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Research on crack monitoring at the trailing edge
of landslides based on image processing

Abstract Currently, the frequency of landslides is increasing. Sci-
entific monitoring methods are playing an essential role in effec-
tively reducing landslide disasters. This paper proposes a method
for identifying the cracks at the trailing edge of a landslide (TEL)
based on image processing technology and adopts the custom
interval median comparison algorithm (IMCA) to calculate the
crack motion parameters. First, we perform a series of processes
on the TEL images, including image preprocessing, Otsu’s algo-
rithm processing, and Canny edge detection processing, to identify
the outline of the TEL. Then, we propose using the azimuth and
displacement to characterize the motion of the cracks and using
the IMCA to calculate the changes before and after motion of any
two groups of cracks. Finally, we design a computer program using
a free and open-source widget toolkit (named QT platform) based
on the calculation model that corresponds to the proposed meth-
od, and we apply the crack monitoring test to a 3D simulation
model, a gravel model, a soil model, and a collapsed body of the
Panzhihua Airport landslide in southwestern China. From the
results, it can be assessed that the method can identify the outline
of the TEL and calculate the azimuth and displacement of two
crack curves before and after motion. These two parameters can
describe the movement of the trailing edge cracks of the moni-
tored landslide. Thus, this method can be used in early warning
system for landslide hazards.

Keywords Trailingedgeofa landslide . Motionexpression . Otsu’s
algorithm . Interval median comparison algorithm . Image
processing technology

Introduction
From a global perspective, landslides remain one of the main
natural disasters (Centre for Research on the Epidemiology of
Disasters - CRED 2019). Large-volume landslides represent a per-
sistent threat to human settlements and infrastructures in many
mountainous areas worldwide; examples of such landslides in-
clude some of the landslides triggered by the May 2008 Wenchuan
earthquake, such as the Daguangbao landslide (Yin et al. 2009;
Huang and Fan 2013); the August 6, 2010, Mount Meager rock
slide-debris flow in Canada (Guthrie et al. 2012); the March 22,
2014, Oso landslide in USA (Iverson et al. 2015); and the June 24,
2017, Xinmo landslide in China, which buried 64 houses, killed 10
people, and left 73 more people missing (Fan et al. 2017). There-
fore, conducting landslide monitoring and early warning research
is crucial for disaster prevention and mitigation.

When a landslide occurs, ground cracks (which often exist as a
crack cluster that is also known as the crack zone) are formed
between the sliding body and the stable body, which are generally
curved due to the mechanical expansion (Zhou 2004). If the
trailing edge has intermittent cracks and the crack length tends
to be constant, the landslide has just begun to form. If thorough
cracks occur at the trailing edge and the crack length increases, the

landslide is in a state of continuous deformation. Therefore, mon-
itoring the trend of the length of the trailing edge cracks of a
landslide can reflect the displacement trajectory of the landslide
body in a timely manner to provide early warnings for landslide
disasters. Displacement monitoring techniques applied to land-
slides can be broadly subdivided in two main groups: geodetic
and remote sensing (RS) techniques.

Geodetic surveying detects geometrical changes in landslide
topography by measuring angles, distances (crack monitoring),
or differences in elevation. Crack monitoring technology is widely
used in the health assessment of infrastructures, such as roads,
bridges, and tunnels. This technology is mainly used to monitor
concrete cracking (Mohammad and Huang 2010; Gavilán et al.
2011; Wang et al. 2018; Qu et al. 2018) and to achieve the goal of
disaster early warning. In landslide warnings, the traditional crack
monitoring method involves installing tilt and displacement sen-
sors on the landslide body to obtain the deformation data of the
landslide in real time (De Dios et al. 2009; Yin et al. 2010; Wang
et al. 2013; Ramesh 2014; Chen et al. 2015; Benoit et al. 2015), based
on which the crack motion is evaluated. There are several disad-
vantages in this method: (1) high costs if we use high-precision
sensors to obtain accurate deformation data, (2) presence of blind
zones because the number of sensors in an arrangement is finite,
and (3) low reuse rate of the sensors. Landslides will bury and
damage sensors so that they may not be reused for long-term
monitoring. Therefore, a more cost-effective way needs to be
identified to achieve the target of monitoring the vast areas of
landslides (e.g., the southwestern mountains area of China).

RS techniques are of interest as a possible operational tool to
obtain spatially distributed information to deal with landslide
monitoring, and there are three operation platforms: space-
borne, air-borne, and ground-based platforms. RS techniques
give the possibility to divide the unstable and stable areas in the
landslide (Casson et al. 2005; Colesanti and Wasowski 2006;
Wang 2009; Ghuffar et al. 2013; Pfeiffer et al. 2019). In recent
years, the ground-based RS techniques are becoming more and
more popular for landslide monitoring due to the flexible ac-
quisition frequency and geometry, which can be adapted to any
type of local environment (Delacourt et al. 2007). In addition,
the ground-based platform can confirm whether there is real
deformation of the landslide (Xu et al. 2019). They can be
roughly subdivided in several main categories in landslide mon-
itoring: ground-based synthetic aperture radar interferometry
(GB-InSAR), terrestrial laser scanning (TLS), and terrestrial
optical photogrammetry (TOP).

