ∆n(k) = k · n(k−1) ∀k ∈ Z. Como a derivada

comum satisfaz certas propriedades, da mesma maneira, a derivada discreta possui algumas

propriedades análogas. Citamos e demonstramos algumas delas, retiradas de Miller (1960) e

Neto (2012).

1 Para maiores detalhes sobre o assunto, consultar Guidorizzi (1987)
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3.2 PROPRIEDADES DAS DERIVADAS DISCRETAS

As propriedades aritméticas de derivada discreta são praticamente as mesmas asso-

ciadas às funções do Cálculo Tradicional. Vejamos algumas delas. Seja an e bn sequências e

c ∈ R, então:

i) ∆(an +bn) = ∆an +∆bn

Demonstração:

∆(an +bn) = an+1+bn+1− (an−bn) = an+1−an +bn+1−bn = ∆an +∆bn �

ii) ∆(c ·an) = c ·∆an

Demonstração:

∆(c.an) = c.an+1− c.an = c.(an+1−an) = c.∆an �

iii) ∆an = 0⇔ an é constante

Demonstração:

∆an = an+1−an = 0⇔ an+1 = an �

iv) ∆(an ·bn) = (∆an) ·bn+1+an · (∆bn) (Regra do Produto de Leibniz)

Demonstração:

∆(an.bn) = an+1.bn+1−an.bn

Adicionando e subtraindo an.bn+1, temos:

∆(an.bn) = an+1.bn+1−an.bn+1+an.bn+1−an.bn ⇒

⇒ ∆(an.bn) = (an+1−an).bn+1+an(bn+1−bn)⇒

⇒ ∆(an.bn) = (∆an).bn+1+an.∆bn �

v) ∆

(
an

bn

)

=
(∆an) ·bn−an · (∆bn)

bn ·bn+1
, para bn e bn+1 6= 0

Demonstração:

∆

(
an

bn

)

=
an+1

bn+1
−

an

bn
⇒

⇒ ∆

(
an

bn

)

=
an+1 ·bn−an ·bn+1

bn ·bn+1

Adicionando e subtraindo an ·bn, temos

∆

(
an

bn

)

=
an+1 ·bn−an ·bn +an ·bn−an ·bn+1

bn ·bn+1
⇒
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⇒ ∆

(
an

bn

)

=
(an+1−an) ·bn−an · (bn+1−bn)

bn ·bn+1
⇒

⇒ ∆

(
an

bn

)

=
(∆an) ·bn−an · (∆bn)

bn ·bn+1
�

vi)
n

∑
k=1

∆ak = an+1−a1

Demonstração:
n

∑
k=1

∆ak = ∆a1+∆a2+∆a3+ · · ·+∆an ⇒

⇒
n

∑
k=1

∆ak = (a2−a1)+(a3−a2)+(a4−a3)+ · · ·+(an−an−1)+(an+1−an)

Fazendo os devidos cancelamentos dessa soma telescópica pela proposição 1 do capítulo 2,

obtemos:
n

∑
k=1

∆ak = an+1−a1 �

Esta última propriedade já nos mostra um prelúdio do Teorema Fundamental do

Cálculo Discreto, que é visto no próximo capítulo. A maioria dessas propriedades são usadas

com frequência no decorrer desse trabalho. A seguir, definimos as derivadas de ordem superior.

3.3 DERIVADAS DISCRETAS DE ORDEM SUPERIOR

De forma semelhante ao Cálculo Tradicional, podemos derivar mais de uma vez,

assim a segunda derivada discreta ou derivada discreta de ordem 2 é a aplicação do operador

diferença duas vezes na mesma sequência.

∆(∆an) = ∆(an+1−an) = an+2−an+1− (an+1−an) = an+2−2an+1+an.

Onde denotamos também ∆2an = ∆(∆an)

∆3an = ∆(∆2an) = ∆(an+2−2an+1+an) = an+3−2an+2+an+1− (an+2−2an+1+an)

∆3an = an+3−3an+2+3an+1−an

Definimos indutivamente a derivada discreta de ordem k ou k-ésima derivada discreta

como ∆kan = ∆(∆k−1an), para k ≥ 2. Assim de maneira mais geral, chegamos a seguinte

proposição, retirado de Neto (2012).

Proposição 4: Seja an uma sequência, então

∆kan =
k

∑
p=0

(−1)p

(
k

p

)

·an+k−p

Vamos demonstrar por indução em k.
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Seja an uma sequência, temos

P(k) : ∆kan =
k

∑
p=0

(
k

p

)

(−1)p ·an+k−p, com

(
k

0

)

=

(
k

k

)

= 1

Vamos provar que P(1) é verdadeiro.

∆1an =
1

∑
p=0

(
1
p

)

(−1)p ·an+1−p =

(
1
0

)

(−1)0an+1+

(
1
1

)

(−1)1 ·an+1−1

Dessa forma obtemos

∆an = an+1−an. Logo P(1) é verdadeiro.

Vamos supor que P(k) é verdadeiro para algum k ∈ N, então

∆kan =
k

∑
p=0

(
k

p

)

(−1)p ·an+k−p

Vamos provar que P(k+1) também é verdadeiro.

∆k+1an = ∆(∆kan) = ∆

[
k

∑
p=0

(
k

p

)

(−1)p ·an+k−p

]

(aqui foi usado a hipótese de indução)⇒

⇒ ∆k+1an =
k+1

∑
p=0

(
k+1

p

)

(−1)p ·an+k+1−p−
k

∑
p=0

(
k

p

)

(−1)p ·an+k−p

Separando o primeiro termo do primeiro somatório e trocando p por p−1 no segundo somatório,

temos

∆k+1an = an+k+1+
k+1

∑
p=1

(
k+1

p

)

(−1)p ·an+k+1−p−
k+1

∑
p=1

(
k

p

)

(−1)p−1 ·an+k−p+1⇒

⇒ ∆k+1an = an+k+1+
k+1

∑
p=1

[(
k+1

p

)

+

(
k

p

)]

(−1)pan+k+1−p

Usando a relação de Stifel, chegamos a igualdade desejada

∆k+1an = an+k+1+
k+1

∑
p=1

(
k+1
p+1

)

(−1)pan+k+1−p =
k+1

∑
p=0

(
k+1
p+1

)

(−1)pan+k+1−p

Logo P(k+1) é verdadeiro e pelo princípio de indução P(k) é verdadeiro para todo k natural.�

Essa proposição nos mostra uma relação entre a derivada discreta e recorrências

lineares. Essa relação é explorada com mais detalhes no capítulo seguinte. Adiante, temos mais

algumas proposições relativas as derivadas de ordem k que são usadas também nas demonstrações

do próximo capítulo.

Proposição 5: Se an e bn são sequências, então ∀k ∈ N e c ∈ R

∆k(an + c.bn) = ∆kan + c.∆kbn.

Vamos demonstrar por indução em k.

Seja P(k) : ∆k(an + c ·bn) = ∆kan + c ·∆kbn

Para k = 1 temos

∆(an + c ·bn) = an+1+ c ·bn+1− (an + c ·bn) = an+1−an + c · (bn+1−bn) = ∆an + c ·∆bn

Logo P(1) é verdadeiro.



33

Vamos supor que P(k) seja válido para algum k ∈ N, então

∆k(an + c ·bn) = ∆kan + c ·∆kbn

Vamos provar a validez de P(k+1)

∆k+1(an + c ·bn) = ∆[∆k(an + c ·bn)]

Usando a hipótese de indução, temos

∆[∆k(an + ·bn)] = ∆[∆kan + c ·∆kbn] = ∆(∆kan)+∆(c ·∆kbn) = ∆k+1an + c ·∆k+1bn

Assim provamos que P(k+ 1) também é verdadeiro, logo pelo princípio de indução P(n) é

verdadeiro para todo n natural. �

Proposição 6: Se ∆knk é constante, então ∆knk = k!

Demonstração:

Vamos demonstrar por indução forte2. Seja P(k) : ∆knk = k!

Para k = 1 temos ∆1n1 = ∆n = n+1−n = 1= 1! Assim P(1) é verdadeiro.

