Muhammad Farzaib Khan

Full-Stack Web Developer

Linkedin: https://www.linkedin.com/in/muhammadfarzaibkhan98/

GitHub: https://github.com/jrvs98

EXPERT PORTFOLIO CASE STUDY:
HEADLESS E-COMMERCE
ADMINISTRATION PLATFORM

|. PROJECT SYNTHESIS: SCALABLE OPERATIONS FOR
SPECIALIZED RETAIL

Project Mandate: To develop a scalable, internal administrative platform for a specialized
lighting web shop. The system needed to manage complex inventory (e.g., certifications,
detailed variants) and high-volume order fulfillment without system lag or data integrity
issues.

Architectural Strategy: Headless Commerce & Microservices:

A Headless Commerce architecture was implemented to decouple the administrative interface
(Admin Ul) from the core business logic (Commerce Engine). This strategy maximizes
operational efficiency and flexibility. The system utilizes a Microservices-Ready Architecture
built on the JavaScript ecosystem, capitalizing on Node.js for high performance and horizontal
scaling.

[l. TECHNOLOGY STACK AND ARCHITECTURAL

https://github.com/jrvs98

JUSTIFICATION

The system was built on a variant of the MERN Stack philosophy, ensuring consistency and
performance across the entire development lifecycle.

Stack Component

Tool/Technology

Strategic Rationale

Runtime/Framework

Node.js / ExpressJS

Event-driven, non-blocking
I/0 ensures high
concurrency for real-time
order/inventory processing.

Database

MongoDB (NoSQL)

Provides a flexible schema
necessary for storing rich,
rapidly evolving product
attributes specific to the
lighting industry (e.g.,
wattage, certifications),
preventing disruptive
schema migrations.

Frontend Ul

ReactJS / Specialized
Admin Framework (e.g.,
Refine.js)

Selected for building
complex, data-intensive
enterprise interfaces and
maximizing development
velocity through
scaffolding.

Code Integrity

TypeScript

Enforced type safety
across both frontend and
backend services to
mitigate runtime errors,
critical for financial and
inventory logic.

Ill. CORE FUNCTIONAL IMPLEMENTATION (FEATURE

SHOWCASE)

The platform was engineered into distinct, high-integrity modules, validated by the
administrative interfaces implemented:

1. Product Information Management (PIM) & Catalogue Service

The PIM system manages the complete product lifecycle. Its backend leverages MongoDB'’s
flexible structure to handle complex lighting variants.

e Product Creation/Editing: The Add Product interface provides comprehensive fields for
product title, rich text description, meta tags (SEQO), pricing, model, and variations.

Add Product

Enter Product Title

Enter Product Tag

0 0 Enter Model 0

Warranty Tab

e Category Management: Dedicated interfaces for managing product categories and
brand associations ensure structured inventory organization.

2. User Management and Security (RBAC)

A centralized Role-Based Access Control (RBAC) system was implemented to manage
security and access to sensitive data, reducing internal risk.

e Authentication Gateway: A distinct Login page acts as the access gate, securing all
administrative functionality.

Login

Login to your account to continue.

Email Address

e User Profiles: The My Profile and Customers interfaces allow administrators to manage

personal details, security credentials (passwords), and business information, confirming
granular user management capabilities.

My Profile

Enter Pdduss

First Name

Last Name Email
Email Address Phone Number
Phone Number Current Password

New Password New Password

Business Details

‘Company Name

Business Address

Encoress Address

3. Operational Settings and Configuration

The system includes specialized modules for critical business and technical settings, ensuring
localization and operational control.

e System Configuration: The Settings page manages global parameters, including default
currency, contact emails, timezone, and language.

Settings

Store Name General Settings

Store Name Default Currency

Contact Email

Store Information Locaization

Default Currency
Timezone

Contact Email

Language

a System Preferences
Fneius
Email Model | Enable User Registration

Email Notifications

Email Notifications

e Preferences: Includes toggles for Enable User Registration and Email Notifications,
demonstrating fine-grained control over system behavior.

4. Order and Inventory Control

The order processing engine utilizes Node.js’s event-driven capabilities to ensure immediate,
reliable synchronization of stock levels and order status, crucial for timely fulfillment.Inventory
services include sophisticated alerting logic for low-stock scenarios.

IV. ACHIEVEMENTS AND FUTURE SCALABILITY

Non-Functional Achievements:

e Performance: Node.js’s superior I/O handling ensured the administrative dashboard
remained high-performing and responsive, even under high transactional load.

e Data Integrity: The application of TypeScript across the stack ensured consistency,
significantly reducing data flow errors in high-stakes inventory and financial workflows.

e Scalability: The stateless microservices design allows for simple horizontal scaling
(containerization), future-proofing the platform for sustained business growth without
costly overhauls.

	​​Muhammad Farzaib Khan
	Full-Stack Web Developer
	
	LinkedIn: https://www.linkedin.com/in/muhammadfarzaibkhan98/
	GitHub: https://github.com/jrvs98
	EXPERT PORTFOLIO CASE STUDY: HEADLESS E-COMMERCE ADMINISTRATION PLATFORM
	I. PROJECT SYNTHESIS: SCALABLE OPERATIONS FOR SPECIALIZED RETAIL
	II. TECHNOLOGY STACK AND ARCHITECTURAL JUSTIFICATION
	III. CORE FUNCTIONAL IMPLEMENTATION (FEATURE SHOWCASE)
	1. Product Information Management (PIM) & Catalogue Service
	2. User Management and Security (RBAC)
	3. Operational Settings and Configuration
	4. Order and Inventory Control

	IV. ACHIEVEMENTS AND FUTURE SCALABILITY