GB-InSAR is for the deformation monitoring of slopes
(Noferini et al. 2006), tectonic (Massonnet et al. 1993), and volca-
noes (Wadge 2003), etc. In 2003 (Tarchi et al. 2003), a landslide was
monitored by GB-InSAR for the first time. It can reach high data
accuracy possible (millimetric accuracy) and work during the
night and any type of weather conditions while require a large
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initial investment and skilled crew for operation. Readers can find
the principle in (Pieraccini et al. 2001; Tarchi et al. 2003) and the
current applications in (Ferrigno et al. 2017; Frodella et al. 2018;
Pieraccini and Miccinesi 2019).

TLS can produce good results for landslide deformation mon-
itoring (Prokop and Panholzer 2009), thanks to its capability to
derive from the acquired point cloud an accurate and regularly
structured digital elevation model (DEM) of land surfaces (Briese
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2010). The technology can be high data accuracy and provide an
easily understandable image, while it needs skilled crew for

operation and a large amount of computational resources for
spatial data visualization (Travelletti et al. 2012).

Fig. 3 A sample image of a landslide crack monitor and its histogram, before and after image histogram equalization. Image size = 256 by 256. X-axis: 0 = black, 255 =
white. Y-axis: the number of pixels (was compressed to 0–255)
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TOP consists in acquiring digital RGB images represented using
a matrix of intensity values recorded at each pixel of the charge-
coupled device (CCD) of the camera from a spot very close to the
ground (Jiang et al. 2008). It costs much lower than GB-InSAR and
TLS. And it can compute 2D displacement fields. The major
drawbacks of TOP are (1) weather and illumination changes affect
the images quality and (2) the ground control points (GCP) are
necessary for camera calibration. In recent years, some techniques,
such as machine learning, computer vision, and pattern recogni-
tion, are combined with TOP. These new techniques have a great
potential to provide topographic information for geoscience ap-
plications at significantly lower costs than classical topographic
and laser scanning surveys (Stumpf et al. 2015).

Terrestrial surveys by total stations and GNSS receivers are
other most widely used and well-known techniques for monitoring
landslides. They are useful when we have to measure the positions
of single points which are materialized on the terrain. The accu-
racies achieved using these surveying methods are very high, but
the points that can measure are few and they must be accessible
(Barbarella and Fiani 2013).

A digital image processing method was proposed in the 1950s.
This method uses image data collected by cameras and other
image acquisition devices as a data source to extract the target
area information using operations such as image denoising, image
enhancement, and image segmentation. This method has been
widely used in road crack detection and bridge crack and defor-
mation monitoring (Peng et al. 2015; Cho et al. 2016). This method
can replace the fixed-point sensors, and it has a wider monitoring
area with a more remarkable effect. Therefore, researchers have
tried to combine this method with GIS and satellite remote sensing
images for landslide monitoring. For example, Rawat et al. (2017)
introduced a method for developing landslide models using multi-
criteria decision analysis in GIS and remote sensing techniques. In
this method, the landslide merged data from 2011 to 2012 were
visually interpreted by satellite images to establish digital elevation

maps (DEMs) with different grades to monitor landslide deforma-
tion. Riedel et al. (2010) combined image processing technology
with spatial analysis technology by segmenting an original land-
slide image into partial images and eliminating interference
factors, such as drainage channels, highways, and old slips, to
obtain new slips on the image. Stumpf et al. (2013) used high-
precision subdecimeter spatial resolution aerial image as the car-
rier and divided the landslide motion into three basic modes:
stretching, sliding, and tearing. This method adopted edge
detection algorithms, such as the Canny and Sobel operators, as
the processing chain to distinguish target cracks and vegetation.
Rothmund et al. (2017) processed multi-temporal high-resolution
aerial images to obtain multi-temporal 3D point clouds and multi-
time orthogonal mosaic renderings in order to map slowly moving
alpine landslides.

Based on these previous studies, some researchers have also
proposed improved algorithms to promote monitoring. James
et al. (2017) proposed a structure-from-motion algorithm (SFM),
which effectively detects and eliminates stepped artifacts close to
50 mm by automatically and semi-automatically identifying
ground control points (GCPs) in images to effectively monitor
the speed changes of landslides. Gance et al. (2014) proposed a
target detection and tracking (TDT) algorithm for the fast detec-
tion of a target’s continuous displacement at subpixel precision in
landslide images. Yang and Chen (2010) proposed a method to
detect the distribution of landslide changes by detecting vegetation
change after landslide event. This method subtracted images be-
fore and after a landslide event to obtain the pixel variation range
of the landslide activity. The modal filter is used to suppress the
boundary error to determine the final landslide distribution map.

In summary, for landslide, the abovementioned methods pay
more attention to landslide identification, deformation, and mo-
tion monitoring. In general, the scale of the research is large. The
objective of this work is to focus on how to monitor the trailing
edge of a landslide (TEL) based on image processing techniques.
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Fig. 6 Schematic diagram of IMP
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First, we propose a set of data methods for processing the TEL
images. Then, through four sets of case studies, we verify the above
method and give the limitations. In addition, the paper also stud-
ies the expression of the motions of the trailing edge cracks of the
same landslide body at different stages.