Vamos supor que P(k) é válida 1,2, · · · ,k, com k ∈ N ou seja, que ∆knk = k!∀k ≤ n

Provamos que P(k+1) também é verdadeiro, desse temos:

∆k+1nk+1 = ∆k(∆nk+1) = ∆k[∆(nk ·n)]

Usando a fórmula de Leibniz, obtemos:

∆(nk ·n) = ∆nk · (n+1)+nk ·∆n = ∆nk · (n+1)+nk

Para calcular ∆nk, usamos o binômio de Newton

∆nk = (n+1)k−nk =
k

∑
p=0

(
k

p

)

np−nk =
k−1

∑
p=0

(
k

p

)

np

Assim resulta

∆nk · (n+1)+nk =

[
k−1

∑
p=0

(
k

p

)

np

]

· (n+1)+nk =
k−1

∑
p=0

(
k

p

)

[np+1+np]+nk

Faremos uma mudança de variável, trocando p+1 por p e p por p−1 em que obtemos
k−1

∑
p=0

(
k

p

)

[np+1+np]+nk =
k

∑
p=1

(
k

p−1

)

[np +np−1]+nk

Vamos separar do somatório o último termo e reorganizar a expressão
(

k

k−1

)

[nk +nk−1]+nk +
k−1

∑
p=1

(
k

p−1

)

[np +np−1]

Por fim vamos calcular ∆k da expressão obtida na linha anterior.

∆k

{(
k

k−1

)

[nk +nk−1]+nk +
k−1

∑
p=1

(
k

p−1

)

[np +np−1]

}

=

2 O princípio de indução forte diz: Seja uma proposição P(n), então i) P(1) verdadeira e ii) P(n) é verdadeira para
n = 1,2, · · · ,k, com k ≤ n⇒ P(k+1) também é verdadeira. Para mais detalhes, consultar Morgado e Carvalho
(2013)
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=

(
k

k−1

)

∆knk +

(
k

k−1

)

∆knk−1

︸ ︷︷ ︸

=0

+∆knk +∆k

{
k−1

∑
p=1

(
k

p−1

)

[np +np−1]

}

︸ ︷︷ ︸

=0

Essas derivadas discretas são iguais a zero, pois as sequências em questão tem grau menor ou

igual a k−1, sobrando apenas

(
k

k−1

)

∆knk +∆knk

Usando a hipótese de indução, temos

∆k+1nk+1 =

(
k

k−1

)

∆knk +∆knk = k · k!+ k! = (k+ 1)! Assim provamos que P(k+ 1) é ver-

dadeiro. Logo pelo princípio de indução, P(k) é verdadeiro ∀k ∈ N e portanto, concluimos a

demostração. �

Proposição 7: Para as potências modificadas, também temos ∆kn(k) = k!

Demonstração:

A prova é por indução. Então seja P(k): ∆kn(k) = k!

Para k = 1 temos ∆n(1) = ∆n = n+1−n = 1, assim P(1) é verdadeiro.

Supondo que P(k) seja válida para algum k, vamos provar que P(k+1) também é válida.

∆k+1[n(k+1)] = ∆k[∆n(k+1)] = ∆k[(k+1) ·n(k)] = (k+1) ·∆kn(k) =∗ (k+1) · k!= (k+1)!

Nessa igualdade =∗ usamos a hipótese de indução (∆kn(k) = k!) e, por fim, pelo princípio de

indução P(k) é verdadeiro ∀k ∈ N. Assim terminamos a demonstração. �

Definimos uma P.A. (an) de ordem k, quando ∆an é uma P.A de ordem k−1. De

maneira geral, uma P.A. é de ordem k, quando ∆kan é constante 6= 0. Provamos isso na proposição

8. Vejamos um exemplo.

A P.A. (1,8,27,64,125, · · · ,n3) é de ordem 3, pois

∆a2 = 8−1= 7 ∆2a2 = 19−7= 12 ∆3a2 = 18−12= 6

∆a3 = 27−8= 19 ∆2a3 = 37−19= 18 ∆3a3 = 24−18= 6

∆a4 = 64−27= 37 ∆2a4 = 61−37= 24
...

∆a5 = 125−64= 61
...

...

A partir de tudo isso, chegamos as seguintes proposições que, de maneira mais geral,

relacionam P.A.’s, polinômios e derivadas discretas de ordem k, pois a maioria dos somatórios

usados no texto são de expressões polinomiais, por isso, se faz necessária essa ligação.

Proposição 8: an é uma P.A. de ordem k⇔ ∆kan é constante 6= 0.

Demonstração:
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Vamos provar por indução em k a implicação de ida (⇒). Se an é uma P.A. de ordem k, então

∆kan é constante. Para k = 1, temos que an é uma P.A. de ordem 1 ⇒ ∆an+1− an = r que é

constante.

Supondo que toda P.A. de ordem k, an, satisfaz ∆kan = c 6= 0, para algum k ∈ N, vamos provar

que para k+1, o resultado também é verdadeiro.

Seja an uma P.A. de ordem k+1, por definição temos que bn = ∆an é uma P.A. de ordem k.

Por hipótese de indução, ∆kbn = c com c constante 6= 0.

Assim, resulta ∆kbn = ∆k(∆an) = ∆k+1an = c

Vamos também provar a recíproca da implicação (⇐) por indução k. Se ∆kan é

constante 6= 0, então an é uma P.A de ordem k.

Para k = 1, temos que ∆an = c⇒ an+1− an = c⇒ por definição, an é uma P.A de ordem 1.

Logo, a proposição é verdadeiro para k = 1.

Supondo que esse resultado é verdadeiro para algum k, temos que: ∆kan = c 6= 0⇒ an P.A. de

ordem k. Vamos provar que a proposição também é válida para k+1, temos

∆k+1an = c⇒ ∆k(∆an) = ∆kbn = c, com ∆an = bn.

Pela hipótese de indução, bn = ∆an é uma P.A. de ordem k. Dessa maneira, por definição, an é

uma P.A. cujo grau é k+1. Pelo princípio de indução, a proposição é verdadeira para todo k

natural. �

Proposição 9: an é um polinômio em n de grau k⇔ ∆kan é constante 6= 0.

Demonstração:

Vamos provar a implicação de ida (⇒) por indução em k. Se pn é um polinômio em

n de grau k, então ∆k pn = c com c constante 6= 0.

Para k = 1, seja pn = c ·n+d, com c e d constantes 6= 0.

Temos que ∆pn = c(n+1)+d− (cn+d) = c. Logo, a proposição é verdadeira para k = 1.

Supondo que cada polinômio em n de grau k, pn =
k

∑
j=0

b jn
j satisfaz ∆k pn = c 6= 0 para algum

k ∈ N.

pn =
k+1

∑
j=0

b jn
j tem grau k+1, vamos provar que ∆k+1pn = c, com c constante 6= 0.

Assim temos que ∆k+1pn = ∆k+1
k+1

∑
j=0

b jn
j =

k+1

∑
j=0

b j∆
k+1n j.

Pela proposição 6, obtemos

∆k+1n j =

{
(k+1)!, para j = k+1

0, para j ≤ k
. Portanto, ∆k+1pn = bk+1(k+1)!, que é constante 6= 0.

Assim, demonstramos a primeira parte.
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Vamos então provar, por indução em k, a recíproca da proposição (⇐). Se ∆k pn é

constante 6= 0, então pn é um polinômio em n de grau k

Para k = 1, temos que ∆pn = c⇒ pn+1− pn = c, aplicando o somatório em ambos os membros,

resulta
m

∑
n=1

(pn+1− pn) =
m

∑
n=1

c. Usando a proposição 1 e a propriedade iv) da subseção 2.4.1, temos

pm+1− p1 = cm, ou, trocando m por n, pn+1 = cn+ p1, que é um polinômio de grau 1.