The research plan for this paper is shown in Fig. 1.
First, a high-precision camera is erected in front of the

landslide scene to directly obtain landslide images for each
stage of the landslide event, as shown in Fig. 2. Then, the
preprocessing, morphological processing, and edge detection
techniques in the image processing method are used to accu-
rately and effectively identify the sequential curves of the TEL at
various stages. Finally, the changes in the displacement and
azimuth angles that are generated by the curves between adja-
cent stages are calculated by the interval median comparison
algorithm (IMCA, the details will be given in the “Motion
displacement” section) and aggregated into a model to reflect
the overall landslide movement.

Here, we further discuss about the image preprocessing. Our
goal is to detect the crown of the TEL. In computer vision and
image processing, the image morphology processing and edge
detection methods can achieve that goal. Actually, morphology,
which is also known as image algebra, is a mathematical tool for
analyzing binary images. The basic idea is to use a structural
element with a certain shape to measure and extract the corre-
sponding shape in the image for image analysis and recognition.
Therefore, we need to identify one method to convert the input
color images into binary images. Our image preprocessing is
specially designed for this conversion, and it includes four steps:
the image graying (IG), image histogram equalization (IHE), image

median filtering (IMF), and image binarization (IB). The goal of IG
is to convert the color images to black and white images (one kind
of grayscale image), which reduces the amount of data for com-
puting. The IHE function enhances the contrast of the image to
make the details of the gray areas in the image clearer. IMF is a
nonlinear smoothing technique to eliminate the images’ noise. IB
converts the grayscale images to binary images, which can then be
processed in the next step: morphology processing and edge
detection.

The rest of the paper is organized as follows. First, the “Meth-
odology” section introduces the proposed research methods in
details, including the image processing steps, corresponding algo-
rithms, crack motion expression, and QT-based test software
based on the above processing steps. Then, the “Case study”
section introduces the case study and uses four scenarios to
validate the approach that is described in the “Methodology”
section. Finally, the conclusions are presented in the “Conclu-
sions” section.

Methodology

Image preprocessing of landslide cracks
It is well known that from the point of view of color, the trailing
edge portion of a landslide exposes the color of the rock and
soil. In contrast, the relatively stable inactive parts usually have
color difference. For example, the trailing edge of a landslide in
southwestern China is usually covered by vegetation. This fea-
ture provides a theoretical basis for the identification of the
crack curve of the back edge of a landslide based on image
processing.

Fig. 7 a A sample image of a landslide. b The image after Canny edge detection and feature recognition. c The image after target curve shaping

Fig. 8 Schematic diagram of one TEL’s angle indicator line
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Image graying
Since CCD images are color images, the amount of calculations
required for processing these images is large, which results in a
slower computer processing speed. Therefore, we usually convert
CCD color images into corresponding grayscale images for pro-
cessing (Cheng et al. 2001). We name this process IG. The most
often used image graying method is the weighted averaging meth-
od, which performs a weighted averaging of the three-channel
component of the color image to obtain a grayscale image. The
expression formula of the grayscale image is as follows (consider-
ing the physiological structure of the human eye) (Saravanan
2010):

f ¼ 0:299Rþ 0:587Gþ 0:114B ð1Þ

where R, G, and B are the values of the red, green, and blue color
channels of the pixel, respectively.

Image histogram equalization
It is well known that an image with a uniform distribution of gray
values generally has a high contrast ratio. Image histogram equal-
ization is a method that transforms a grayscale image into a new
image with a uniform distribution of gray histograms. The basic
idea is to broaden the gray level of the image with more pixels and
to compress the gray level of the image with fewer pixels (Sim et al.
2007), thereby expanding the dynamic range of the original value,
improving the contrast, and making the image clearer. The image
gray level broadening effect is shown in Fig. 3.

Figure 3 a and b show a landslide crack monitor’s image with its
equivalent histogram. The output image of the input image after
IHE is given in Fig. 3 c and d. The grayscale of Fig. 3b is concen-
trated. After IHE processing, a graph d with a more uniform gray
distribution is obtained, which corresponds to a higher contrast.
This result demonstrates the performance of the IHE method at
enhancing the contrast of an image through dynamic range
expansion.
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Image median filtering
IMF is a nonlinear smoothing technique (Sun and Neuvo 1994; Tao
et al. 1999), which essentially uses the median value of the gray-
scale rank value of the neighborhood pixel of the target pixel as the
new grayscale value of the target pixel, in order to eliminate the
image noise. The example of a 3 × 3 neighborhood matrix is shown
in Fig. 4a. This kernel is also called the structural element. First, we
sort the 8 neighborhood gray values x1–x8 and x0 of the target

pixel point P (x, y) (the gray value is x0) from small to large, as
shown in Fig. 4. The median value Y4 of the new sequence is then
taken as the new gray value of the target pixel point P (x, y) after
IMF.

Next, we follow the same principle. The structural element is
traversed through the original image (as shown in Fig. 5), and the
new gray value of all target pixels is obtained. In this way, the
image noise can be smoothed.

-2 -1 0 +1 +2

Benchmark

After sliding

Before sliding

a b c d e

M

A B C D E

Fig. 11 Schematic diagram of TECL’s pixel point displacement
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It should be noted that the larger the structural element is, the
better the processing effect on noisier points is. However, if the
structure element is too large, it is easy to cause image distortion
and lose information. Therefore, the size of the structural element
should be set according to the actual situation. Common structural
element sizes are 3 × 3, 9 × 9, and so on.

Image binarization
IB is an image segmentation method, which is used to enhance the
characteristics of the target image (Gatos et al. 2006). We compare
the gray value of the pixel with the threshold value. If the gray
value is less than the threshold value, the gray value is set to 0.
Otherwise, the gray value is set to 255, which makes the image
appear in only black or white. The appropriate selection of the
threshold plays an essential role in image binarization. One pop-
ular thresholding method is the Otsu algorithm (Otsu 1979; Sezgin
and Sankur 2004). The basic steps are as follows. (1) We use a
threshold T to separate the image into two parts: foreground and
background. (2) Then, we calculate the interclass variance between
the foreground and background regions. (3) When the interclass

variance is the largest, the difference between these two parts is
also the largest, where the T is the optimal threshold. This method
can minimize the probability of misclassification between the
foreground and background regions. In addition, Otsu provides
an adaptive threshold, which can automatically calculate a recom-
mended threshold based on the characteristics of the input image.
This function is beneficial for landslide image processing.

It should be noted that, for general CCD images that are
captured by cameras, because of the objective factors such as
focusing and light, the threshold that is calculated by the Otsu
algorithm is not necessarily the best. We can dynamically adjust
the threshold size to obtain the best binarization effect. In other
words, we (users) can fine-tune the left and right to better segment
the foreground area (e.g., rock and soil) and background area (e.g.,
vegetation).

Image morphology processing and edge detection

Image morphology processing
The most basic operations in morphology include dilation and
erosion which process the white area of the image (the highlighted
part) and not the black area. Dilation expands the highlighted part
of the image. Dilation combines all background points that are in
contact with the foreground area into the object and can be used to
fill the holes in the foreground area. Erosion is a process of
shrinking the boundary inward and can be used to eliminate small
and meaningless foreground areas.

To show the effects of dilation and erosion, we used a black
marker to draw a picture on white paper and then preprocessed it
using the IG, IHE, IMF, and IB methods. Considering that the
object of the dilation and erosion processing is white, we ex-
changed each pixel value, e.g., 0 to 255, and 255 to 0, to form Fig.
6a.

Figure 6 shows a diagram of the effect of the closure opera-
tion (dilation followed by erosion) on the binary image of the
hand-drawn test image that includes some noise (not just salt
and pepper noise). It can be seen from the figure that the small
foreground outline in region A’ is obviously larger than that in
A foreground outline. Because of the erosion effect, the small
foreground outline has basically disappeared in region A”.

Fig. 13 Original landslide picture

I-a. after IG I-b. after IHE I-c. after IMF(3×3) I-d. after IMF(9×9)

I-e. after IB(100) I-f. after IB(124) I-g. after IB(127) I-h. after IB(160)

Fig. 14 Processed images (I)

Technical Note

Landslides 17 & (2020)992



Therefore, the closure operation is often used to connect near
foreground areas and to eliminate the small voids without
changing. To better describe the trend of the crack curve on
the TEL, this paper adopts the closure operation method to
conduct the process.

Edge detection
Edge detection (Marr and Hildreth 1980) uses the discrete gra-
dient approximation function to find the gray jump positions of
an image’s gray matrix according to the gradient vectors of the
two-dimensional gray matrix, and then connects the points of
these positions to constitute the edge. Nevertheless, we can
hardly see the ideal gray jump. In addition, most sensors have

low-frequency filtering characteristics, which will make the step
edge become a sloped edge, and it seems that the intensity
change is not instantaneous, but rather it spans a certain dis-
tance. Therefore, filtering is performed first in edge detection.
Compared with mean filtering and median filtering, Gaussian
filtering can preserve the overall gray distribution characteris-
tics of the image and improve the edge detection accuracy. In
addition, landslide CCD images may be acquired at low illumi-
nation levels, and this acquisition environment is more likely to
introduce Gaussian noise. Therefore, here, we adopt the Gauss-
ian filter. The Canny operator (Canny 1986) is the most com-
monly used edge detection algorithm that also uses Gaussian
smoothing. The steps are as follows:
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Step 1: Gauss denoising

To reduce the noise interference, Gaussian denoising process-
ing is required for the image. The smooth image is obtained by the
convolution of the Gauss function and the image. The two-
dimensional Gauss function formula is as follows:

Gi x; yð Þ ¼ 1
2πσ2

e
− x2þy2ð Þ

2σ2 ð2Þ

Step 2: amplitude and direction

According to the Canny algorithm, when processing grayscale
images, we can use the first-order finite difference to calculate the

gradient values (i.e., the rate of change of grayscale values). That is,
we calculate the differences between adjacent pixels in the x and y
directions instead of calculating the first derivatives in the x and y
directions. Therefore, the gradient amplitudes along the x and y
directions are as follows:

P x; y½ � ¼ f xþ 1; y½ �− f x; y½ � þ f xþ 1; yþ 1½ �− f x; yþ 1½ �
2

Q x; y½ � ¼ f x; y½ �− f x; yþ 1½ � þ f xþ 1; y½ �− f xþ 1; yþ 1½ �
2

ð3Þ

where f[x, y] is the gray value of the pixel (x, y). Thus, the ampli-
tude and direction of the point are as follows:
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Fig. 16 Processed images of the 3D model
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M x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P x; y½ �2 þ Q x; y½ �2

q

α x; y½ � ¼ arctan
Q x; y½ �
P x; y½ �

� � ð4Þ

Step 3: nonmaximum suppression

The global gradient is not enough to determine the edge. It also
needs to suppress the nonmaximum value and retain the local
gradient maximum point, which can make the image edge thinner
and remove most of the false edges.

Step 4: double threshold detection

The method for reducing the number of false edges in the
Canny algorithm uses double thresholds: t1 and t2 (t1 < t2). If the

amplitude of pixel T is lower than t1, T is retained as an edge
pixel. If the amplitude of pixel T is higher than t2, T is
discarded. If the amplitude is between t1 and t2 and the connec-
tion of the pixels is larger than t1, T is retained as an edge pixel;
otherwise, it is discarded. Here, we use the Otsu threshold as the
high threshold t2 and half of the Otsu threshold as the low
threshold t1.

Feature recognition
An image that is processed by Canny edge detection contains
many image regions that are composed of neighboring fore-
ground pixels, which are defined as connected regions. To better
describe this procedure, we use one landslide photo as the input
image and the processed images are also given in Fig. 7.

As seen from Fig. 7b, there are two types of connected regions: a
connected region Re, including a trailing edge crack curve (white
curved line), and a connected region Rn, including an interference
curve (white small circle). The task of this step is to eliminate the
interference connected region Rn and extract the connected region
Re including the trailing edge.

We assume that the height of image b is H pixels, and the
width is W pixels. We project each Ri in graph b into the H and

W directions of the image to obtain H
0
i and W

0
i, respectively, and

then calculate the following: PHi ¼ H
0
i=H and PWi ¼ W

0
i=W . Here,

we want to artificially set two references PH and PW. For any Ri,
if PHi ≥P

H and PW
i ≥PW , the foreground area package contains

the crack curve. Otherwise, it is not considered to be the fore-
ground connected area where the cracks are located.

From the actual characteristics of a landslide image, we know
that Rn is much larger than Re. Therefore, we usually set P

H and PW

to be greater than or equal to 1/2. We have designed the software
interface to set these two parameters (please see the Cp setting in
Fig. 12).

Target curve shaping
The number of white edge points and the coordinates of the pixel
points are obtained by progressively scanning the crack curve of
the trailing edge of a landslide from top to bottom. The set of
coordinates are called the set of pixels of the crack curve of the
trailing edge of the landslide (see Fig. 7c).

Crack motion expression
The cracks that we study here are those that are distributed at
the trailing edge of the landslide and that are perpendicular to
the main sliding direction, which are formed by the material
sliding down along the sloping rock under the effect of gravity.
Monitoring the crack trajectory can better predict the direction
of the slide. To better describe the crack motion, we have
defined two parameters: the azimuth and motion displacement.

Azimuth definition
Exploring the azimuthal variation of the outline of the TEL can
predict the possible sliding direction of the cracks at the trailing
edge of a landslide. To the best of our knowledge, the scientific
literature lacks a method to define the trailing edge of a landslide.
Therefore, this paper customizes an algorithm to define its
azimuth.

Fig. 17 Curve based on calculated data (3D model)

Fig. 18 The gravel landslide model
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As shown in Fig. 8, we note that the highest point of the TEL is
T, the two endpoints are M and N, the midpoint of MN is O, and
the connection OT is used as the angle indication line of the TEL.

As shown in Fig. 9, we assume that the landslide has a new slide
along the main sliding direction, causing the crown of the trailing
edge to change from #1 to #2. Referring to the practice in Fig. 8, we
extend the two angle indicator lines, and the angle α between the
two lined represents the azimuth of this slide.

Motion displacement
During landslide development, the cracks at the trailing edge of
the landslide tend to undergo unpredictable deformation along
with the movement of the sliding body, including but not limited
to, front and rear movement, left and right movement, crack
coverage (or even disappearance), new cracks development, etc.
How to determine the correspondence between the pixel points of
the crack curve before and after the motion becomes the key point
of the postimage processing.