Supondo que para algum k ∈ N, se tenha

∆k pn = c⇒ pn =
k

∑
j=0

b jn
j

Vamos provar que o resultado é válido para k+1

Seja pn um polinômio, tal que ∆k+1pn = c, com c constante 6= 0, temos

∆k+1pn = ∆k(∆pn) = ∆krn = c, em que rn = ∆pn

Pela hipótese de indução, temos rn =
k

∑
j=0

b jn
j, que resulta

m

∑
n=1

(pn+1− pn) =
m

∑
n=1

k

∑
j=0

b jn
j

Calculando a soma telescópica do primeiro membro (proposição 1) e invertendo os somatório do

segundo membro, obtemos

pm+1− p1 =
k

∑
j=0

m

∑
n=1

b jn
j =

k

∑
j=0

b j

m

∑
n=1

n j ⇒ pn+1 = p1+
k

∑
j=0

b jq j(n), com q j(n) =
m

∑
n=1

n j

Assim concluimos que pn+1 = p1+
k

∑
j=0

b j ·q j(n) é um polinômio de grau k+1. Isso

necessita de uma demonstração, por isso no próximo capítulo provamos esse resultado. Dessa

maneira, encerramos o tópico de derivadas de ordem superior e seguimos nosso estudo para o

assunto de números de stirling e potências modificadas, para entender a relação existente entre

os mesmos.

3.4 NÚMEROS DE STIRLING E POTÊNCIAS MODIFICADAS

Foi visto no capítulo anterior que as potências modificadas foram definidas como

n(k) = n.(n−1).(n−2). · · · .(n− k+1). No entanto, se efetuarmos as multiplicações, obtemos

um polinômio em n de grau igual a k. Segundo Gleich (2005), podemos transformar um

polinômio de potências modificadas de grau k em um polinômio de potências comuns de grau k.

O próximo resultado generaliza esse fato.

Proposição 10: Seja o seguinte polinômio fatorial an = ckn(k)+ ck−1n(k−1)+ · · ·+ c1n(1)+ c0,
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com c0,c1, · · · ,ck constantes e ck 6= 0. Então existem constantes b0,b1, · · · ,bk com bk 6= 0 tal

que an = bknk +bk−1nk−1+ · · ·+b1n+b0. A demonstração será feita por indução em k.

Seja P(k) : an =
k

∑
p=0

cpn(p) =
k

∑
p=0

bpnp

Para k = 1, temos
1

∑
p=0

cpn(p) = c0+ c1n(1) = c0+ c1n , pois n1 = n = n(1)

Dessa forma, obtemos c0 = b0 e c1 = b1. Logo P(1) é verdadeiro.

Vamos supor que P(k) seja verdadeira para algum k ∈ N

k

∑
p=0

cpn(p) =
k

∑
p=0

bpnp

Vamos provar que P(k+1) também é verdadeira. Seja o polinômio fatorial de grau k+1
k+1

∑
p=0

cp ·n
(p) = ck+1n(k+1)+

k

∑
p=0

cpnp = ck+1 ·n · (n−1)(k)+
k

∑
p=0

cpnp

Usando a hipótese de indução, obtemos

ck+1 ·n · (n−1)(k)+
k

∑
p=0

cpnp = ck+1 ·n ·
k

∑
p=0

ep(n−1)p +
k

∑
p=0

cpnp ⇒

⇒ ck+1 ·n ·
k

∑
p=0

ep(n−1)p +
k

∑
p=0

cpnp = ck+1 ·n · ek · (n−1)k

︸ ︷︷ ︸

Q(n)

+n ·
k−1

∑
p=0

ep(n−1)p

︸ ︷︷ ︸

R(n)

+
k

∑
p=0

cpnp

︸ ︷︷ ︸

S(n)

Veja que Q(n) tem grau k+1 e R(n) e S(n) tem grau k. Logo Q(n)+R(n)+S(n) tem grau k+1.

Assim P(k+1) é verdadeira e pelo princípio de indução P(k) é verdadeiro para todo k natural. �

De forma particular, segundo Miller (1960), uma potência modificada n(k) é expressa

como um polinômio de potências comuns. Dessa forma, temos

n(k) =
k

∑
p=1

Fk,p ·n
p

onde os coeficientes Fk,p são chamados de números de Stirling de primeiro tipo e também são

representados por

[
k

p

]

. Vejamos alguns exemplos:

n(1) = n F1,1 = 1

n(2) = n.(n−1) = n2−n F2,1 =−1 F2,2 = 1

n(3) = n.(n−1).(n−2) = n3−3n2+2n F3,1 = 2 F3,2 =−3 F3,3 = 1
...
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Segundo Miller (1960), podemos também reciprocamente transformar um polinômio

de potências comuns de grau k em um polinômio de potências modificadas em n de mesmo grau.

A próxima proposição demonstra isso.

Proposição 11: Seja a sequência an = cknk +ck−1nk−1+ · · ·+c1n+c0 sendo ck,ck−1, · · · ,c1,c0

constantes e ck 6= 0, então existem constantes bk,bk−1, · · · ,b1,b0 com bk 6= 0 tal que an =

bkn(k)+bk−1n(k−1)+ · · ·+b1n(1)+b0.

Da mesma maneira, vamos demonstrar por indução em k

Seja P(k) : an =
k

∑
p=0

cpnp =
k

∑
p=0

bpn(p)

Para k = 1, temos
1

∑
p=0

cpnp = c0+ c1n1 = c0+ c1n(1), pois n1 = n = n(1)

Assim temos c0 = b0 e c1 = b1. Logo P(1) é verdadeiro.

Vamos supor que P(k) seja verdadeiro para algum k ∈ N, ou seja, que existem b0,b1, · · · ,bk tal

que

an =
k

∑
p=0

cpnp =
k

∑
p=0

bpn(p)

Vamos provar que P(k+1) também é verdadeiro, assim

Seja
k+1

∑
p=0

cpnp = ck+1nk+1+
k

∑
p=0

cpnp = ck+1n · (nk)+
k

∑
p=0

cpnp

Usando a hipótese de indução, então existem d0,d1, · · · ,dk e b0,b1, · · · ,bk tais que

ck+1n · (nk)+
k

∑
p=0

cpnp = ck+1n ·
k

∑
p=0

dpn(p)+
k

∑
p=0

bpn(p)

Somaremos e subtrairemos ck+1 ·
k

∑
p=0

dpn(p) à expressão, assim resulta

k+1

∑
p=0

cpnp = ck+1n ·
k

∑
p=0

dpn(p)+ ck+1

k

∑
p=0

dpn(p)+
k

∑
p=0

bpn(p)− ck+1

k

∑
p=0

dpn(p)

Reagrupando os somatórios, temos
k+1

∑
p=0

cpnp = ck+1 · (n+1) ·
k

∑
p=0

dpn(p)+
k

∑
p=0

(bp− ck+1dp) ·n
(p)⇒

⇒
k+1

∑
p=0

cpnp = ck+1

k

∑
p=0

dpn(p) · (n+1)+
k

∑
p=0

epn(p) com ep = bp− ck+1dp ⇒
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⇒
k+1

∑
p=0

cpnp = ck+1

k

∑
p=0

dp(n+1)(k+1)+
k

∑
p=0

epn(p)

Separando o primeiro termo do primeiro somatório do lado direito da igualdade, obtemos
k+1

∑
p=0

cpnp = ck+1dk(n+1)(k+1)+ ck+1 ·
k−1

∑
p=0

dp(n+1)(p+1)+
k

∑
p=0

epn(p)

Fazendo ck+1dk = fk+1 e uma mudança de variável p+ 1 para p e p para p− 1 no primeiro

somatório do segundo membro, obtemos
k+1

∑
p=0

cpnp = fk+1(n+1)(k+1)
︸ ︷︷ ︸

Q(n)

+
k

∑
p=1

dp−1(n+1)(p)

︸ ︷︷ ︸

R(n)

+
k

∑
p=0

epn(p)

︸ ︷︷ ︸

S(n)

Assim temos R(n) e S(n) com grau k e Q(n) tem grau k+ 1. Logo, Q(n)+R(n)+ S(n) tem

grau k+1, provando que P(k+1) é verdadeiro. Com isso, pelo princípio de indução, P(k) é

verdadeiro ∀ k ∈ N, terminando a demonstração. �

Particularmente da mesma forma, segundo Miller (1960), uma potência comum nk

pode ser expressa como um polinômio de potências modificada. Dessa forma, temos

nk =
k

∑
p=1

Sk,p ·n
(p)

onde Sk,p é chamado de número de Stirling de segundo tipo. Outra notação

{
k

p

}

. Alguns

exemplos:

n = n(1) S1,1 = 1

n2 = n(1)+n(2) S2,1 = 1 S2,2 = 1

n3 = n(1)+3n(2)+n(3) S3,1 = 1 S3,2 = 3 S3,3 = 1
...