We know that there may be curve turning (as shown in Fig.
10) in the identification of the trailing edge crack curve of the
landslide. As shown in the red dashed box in Fig. 10, at the
beginning, the curve extends in the negative direction of the X-
axis. After passing point A, the curve begins to extend in the
positive direction of the X-axis. Therefore, in this curve turning

area, the curve has the characteristics of a multivalued function.
For example, the functional values of x1 are a1 and a2. The
problem is which value should be used to calculate the motion
displacement. Therefore, this paper proposed the custom IMCA
to eliminate curve turning. The specific steps of the IMCA are as
follows.

First, we need to convert the trailing edge crack curve into a
monotonous curve. When a turn occurs on the crack curve, we
take the average value of all the y values corresponding to x as the
new y value. Take Fig. 10 for example. The y values to which x1
corresponds are a1 and a2, and the y values to which x2 corre-
sponds are b1 and b2. Therefore, we use the average of a1 and a2
and the average of b1 and b2 as the new y values a and b,
respectively. In this way, the whole turning zone in a curve can
be traversed with respect to x to form a new fitting curve l′ (blue
line).

Then, we calculate the distance value before and after the
displacement of each pixel on the curve. Since the correspondence
between each pixel point cannot be strictly tracked before and
after the landslide motion, the displacement interval is used to
determine the possible displacement change of the pixel. As shown
in Fig. 11, we assume a pixel point M. After one sliding, the possible
positions of the pixel are A, B, C, D, and E, and each point is
separated by 1-pixel unit.

#1 #2 #3 #4 #5

Original 
images

after IG

after IHE

after IMF

(17*17)

(79)

(17*17)

after IB

(145) (138) (119)

after 
Dilation

(17*17)(17*17)(17*17)

(111)

Fig. 19 Processed images of the gravel model

Landslides 17 & (2020) 997



Finally, the distances a, b, c, d, and e between the reference pixel
point (M) and the five possible displacement points (A, B, C, D,
and E) are individually calculated. The minimum value min{a, b,
c, d, e} and the maximum value max{a, b, c, d, e} are selected as the
displacement change interval of the reference point.

Conversion of image scale and physical scale
The algorithms that are mentioned in this paper all use pictures as
the processing source, and the displacement results that are cal-
culated by computer programs are all in pixels. Therefore, the
image scale data needs to be converted into physical scale data.

The scale conversion relationship actually indicates how many
physical distances are represented by one pixel (Li 2006). Here,
scale theory is used for the relational transformation. If the scale
conversion parameter is k, x1 and y1 are the image scale lengths
and x2 and y2 are the physical scale lengths.

K ¼ x1
x2
y1
y2

� x direction

y direction
ð5Þ

First, we record some of the conventional parameters of the
landslide, including the mountain height, mountain width, and so
on. Then, we calculate the ratio of these parameters to the area
pixel size in the corresponding picture to obtain the conversion
scale factor k. Finally, the actual displacement of the cracks can be
obtained by multiplying k by the pixel displacement of the trailing
edge crack curve of the landslide.

Test platform based on QT
To better use the method that is proposed in this paper to perform
TECL displacement monitoring, we developed QT-based test soft-
ware (the software interface is shown in Fig. 12). The proposed
image processing algorithm is based on the OpenCV library and is
loaded to the QT software platform. The user only needs to input
the landslide image source to obtain the curve recognition result.
The user can also manually change the image binarization thresh-
old to obtain the best curve recognition result.

The steps to operate the software are:
Step 1: Open the software, determine whether it is a front view

or a top view according to the input image, and click the corre-
sponding option.

Step 2: Click the “pre-image” and “after-image” buttons to
select the target image on the local path. The system automatically
calculates the binarization threshold based on the Otsu algorithm
and displays the binarized image. At this time, the user can also
manually adjust the binarization threshold to obtain the best
image by refreshing the binarized image in real time.

Step 3: After the curve recognition is completed, according to
the image scale conversion method that was proposed above, input
the actual “mountain width” and “mountain height,” respectively,
and click the “Comparison” button to obtain the current two-stage
calculation result. When all curves are calculated, click the “Sum-
mary” button to obtain an overall display of all the crack curves.
At this time, the azimuth and displacement values are displayed in
the result display area.

after Erosion

after Canny
edge 

detection

after FR

after TGS

Results 
(output by 

the test 
platform)

(a) (b)

Fig. 19 continued.
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Case study

Curve identification test of TECL
In this section, we perform a functional test on the trailing edge
crack curve of a landslide to test whether the system can success-
fully acquire the crack profile curve. We chose a landslide picture,
as shown in Fig. 13.

In accordance with the system operating procedures (men-
tioned in the “Test platform based on QT” section), we have
processed Fig. 13. First, we performed the image preprocessing
on the landslide picture (Fig. 12), including image graying (IG),
image histogram equalization (IHE), image median filtering
(IMF), and image binarization (IB). The results are shown in Fig.
14.

In the IMF processing, we used 3 × 3 and 9 × 9 structural ele-
ments to process the image. From the results (Fig. 14I-c and I-d), it
is easy to see that the outline of image I-c is significantly clearer
than that of image I-d. Therefore, we use I-c as the image for
subsequent processing. In the IB processing, we performed a
multi-threshold test that used four thresholds (100, 124, 127, and
160) to process image I-d to obtain four processed images as
shown in Fig. 14(I-e, I-f, I-g, and I-h, respectively).

Second, in order to conveniently compare the effects of the IB
processing, we performed the second-stage image processing on
the above four images (I-e, I-f, I-g, and I-h), including dilation,
erosion, Canny edge detection (Canny ED), feature recognition
(FR), and target curve shaping (TCS). The feature parameter is set
to 2/3. The results are shown in Fig. 15.

Table 1 Monitoring results of the gravel model

Stage 1→ 2 2→ 3 3→ 4 4→ 5

Azimuth Left 36.62° Right 63.93° Left 6.08° Left 25.63°

Motion displacement Max = 0.0708 m
Min = 0 m

Max = 0.145 m
Min = 0.0202 m

Max = 0.1571 m
Min = 0 m

Max = 0.2681 m
Min = 0 m

(a) Stage 1 Stage 2 (b) Stage 2 Stage 3

(c) Stage 3 Stage 4 (d) Stage 4 Stage 5

Fig. 20 Curve based on calculated data (gravel model)
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As seen from Fig. 15, the proposed method completes the
identification of the outline of the TECL. Moreover, from the
recognition results, it is seen that different binarization thresholds
have different results. For example, we use Otsu’s threshold of 124
to generate image II-f5 in which the left portion of the curve is
missing (approximately 1/4 of the entire image). The manually set
threshold of 100 corresponds to image II-e5, where the curve is
completely missing. The manually set threshold of 160 corre-
sponds to image II-h5, where interference information appears at
the bottom. The manually set threshold of 127 corresponds to
image II-g5, which better outlines the target curve. Therefore, the
suggested approach for threshold setting is to first automatically
calculate threshold with a computer program and then to manu-
ally fine-tune it.

Test of the TECL monitoring
In this section, we designed three models, namely, the computer
3D model, the gravel model, and the soil model, to simulate the
movement of the landslide and to test whether the proposed
method can monitor the crack. Then, we selected a set of landslide
disaster scene images and processed them using this method to
test its actual performance.

Computer 3D model
We designed a 3D landslide model (40 m high) with the computer
software XStream Vue. According to the steps that were described
in the “Curve identification test of TECL” section, the two pictures
before and after the landslide are processed (the structural ele-
ment size is 3 × 3, and the feature parameter is 2/3). The processed
images are shown in Fig. 16.

To better show Fig. 16b, we plot the calculated data output from
the test platform with the Origin software, as shown in Fig. 17.

From the test results, the slip state of the 3D landslide model
can be monitored by the method proposed that is in this paper. We
can input the image of the landslide hazard at different stages to
obtain the azimuth and displacement values of the crack motion.

Gravel model
The gravel model consists of two parts: fine sand and box. Fine
sand is a common building material. The box material is an acrylic
sheet, which is a rectangular box with a length of 60 cm, a width of
30 cm, and a height of 60 cm (as shown in Fig. 18). This box
simulates a mountain width of 0.6 m.

The gravel is piled into a hill-like shape, and a camera is set
0.5 m in front of the sliding body. The whole model is shaken at a
constant time interval to slide it to simulate the movement of a
landslide. The motion image of the landslide model is immediately
taken. We have selected a total of 5 pictures to form 4 stages of the
exercise. We used the method that is proposed in this paper to
process the five images. The feature parameters that are used in
pictures 1–3, 4, and 5 are 2/3, 1/3, and 1/2, respectively. The results
of each stage are shown in Fig. 19 and Table 1.

It should be noted that in this experiment, the camera is close
to the model (0.5 m), and the images that we collected have strong
graininess, which causes the images to contain too much “white
point” noise. Therefore, in IMF processing, we have increased the
structural element value (17 × 17).

To better show Fig. 19b, we plot the calculated data output from
the test platform with the Origin software, as shown in Fig. 20.

From the test results, it can be seen that the slip state of the
gravel landslide model can be monitored by the method that is
proposed in this paper. We can input the images of the landslide
hazard at different stages (e.g., 4 stages) to obtain the azimuth and
displacement values of the crack motion.

Soil landslide model
We used a loose mound on our campus to simulate a soil
landslide. This mound has a length of 80 cm, a width of
30 cm, and a height of 50 cm (as shown in Fig. 21). This mound
simulates a mountain with a width of 0.8 m. We sprayed black
paint on the soil to mark the sliding area. We used a small
shovel to move the soil at the bottom of the landslide to
simulate the sliding process.

We have selected a total of 5 pictures to form the 4 stages of the
exercise. We used the method that is proposed in this paper to
process the five images. The feature parameter that is used in
pictures 1 and 5 is 1/2, that in pictures 2 and 3 is 2/5, and that in
picture 4 is 1/3. The results of each stage are shown in Fig. 22 and
Table 2.

To better show Fig. 22b, we plot the calculated data output from
the test platform with the Origin software, as shown in Fig. 23.