Estas duas proposições são bem relevantes, pois fica mais simples calcular integrais

discretas3 de potências comuns, transformando-as em somas de potências modificadas. No

entanto, vemos isso apenas no próximo capítulo. Adiante apresentamos uma ferramenta análoga

à fórmula de Taylor, que é a fórmula de Newton. Ela também é importante, pois nos ajuda a

encontrar os números de Stirling de segundo tipo.

3 No próximo capítulo, definimos a integral discreta e suas semelhanças com o somatório.
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3.5 FÓRMULA DE NEWTON E POLINÔMIOS

No Cálculo Tradicional "é mostrado que se f (x) é um polinômio de grau n, então

f (x) pode ser escrito na forma

f (x) = f (0)+ f ′(0) · x+ f ′′(0) ·
x2

2!
+ · · ·+ f (n)(0) ·

xn

n!
"

(MILLER, 1960, p. 18, tradução nossa), em que f (n) é a n-ésima derivada no ponto 0. Essa

fórmula também é conhecida como fórmula de Taylor. No entanto, o Cálculo Discreto, segundo

Miller (1960), tem uma fórmula análoga que é chamada de Fórmula de Newton, em que an é um

polinômio em n de grau k expresso por:

an = a0+∆a0 ·n
(1)+∆2a0 ·

n(2)

2!
+ · · ·+∆ka0 ·

n(k)

k!
,

em que ∆ka0 é a derivada discreta de an de ordem k quando n = 0. Como
n(k)

k!
=

(
n

k

)

, a fórmula

de Newton também é escrita com a notação de somatório da seguinte forma

an =
k

∑
p=0

(
n

p

)

∆pa0,

em que ∆0a0 = a0 e

(
n

0

)

= 1

Para encontrar essa primeira fórmula, usamos a proposição anterior, em que se an é

um polinômio de potências comuns de grau k em n, então an pode ser escrito como polinômio

de potências modificadas de mesmo grau.

an = a0+b1n(1)+b2n(2)+ · · ·+bkn(k)

Vamos aplicar a derivada discreta em ambos membros na expressão anterior, para encontrar cada

bi

∆an = b1+2b2n(1)+3b3n(2)+ · · ·+ kbkn(k−1)

Para n = 0 temos ∆a0 = b1⇒ b1 = ∆a0

Derivando mais uma vez temos

∆2an = 2b2+3 ·2b3n(1)+4 ·3b4n(4)+ · · ·+ k · (k−1)bkn(k−2)

Para n = 0, temos ∆2a0 = 2b2⇒ b2 =
∆2a0

2!
· · ·

Sucessivamente temos ∆ka0 = k! ·bk⇒ bk =
∆ka0

k!
. Assim substituindo cada bk pelos coeficientes

encontrados, obtemos an = a0+∆a0 ·n
(1)+∆2a0 ·

n(2)

2!
+ · · ·∆ka0 ·

n(k)

k!
. Agora veja um exemplo

de como isso funciona na prática.
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Exemplo: Seja a sequência an = n4.

Como é um polinômio de grau 4, basta calcular as derivadas até de quarta ordem, pois todas as

outras derivadas superiores são nulas (consequência da proposição 8 e 9).

Os termos da sequência an são (0,1,16,81,256,625,1296, · · ·).

A sequência da primeira derivada discreta: (1,15,65,175,369,671, · · ·).

A sequência da segunda derivada: (14,50,110,194,302, · · ·)

A sequência da terceira derivada: (36,60,84,108, · · ·)

A sequência da quarta derivada: (24,24,24, · · ·)

Assim, temos que a0 = 0, ∆a0 = 1, ∆2a0 = 14, ∆3a0 = 36 e ∆4a0 = 24

Logo n4 = 0+1 ·n(1)+14 ·
n(2)

2!
+36 ·

n(3)

3!
+24

n(4)

4!
= n(1)+7n(2)+6n(3)+n(4)

Então concluimos que S4,0 = 0, S4,1 = 1, S4,2 = 7, S4,3 = 6 e S4,4 = 1

De maneira geral, para an = nk temos que

Sk,p =
∆pa0

p!

Com ∆pa0 sendo a derivada discreta de ordem p de an para n = 0. Assim uma potência comum

também é escrita da sequinte forma

nk = Sk,1 ·n
(1)+Sk,2 ·n

(2)+ · · ·+Sk,k ·n
(k)

Por fim, concluimos o capítulo com a demonstração da relação de Stifel, retirada de Neto (2013).

Proposição 11: Seja n e p inteiros não-negativos, com n > p então
(

n

p

)

+

(
n

p+1

)

=

(
n+1
p+1

)

em que

(
n

p

)

=
n!

(n− p)!p!

Demonstração:
n!

(n− p)!p!
+

n!
[n− (p+1)]!(p+1)!

=
n!(p+1)+n!(n− p)

(n− p)!(p+1)!
=

(n+1)!
(n− p)!(p+1)!

=

=
(n+1)!

[n+1− (p+1)]!(p+1)!
=

(
n+1
p+1

)

�

Agora, já temos em mãos algumas ferramentas necessárias para começarmos o

cálculo de somatórios. Vimos que basicamente calcular uma derivada discreta é como calcular a
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"razão" de uma sequência e que várias sequências cujas suas derivadas discretas e propriedades

são bem semelhantes às suas contrapartes no Cálculo Tradicional. No próximo capítulo, vemos a

operação inversa da derivada discreta que é integral discreta. Vemos também algumas equações

que envolvem derivadas, chamadas equações diferenciais discretas.
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4 INTEGRAL DE UMA SEQUÊNCIA E EQUAÇÕES DIFERENCIAIS DISCRETAS

Continuando o nosso estudo de sequências e somatórios, chegamos a parte mais

importante do estudo, mas antes de falarmos das integrais discretas e dos somatórios, vamos

relembrar um conceito importante vindo do Cálculo Tradicional: a integral. Segundo Guidorizzi

(1987), definimos integral indefinida (ou antiderivada) como:

∫

f (x)dx = F(x)+ k,

com k constante e que f e F são funções reais, tal que F ′(x) = f (x).

Dessa forma, vamos apresentar nesse capítulo uma extensão, uma versão discreta da

integral citada acima e ainda associar ao somatório. Também apresentamos alguns resultados

que auxiliam no cálculo de somatórios e resolvemos vários exemplos. Concluímos com uma

breve exposição sobre equações diferenciais discretas. As definições, os resultados, os teoremas

e alguns exemplos apresentados nesse capítulo foram retirados de Boole (1860), Gleich (2005),

Guidorizzi (1987), Guidorizzi (1988), Miller (1960), Poço (2008) e Richardson (1954).

4.1 ANTIDERIVADA DISCRETA DE UMA SEQUÊNCIA

Segundo Gleich (2005), uma sequência an é dita antiderivada (ou primitiva) discreta

de bn, se ∆an = bn. Entendemos a integral discreta indefinida, denotada por ∑ bnδn, como a

família das sequências cuja derivada discreta é bn e escrevemos assim:

∑bnδn = an +C

em que C é uma constante.

Vejamos que ∆xn = ∆yn ⇔ ∆xn−∆yn = 0⇔ ∆(xn− yn) = 0⇔ xn− yn =C por iii)

da seção 3.2. Ou seja, se duas sequências tem a mesma derivada, então elas diferem por apenas

uma constante. Segundo Richardson (1954), a antiderivada pode ser também denotada por ∆−1

ou 1/∆. Vejamos alguns exemplos de antiderivadas, retirados de Miller (1960) e Richardson

(1954):

a) ∑rδn = ∑∆(r ·n)δn = rn+C

Pois ∆(r ·n) = r · (n+1)− r ·n = r, sendo r uma constante;

b) ∑qn
δn = ∑∆

(
qn

q−1

)

δn =
qn

q−1
+C, para q 6= 1

Pois ∆qn = qn · (q−1);
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c) ∑sen(an)δn =−
cos[a(n−1/2)]

2sen(a/2)
+C

Como ∆cos

(

an−
a

2

)

=−sen

(
a

2

)

· sen(an)⇒

⇒ ∑∆cos

[

a

(

n−
1
2

)]

δn =−sen

(
a

2

)

·∑sen(an)

Assim cos

[

a

(

n−
1
2

)]

=−sen

(
a

2

)

·∑sen(an)+C;

d) ∑cos(an)δn =
sen[a(n−1/2)]

2sen(a/2)
+C

Pois cos(an) =
∆sen[a(n−1/2)]

2sen(a/2)
;

e) ∑

(
n

p

)

δn =

(
n

p+1

)

+C, para n≥ p+1

Pois ∆

(
n

p+1

)

=

(
n

p

)

;

f) ∑n(n!)δn = n!+C

Pois ∆n!= n ·n!;

g) ∑n(k)δn =
n(k+1)

k+1
+C

Pois ∆n(k+1) = (k+1)n(k).

Muitos desses exemplos acima são bem semelhantes ao caso da integral tradicional.

A seguir, temos então o principal resultado desse trabalho: o Teorema Fundamental do Cálculo

Discreto. Pois a partir disso, podemos calcular somatórios praticamente do mesmo jeito que

calculamos integrais convencionais.

4.2 TEOREMA FUNDAMENTAL DO CÁLCULO DISCRETO (TFCD)

Do Cálculo Convencional, também relembramos um dos principais resultados sobre

a integral definida: o Teorema Fundamental do Cálculo. Segundo Guidorizzi (1987), se f é uma
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função integrável1 em [a,b] com F ′(x) = f (x), então:

∫ b

a
f (x)dx = F(b)−F(a)

Para a versão discreta, temos o Teorema Fundamental do Cálculo Discreto em que

relaciona o somatório com a antiderivada discreta. Mas primeiro, vamos definir a antiderivada

discreta definida e relacioná-la com o somatório usual. Segundo Gleich (2005), definimos

antiderivada discreta definida como
k

∑
j

bnδn em que ∆an = bn, e também temos

k

∑
j

bnδn =
k−1

∑
n= j

bn,

em que o somatório do lado direito é o somatório usual que foi citado na seção 2.4.

Agora vejamos o Teorema Fundamental do Cálculo Discreto (TFCD), retirado de

Gleich (2005), Miller (1960) e Richardson (1954). Sejam an e bn sequências tais que ∆an = bn,

então:
k

∑
j

bnδn = ak−a j,

Demonstração: Temos que
k

∑
j

bnδn =
k−1

∑
n= j

bn =
k−1

∑
n= j

∆an = ∆a j +∆a j+1+ · · ·+∆ak−2+∆ak−1⇒

⇒
k−1

∑
n= j

bn = (a j+1−a j)+(a j+2−a j+1)+ · · ·+(ak−1−ak−2)+(ak−ak−1)

Resolvendo as somas telescópicas (proposição 1), temos
k

∑
j

bnδn = ak−a j �

Dessa maneira, para calcular a forma geral de somatórios, basicamente basta encon-

trar a antiderivada do somando, transformá-lo em uma integral discreta e usar o TFCD. Agora

para ilustar o assunto, vejamos alguns exemplos, retirado de Miller (1960), Gleich (2005) e Poço

(2008), em que aplicamos as técnicas desenvolvidas até aqui nesse estudo.

Vamos calcular a soma dos n primeiros números naturais. Ela pode ser facilmente

calculada aplicando o TFCD.
k

∑
n=1

n =
k+1

∑
n=1

n(1)δn =
n(2)

2

∣
∣
∣
∣

k+1

1
=

(k+1)(2)−1(2)

2
=

(k+1).k−1.0
2

=
k.(k+1)

2
.

1 Para maiores informações sobre funções integráveis, consultar Guidorizzi (1987)
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Da mesma forma, podemos calcular a soma dos termos da P.G.
k

∑
n=1

a1 ·q
n−1 = a1 ·

k+1

∑
n=1

qn−1
δn = a1 ·

qn−1

q−1

∣
∣
∣
∣

k+1

1
= a1 ·

qk−q0

q−1
=

a1 · (q
k−1)

q−1
, com q 6= 1.

Calculamos também a fórmula geral para
k

∑
n=1

n2 e
k

∑
n=1

n3.

Usando o TFCD no primeiro somatório, temos
k

∑
n=1

n2 =
k+1

∑
n=1

n2
δn

Substituindo o somando por potências modificadas (proposição 11) n2 = n(1)+n(2), resulta

k+1

∑
n=1

n2
δn =

k+1

∑
n=1

[n(1)+n(2)]δn =
k+1

∑
n=1

n(1)δn+
k+1

∑
n=1

n(2)δn =
n(2)

2

∣
∣
∣
∣

k+1

1
+

n(3)

3

∣
∣
∣
∣

k+1

1
=

=
(k+1)(2)−1(2)

2
+

(k+1)3−1(3)

3
=

(k+1) · k−1 ·0
2

+
(k+1) · k · (k−1)−1 ·0 · (−1)

3
=

=
(k+1) · k

2
+

(k+1) · k · (k−1)
3

= (k+1) · k ·

(
1
2
+

k−1
3

)

=
k · (k+1) · (2k+1)

6
.

Assim temos que
k

∑
n=1

n2 =
k · (k+1) · (2k+1)

6
.

Da mesma maneira, para calcular
k

∑
n=1

n3, temos:

Utilizando o Teorema Fundamental do Cálculo Discreto, temos
k

∑
n=1

n3 =
k+1

∑
n=1

n3
δn

Substituindo n3 = n(1)+3n(2)+n(3) (proposição 11), resulta

k+1

∑
n=1

n3
δn =

k+1

∑
n=1

[n(1)+3n(2)+n(3)]δn =
k+1

∑
n=1

n(1)+3
k+1

∑
n=1

n(2)δ +
k+1

∑
n=1

n(3)δn =

=
n(2)

2

∣
∣
∣
∣

k+1

1
+3 ·

n(3)

3

∣
∣
∣
∣

k+1

1
+

n(4)

4

∣
∣
∣
∣

k+1

1
=

=
(k+1)(2)−1(2)

2
+3 ·

(k+1)(3)−1(3)

3
+

(k+1)(4)−1(4)

4
=

=
(k+1) · k

2
+(k+1) · k · (k−1)+

(k+1) · k · (k−1) · (k−2)
4

=

= (k+1) · k ·

[
1
2
+ k−1+

(k−1) · (k−2)
4

]

=
(k+1) · k · (k2+ k)

4
=

[
(k+1) · k

2

]2
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Assim temos que
k

∑
n=1

n3 =

[
k · (k+1)

2

]2

.

Finalizamos essa seção com o Teorema das Colunas, visto em Combinatória.

Proposição 12: Seja
(

n

p

)

=
n!

(n− p)!p!
, com n≥ p então

(
n

n

)

+

(
n+1

n

)

+

(
n+2

n

)

+ · · ·+

(
n+ k

n

)

=

(
n+ k+1

n+1

)

Demonstração: Usando a notação de somatório e o TFCD, temos

k

∑
j=0

(
n+ j

n

)

=
k+1

∑
j=0

(
n+ j

n

)

δ j =

(
n+ j

n+1

)∣
∣
∣
∣

k+1

0
=

(
n+ k+1

n+1

)

−

(
n

n+1

)

=

(
n+ k+1

n+1

)

Pois

(
n

n+1

)

= 0. Assim concluimos a demonstração. �

Vimos que todas as técnicas desenvolvidas até aqui foram para calcular esses soma-

tórios de maneira prática. Na próxima seção, vemos uma última ferramenta desse trabalho que é

a fórmula de somação por partes que é o análogo da fórmula de integral por partes do Cálculo e

vemos também sua utilidade ao se calcular somatórios de produto de sequências.

4.3 FÓRMULA DE SOMAÇÃO POR PARTES (FSP)

A fórmula de integral por partes é muito usada para calcular a integral em que há uma

multiplicação de funções. Segundo Guidorizzi (1987), sejam f e g funções reais e deriváveis,

então:
∫

f (x) ·g′(x)dx = f (x) ·g(x)−
∫

f ′(x) ·g(x)dx

Chamamos a versão discreta de fórmula de somação por partes em que é muita usada

no caso que há no somando alguma multiplicação de sequências. Segundo Miller (1960) e Poço

(2008), sejam an e bn sequências, então:

∑an · (∆bn)δn = an ·bn−∑(∆an) ·bn+1δn

Demonstração: Considere a derivada discreta do produto de duas sequências an e bn:

∆(an.bn) = (∆an).bn+1+an.(∆bn)

Aplicamos a antiderivada discreta em ambos os membros

∑∆(an.bn)δn = ∑(∆an).bn+1δn+∑an.(∆bn)δn⇒
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⇒ an.bn = ∑(∆an).bn+1δn+∑an.(∆bn)δn

Organizando os termos, obtemos a fórmula desejada:

∑an · (∆bn)δn = an ·bn−∑(∆an) ·bn+1δn �

Agora vamos fazer um exemplo para aplicar essa fórmula e outros métodos já

estudados, calculando a soma da seguinte P.A.G.:
k

∑
n=1

n ·2n

Se an = n e ∆bn = 2n, temos que ∆an = 1 e bn = 2n, usando o TFCD e a FSP, obtemos que

k

∑
n=1

n ·2n =
k+1

∑
n=1

n ·2n
δn = n ·2n

∣
∣
∣
∣

k+1

1
−

k+1

∑
n=1

2n+1 ·1δn = (n ·2n−2n+1)

∣
∣
∣
∣

k+1

1
=

= 2n(n−2)

∣
∣
∣
∣

k+1

1
= 2k+1(k+1−2)−21(1−2) = 2k+1(k−1)+2.

Dessa maneira, reduzimos o problema de calcular somatórios ao método de calcular

integrais. Antes de concluir essa seção, damos a demonstração para um resultado pendente que

foi usado na proposição 8 do capítulo anterior.

Proposição 13: Se p(n) é um polinômio em n de grau k, então q(n) =
n

∑
m=0

p(m) tem grau k+1

Demonstração:

Seja um polinômio p(m) =
k

∑
i=0

aim
i

Então
n

∑
m=0

p(m) =
n

∑
m=0

k

∑
i=0

aim
i =

k

∑
i=0

n

∑
m=0

aim
i =

k

∑
i=0

ai

n

∑
m=0

mi

Usando a proposição 10 do capítulo anterior resulta

k

∑
i=0

ai

n

∑
m=0

mi =
k

∑
i=0

ai

n

∑
m=0

i

∑
j=0

b jm
( j) =

k

∑
i=0

ai

i

∑
j=0

b j

n

∑
m=0

m( j)

Usando o Teorema Fundamental do Cálculo Discreto no terceiro somatório, obtemos

k

∑
i=0

ai

i

∑
j=0

b j

n

∑
m=0

m( j) =
k

∑
i=0

ai

i

∑
j=0

b j

n+1

∑
m=0

m( j)
δm =

k

∑
i=0

ai

i

∑
j=0

b j
m( j+1)

j+1

∣
∣
∣
∣

n+1

0

Temos que
m( j+1)

j+1

∣
∣
∣
∣

n+1

0
=

(n+1)( j+1)−0( j+1)

j+1
=

(n+1)( j+1)

j+1

Veja que o polinômio ri(n) =
i

∑
j=0

b j
(n+1)( j+1)

j+1
tem grau i+1
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Por fim, concluímos que
k

∑
i=0

ai · ri(n) é um polinômio de grau k+1 �

4.4 EQUAÇÕES DIFERENCIAIS DISCRETAS (EDD)

No Cálculo Tradicional, depois de se estudar derivadas e integrais de funções, temos

as Equações Diferenciais Ordinárias (EDO) que, segundo Miller (1960), são equações do tipo

F [x, f (x), f ′(x), f ′′(x), · · · , f k(x)] = 0,

com f k(x) sendo a derivada de ordem k de f . Essas equações são importantes, pois muitos

movimentos físicos na natureza são descritos por equações diferenciais.

No Cálculo Discreto, temos as Equações Diferenciais Discretas (EDD) ou também

chamadas de equações de diferenças finitas que, segundo Miller (1960), são equações do tipo

F(n,an,∆an,∆
2an, · · · ,∆

kan) = 0,

em que an é uma sequência.

Exemplos:

a) ∆2an−∆an−2an = 8

b) ∆3an +∆2an−2an−an = 0

c) 3∆5an− [∆an]
4+5= n

d) (∆3an) · (an)+5n = 0

Segundo Richardson (1954), uma EDD se relaciona diretamente com uma equação

de recorrência, ou seja, cada derivada discreta é expressa em termos da sequência em questão,

assim temos

∆an = an+1−an

∆2an = an+2−2an+1+an

∆3an = an+3−3an+2+3an+1−an

∆4an = an+4−4an+3+6an+2−4an+1+an

De maneira geral, pela proposição 4 do capítulo 3, temos

∆kan =
k

∑
p=0

bk,p ·an+k−p, em que bk,p =

(
k

p

)

(−1)p

Vejamos um exemplo. Vamos transformar a equação ∆2an +∆an−2an = 8 em uma recorrência.

Substituindo as derivadas, temos

an+2−2an+1+an− (an+1−an)−2an = 8⇒ an+2−3an = 8
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Portanto, o problema de resolver uma EDD se reduz a resolver uma recorrência, pois

as duas podem ser tratadas da mesma forma. Segundo Moreira (2007), o estudo de recorrencias é

muito usado na teoria dos Sistemas Dinâmicos2 e há também aplicações em teoria dos números.

Embora existam várias tipos de equações discretas, no entanto, nesse trabalho focamos nas

EDD’s Lineares que definimos a seguir.

4.4.1 Equação Diferenciais Discretas Lineares

Segundo Richardson (1954), se an e bn são sequências, entendemos por Equação

Diferencial Discreta Linear (ou apenas equação linear) uma expressão do seguinte tipo

∆kan + c1∆k−1an + c2∆k−2an + · · ·+ ck−1∆an + ckan = bn,

em que c1,c2, · · · ,ck são sequências ou constantes que também chamamos de coeficientes.

Chamamos de EDD linear em n de ordem k (ou k-ésima) as equações em que a

derivada discreta de maior grau é igual a k. Vejamos alguns exemplos:

a) ∆2an +∆an−2an = 0 é uma EDD de ordem 2 ou de segunda ordem;

b) ∆3an +∆2an−3∆an−an = 0 é uma EDD de ordem 3 ou de terceira ordem;

c) 3∆5an−∆an +5= n é uma EDD de ordem 5 ou de quinta ordem.

Também podemos redefinir uma equação linear aos moldes de uma recorrência. Seja

an uma sequência, segundo Richardson (1954), uma equação diferencial discreta linear de ordem

k é uma equação do seguinte tipo:

an+k +b1 ·an+k−1+ · · ·+bp ·an+k−p + · · ·+bk ·an = dn

com bn e dn sendo sequências ou constantes. Se dn = 0, ∀n ∈ N, diremos que a EDD Linear é

chamada homogênea.

Exemplos:

a) an+2−an+1−an = 0 é homogênea e tem ordem 2 ou de segunda ordem.

b) an+1−nan = 2 tem ordem 1

A solução de uma EDD, segundo Richardson (1954), é uma sequência que satisfaz a

equação de recorrência. Basta substituir a solução e verificar a igualdade.

Exemplo1: Vejamos que an = c ·2n é solução da seguinte equação an+1−2an = 0, com c sendo

uma constante.

an+1−2an = c ·2n+1−2 · c ·2n = 2n+1(c− c) = 0

2 Área da Matématica que estuda movimentos caóticos
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Exemplo2: an = c1 ·3n + c2 ·4n é uma solução de an+2−7an+1+12an = 0

Substituindo a solução na EDD, resulta:

c1 ·3n+2+ c2 ·4n+2−7 · (c1 ·3n+1+ c2 ·4n+1)+12 · (c1 ·3n + c2 ·4n) =

= 9 · c1 ·3n +16 · c2 ·4n−21 · c1 ·3n−28 · c2 ·4n +12 · c1 ·3n + c2 ·4n =

= 3n · (9 · c1−21 · c1+12 · c1)+4n · (16 · c2−28 · c2+12 · c2) = 0

Já para encontrar soluções de EDD’s, há vários modos assim como nas EDO’s. Por

isso, dividimos por tipos. Primeiro vejamos alguns casos mais simples.

a) Vamos resolver an+1−an = bn, com b constante

Para b 6= 1, temos que

an+1−an = bn ⇒ ∆an = bn ⇒∑∆anδn = ∑bn
δn⇒ an =

bn

b−1
+C, com C constante

Para b = 1, temos que

∆an = 1⇒∑∆anδn = ∑1δn⇒ an = n+C, com C constante.

b) Segundo Richardson (1954), para resolvermos a equação da P.G. an+1−d ·an = 0,

com d constante, multiplicamos a expressão pelo fator d−n−1, que resulta

an+1d−n−1−d−n−1 ·d ·an = 0⇒ an+1d−(n+1)−d−nan = 0⇒ ∆an ·d
−n = 0

Assim, por iii da seção 3.2 temos

an ·d
−n = c⇒ an = c ·dn com c constante.

c) Vamos resolver a seguinte equação ∆2an = 2

Usando a integral discreta em ambos os membros, temos que

∑∆2anδn = ∑2δn

Pelo TFCD temos que ∆an = 2n+C1, com C1 constante

Aplicando novamente a integral discreta e TFCD, lembrando que n = n(1) temos

∑∆anδn = ∑(2n(1)+C1)δn⇒ an = 2 ·
n(2)

2
+C1 ·n+C2, com C1 e C2 constante.

Assim a solução geral é an = n(2)+C1n+C2 ou an = n2+C3n+C2, com C3 =C1−1

São muitas as técnicas de resolução para as mais variadas EDD’s, mas vejamos agora

um tipo em particular, em que damos uma forma de achar uma solução geral para a equação

linear de primeira ordem.



52

4.4.2 EDD Linear de Primeira Ordem

Do Cálculo Convencional, lembramos que, segundo Guidorizzi (1987), sejam f e g

funções reais e contínuas, uma EDO Linear de primeira ordem é uma equação da seguinte forma

dy

dx
− y · f (x) = g(x),

cuja a solução é

y = eF(x) ·

[

k+
∫

g(x)

eF(x)
dx

]

em que F(x) é uma antiderivada para f (x).

Analogamente no Cálculo Discreto, temos a Equação Diferencial Discreta Linear de

primeira ordem que é, segundo Boole (1860), uma equação do tipo

an+1−bn ·an = dn

com an, bn e dn sendo sequências e an 6= 0.

Para acharmos a solução completa, primeiros consideramos a EDD linear homogênea

associada. Assim temos

an+1−bn ·an = 0⇒ an+1 = bnan ⇒
an+1

an
= bn

Escreveremos a expressão obtidas com índices variando de 0 até n.

a1

a0
= b0,

a2

a1
= b1,

a3

a2
= b2, · · ·

an

an−1
= bn−1

Multiplicamos as expressões, obtendo um produto telescópico

a1

a0
·

a2

a1
·

a3

a2
· ... ·

an

an−1
= b0 ·b1 ·b2 · ... ·bn−1

Pela proposição 2 do capítulo 2, temos que
an

a0
= [bn−1]

(n)⇒ an = c · [bn−1]
(n), com c = a0

Para resolver o caso geral, segundo Boole (1860), trocamos a constante c por cn na

solução homogênea e substituimos a EDD linear geral para encontrarmos cn, assim

an = cn · [bn−1]
(n) e an+1 = cn+1 · [bn]

(n+1)

Para an+1−bn ·an = dn temos

cn+1[bn]
(n+1)−bn · cn[bn−1]

(n) = dn ⇒ cn+1[bn]
(n+1)− cn[bn]

(n+1) = dn ⇒

⇒ (cn+1− cn)[bn]
(n+1) = dn ⇒ ∆cn =

dn

[bn](n+1)
⇒ cn = ∑

dn

[bn](n+1)
δn.
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Por fim, como an = cn · [bn−1]
(n) concluimos que a solução geral é

an = [bn−1]
(n) ·

[

∑
dn

[bn](n+1)
δn

]

Vejamos um exemplo. Vamos resolver a seguinte equação: an+1−2an = 3n

Temos que bn = 2 e dn = 3n assim [bn−1]
(n) = 2n e [bn]

(n+1) = 2n+1

A solução é an = 2n ·

[

∑
3n

2n+1δn

]

= 2n ·
1
2

[

∑

(
3
2

)n

δn

]

= 2n ·
1
2
·

1
3/2−1

·

[(
3
2

)n

+C

]

Portanto, a solução geral fica an = 3n +C ·2n, com C constante. A seguir, concluímos o capítulo

com uma breve explanação sobre equações lineares de ordem k.

4.4.3 Solução de uma EDD Linear de ordem k com coeficientes constantes

Segundo Guidorizzi (1988), a solução completa da EDO linear de ordem k com

b1,b2, · · · ,bk constantes e f uma função real

dky

dxk
+b1

dk−1y

dxk−1 + · · ·+bk−1
dy

dx
+bkx = f (x)

é y = yp + yg em que yp é uma solução particular e yg é solução geral da equação homogênea

associada. A solução dessa EDO linear homogênea é y = ec1x+ec2x+ · · ·+eckx no caso3 em que

c1,c2, · · · ,ck são as k raízes reais e distintas do polinômio característico associado.

Para o caso discreto, vimos anteriormente que uma equação diferencial discreta

linear de ordem k pode ser escrita em termos da recorrência

an+k +b1 ·an+k−1+ · · ·+bp ·an+k−p + · · ·+bk ·an = dn,

com b1,b2, · · · ,bk e dn sendo sequências. No entanto, nesse trabalho vemos apenas o caso em

que os coeficientes bk são constantes, pois no caso contrário, segundo Richardson (1954), a

solução dessas equações com grau maior do que 1 em geral não são encontradas.

Vejamos primeiro o caso em que a equação é homogênea. Assim temos que an+k +

b1 ·an+k−1+ · · ·+bp ·an+k−p+ · · ·+bk ·an = 0 com coeficientes constantes. Antes de chegarmos

a solução geral, vejamos uma propriedade importante para as EDD’s lineares homogêneas, que

nos dá a "cara"da solução geral desse tipo de equação.

3 Para ver os outros casos, consultar Guidorizzi (1988)
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Proposição 14: Se An,Bn, · · · ,Pn são soluções de uma EDD linear homogênea e c1,c2, · · · ,cp

constantes, então a expressão c1 ·An + c2 ·Bn + · · ·+ cp ·Pn também é solução dessa mesma

equação.

Demonstração: Vamos provar por indução no número de soluções.

Se tivermos 1 solução An como solução da EDD linear homogênea, temos que

An+k +b1 ·An+k−1+ · · ·+bk ·An = 0

Multiplicando a equação por c1, obtemos

c1 ·An+k + c1 ·b1 ·An+k−1+ · · ·+ c1 ·bk ·An = c1 ·0⇒

⇒ c1An+k +b1 · (c1An+k−1)+ · · ·+bk · (c1An) = 0

Assim c1An também é solução da Equação

Suponha que as p soluções formam a solução c1An + c2Bn + · · ·+ cpPn

Vamos provar que se tivermos as p+1 soluções An,Bn, · · · ,Pn e Rn, então c1An + c2Bn + · · ·+

cpPn + cp+1Rn também é solução da equação homogênea.

Seja Xn = c1An + c2Bn + · · ·+ cpPn, substituindo Xn + cp+1Rn na EDD temos

Xn+k + cp+1Rn+k +b1(Xn+k−1+ cp+1Rn+k−1)+ · · ·+bk(Xn + cpRn) =

= Xn+k +b1Xn+k−1+ · · ·+bkXn + cp+1Rn+1+ cp+1b1Rn+k−1+ · · ·+ cp+1bkRn = 0

É igual a zero, pois, por hipótese, Xn e Rn são soluções para a equação. Assim demonstramos a

proposição. �

Entretanto, segundo Richardson (1954), para achar a solução de uma EDD linear

homogênea, temos que resolver um polinômio característico a ela associada, ou seja, se temos

an+k +b1 ·an+k−1+ · · ·+bk−1 ·an+1+bk ·an = 0, façamos an+k = xk ·an que resulta

xk ·an +b1 · x
k−1an + · · ·+bk−1 · x ·an +bk ·an = 0⇒

⇒ (xk +b1 · x
k−1+ · · ·+bk−1 · x+bk) ·an = 0. Assim obtemos que

xk +b1 · x
k−1+ · · ·+bk−1 · x+bk = 0

Chamamos esse polinômio obtido de polinômio característico associado a EDD

linear homogênea. Se esse polinômio tiver as k raízes reais e distintas c1,c2, · · · ,ck, então a

solução completa da EDD linear homogênea associada é

an = p1(c1)
n + p2(c2)

n + · · ·+ pk(cn)
n

com p1, p2, · · · , pk constantes.

Dessa forma, segundo Richardson (1954), a solução geral da EDD linear é composta

por duas partes chamadas de sequência complementar (SC) e integral particular (IP). Dizemos

que SC é uma sequência complementar quando ela é solução da EDD linear homogênea associada.
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Já a integral particular é uma solução particular da EDD linear. Assim a solução geral é igual SC

+ IP.

Exemplo: Para resolver an+2−5an+1+6an = 5n temos que

A equação característica da equação homogênea é x2−5x+6= 0

As raízes são 2 e 3, SC = c12n + c23n e IP =
5n

6
.

Portanto, a solução geral é an =
5n

6
+ c12n + c23n. Nem sempre é simples achar uma IP para

uma equação em questão. Porém existem alguns métodos para isso que podem ser encontrados

em Richardson (1954) e Boole (1860).

Realmente, o Cálculo Discreto é bem semelhante ao Cálculo Diferencial Integral.

No entanto, é necessário perceber também suas diferenças como foi notado nesse trabalho.

Vimos como os somatórios são resolvidos usando as técnicas utilizadas nas integrais. Da mesma

forma, as equações discretas foram vistas e podem ser resolvidas da mesma maneira que EDO e

recorrências.
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5 CONSIDERAÇÕES FINAIS

Contar e somar fascinou o homem ao longo do tempo. Contar seus próprios pertences

ou objetos a sua frente, somar o dinheiro que tem. O objetivo sempre foi ter um resultado final,

um valor que expressasse uma quantidade total, um número. Adicionar números e calcular áreas

de maneira geral também intrigava principalmente os matemáticos, especificamente quando

essas somas tornavam-se grandes e complexas. Não precisava ter uma aplicação no cotidiano,

bastava um desafio, um tipo de quebra-cabeça. Não é a toa que isso atraiu e ainda atrai as pessoas

para a matemática atualmente.

Por exemplo, calcular 1+2+3+ · · ·+100 pode parecer de imediato algo mecânico

ou enfadonho, mas a empolgação esteve em tentar achar a maneira que facilitasse o cálculo, um

padrão de generalização. No caso citado, a forma foi perceber que 1+100= 2+99= 3+98=

· · ·= 50+51= 101, que é a ideia atribuída a Gauss e também é usada para soma da P.A. Assim,

concluímos que o valor da soma foi 101 ·50= 5050. A ideia é transladar o problema que ainda

não se conhece uma solução para um caso em que já se sabe como resolver. Isso torna o processo

prático e motivador. Isso também nos impulsionou a pesquisar mais sobre o assunto. Também

nos motivou pelo tema, o pouco conhecimento sobre o tema e as dificuldades adquiridas no

início da graduação, pois ao ingressar ao curso com pouco preparo matemático se tornou mais

complicado o desenvolvimento sem a devida ajuda e orientação.

Ao se conhecer o Cálculo Diferencial e Integral, buscou-se aprofundamento nos

estudos de somas de áreas e volumes, principalmente no contexto do Contínuo. Mas ainda

precisou-se de algo a mais para se calcular somatórios. É assim que entrou o Cálculo Discreto,

pois ele que faz o elo entre somatórios e as derivadas e integrais. Ainda mais, pudemos adaptar

as fórmulas do Cálculo Tradicional para o Cálculo Discreto. Ou seja, basicamente reduzimos

o problema de calcular somatórios, que há diversos métodos diferentes, às técnicas básicas de

se calcular uma integral. Assim, um estudante de Cálculo, que familiarizado com o assunto, vê

grande semelhança entre o Cálculo Discreto e Tradicional. Já, para os não familiarizados com o

tema, como por exemplo, os alunos do ensino médio, também não há preocupação, pois basta ter

um breve conhecimento sobre sequências para o acompanhamento do texto.

A partir de tudo isso, foi traçado um objetivo que foi, com essas ferramentas, calcular

os somatórios, ou seja, achar uma fórmula geral que usasse apenas operações elementares. Assim,

surgiu a necessidade de conhecer derivada e integral discreta e, com elas as suas propriedades e

teoremas relacionados.
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Para alcançar tal meta, começamos uma pesquisa bibliográfica, e verificamos que

havia pouco material em língua portuguesa no Brasil sobre o assunto. Já de imediato, também

houve a preocupação de deixar o texto acessível, claro e objetivo para todos aqueles que tem um

conhecimento básico de matemática. O que parecia ser um obstáculo tornou-se um favorecimento,

pois uma vez concluído o trabalho, espera-se que o mesmo seja uma boa contribuição ao Cálculo

Discreto para este idioma.

Uma das dificuldades enfrentadas ao longo dessa pesquisa foi o pouco material em

português sobre o Cálculo Discreto, pois a maioria dos livros encontrados abordava apenas

alguns tópicos de maneira bem objetiva e suscinta. Por isso, recorremos também a autores de

língua inglesa, em que foi necessária a tradução desses materiais. Também o texto foi produzido

na plataforma LATEX, assim tivemos o esforço e o empenho para a formatação do mesmo.

Apesar de haver referências externas, o texto é autocontido no geral. Assim, não

há necessidade inicialmente de fontes exteriores para a compreensão, pois dentro do trabalho

houve toda uma construção das ferramentas e métodos a serem usados. Pois, começamos pelo

conceito de sequência e em seguida pelos somatórios, onde foram dadas várias propriedades.

Após isso, demonstramos vários resultados sobre derivadas discretas que foram a base para a

teoria. No capítulo de integral foi feito um paralelo do somatório com a integral discreta e assim

conseguimos a concretização dos objetivos traçados. Ainda fomos um pouco mais além, porque,

a princípio, não estava prevista a seção de Equações Diferenciais Discretas.

Contudo, esperamos que esse texto possa ajudar na pesquisa e no estudo de Cálculo

e Matemática Discreta e possa servir de referência a muitos outros que serão produzidos. Este

estudo pode ser usado principalmente como curso complementar ao Cálculo Diferencial e

Integral ou Análise Matemática ou um aprofundamento ao assunto de progressões. Esperamos

também que haja continuidade e um detalhamento dos tópicos abordados nessa pesquisa, seja

por nossa parte ou por terceiros, pois há muito o que ser explorado sobre o tema, como por

exemplo, Geometria Discreta. Esperamos que os estudantes, não só de Matemática, mas também

de Física, Computação, Estatística e das Engenharias, bem como professores de Matemática e

estusiastas no geral, possam utilizar esse texto como instrumento e auxílio nas suas atividades

relacionadas ao tema.

Por fim, mesmo em meio as dificuldades e obstáculos enfrentados, para nós é

uma grande satisfação ter aprendido um assunto tão fantástico, mas pouco conhecido, e poder

contribuir com o mesmo na reunião e na divulgação desses conteúdos que resultaram nesse

estudo.
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