From the test results, the slip state of the soil landslide model
can be monitored by the method that is proposed in this paper. We
can input the images of the landslide hazard at different stages
(i.e., 4 stages) to obtain the azimuth and displacement values of
the crack motion.

80cm

50
cm

Fig. 21 The soil landslide model
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#1 #2 #3 #4 #5

Original 
images

after IG

after IHE

after IMF

(17×17)

after IB

(167) (169) (114) (137) (111)

after 
Dilation

after 
Erosion

after Canny
edge 

detection

after FR

after TGS

Results 
(output by 

the test 
platform)

(a) (b)

(17×17) (17×17) (17×17) (17×17)

Fig. 22 Processed images of the soil model
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Panzhihua Airport landslide
On October 3, 2009, a huge landslide took place in the filling body
(parts B and C in Fig. 24) of the Panzhihua Airport, China, and led
to the reactivation of the Yijiapin ancient landslide (Wang et al.
2013). The landslide was approximately 1600 m long, 200 to 400 m
wide, and 10 to 25 m thick, with a total volume of approximately
5.1 million m3. The landslide moved mainly towards 115° at a slope
angle of approximately 20°.

The sliding surface was very loose, with a series of cracks
occurring in both the vertical and horizontal directions. Obvious
tension fractures and collapses were found at the trailing edge of
the sliding body (Fig. 25a).

Starting in November, we conducted a monitoring study of the
landslide, where a moving image of a group of collapsed bodies

(No. 091206, a landslide that occurred on December 6, 2009) was
captured, as shown in Fig. 25b (40 m width). In order to test the
effect of the method that is proposed in this paper, we processed
the images according to the processing flow in the “Test of the
TECL monitoring” section (the structural element size is 9 × 9, and
the feature parameter is 2/3). The processed images are shown in
Fig. 26.

To better show Fig. 26b, we plot the calculated data output from
the test platform with the Origin software, as shown in Fig. 27.

From the test results, the slip state of the real landslide can be
monitored by the method that is proposed in this paper. It should
be noted that because the image’s source shooting angle is incon-
sistent with that set in this paper, a series of flips are performed on
the image source, as shown in Fig. 27.

Table 2 Monitoring results of the soil model

Stage 1→ 2 2→ 3 3→ 4 4→ 5

Azimuth Left 7.58° Right 32.21° Left 14.14° Left 7.86°

Motion displacement Max = 0.1484 m
Min = 0 m

Max = 0.272 m
Min = 0.0202 m

Max = 0.2114 m
Min = 0 m

Max = 0.2545 m
Min = 0 m

(e) 1egatS 2egatS  Stage 3 

wz
(g) 3egatS

 Stage 2 (f)

 Stage 4 (h) 4egatS  Stage 5 

Fig. 23 Curve based on the calculated data (soil model)
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Then, we had installed five displacement sensors to monitor the
surface cracks at the trailing edge of the landslide (Fig. 28.). Sensor
5 captured the crack curve, as shown in Fig. 29.

The displacement recorded by node No.5 was increasing at a
speed of 2.7 mm/h, resulting in a displacement of 231 mm within
86 h (from A1 to A2), which meant that in that location a crack was
rapidly opening. At 14:20 on December 7, 2009, an obvious crack
and subsidence appeared in the place where the No. 5 monitor was
located.

It can be seen from the above comparison that the monitoring
results of the two methods are consistent.

Conclusions
Through methods and case studies, we have concluded the follow-
ing points:

1. The curve recognition method that is proposed in this paper
can identify the crack outline of the TEL. The methods include
image graying, histogram equalization, median filtering, image
binarization (Otsu algorithm), dilation, erosion, and Canny

Edge detection. Case III-A demonstrates that this method is
feasible.

2. The crack motion expression method that is proposed in this
paper can semiquantitatively describe the motion and state of
landslide cracks. Specifically, this method includes changes in
the azimuth and motion displacement that describe the crack
motion. The “interval median comparison” algorithm is also
proposed to calculate the azimuth and displacement of the
trailing edge curve of the same landslide body in different time
periods. Case III-B demonstrates that this method is feasible.

3. The QT platform-based test software that is developed in this
paper can monitor the cracks at the trailing edge of the land-
slide. The user (geologist) only needs to collect images during
the landslide’s movement to output crack monitoring data
through the software’s calculations. Compared with the tradi-
tional displacement sensor monitoring method, the technology
can greatly cover the monitoring blind areas. Compared with
the satellite remote sensing methods, the costs are lower, and
the operator’s professional skill requirements are lower. Over-
all, the method is simple to install and easy to operate, and the

Fig. 24 Aerial photo of the October 3 landslide and its composition in Panzhihua Airport, China (Wang et al. 2013)

Fig. 25 a Field photo showing a 15-cm-wide crack at the trailing edge of the landslide. b Scene photo of one collapsed body
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Azimuth: Offset to the right by 0.44° Motion displacement: max=11.2072 m, min=0 

m 

Fig. 26 Processed images of the landslide
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method is particularly suitable for on-site monitoring during
landslide emergency rescue.

4. There are some limitations in this method when we use it to
monitor landslides. One limitation is that the viewing angle
may cause a distortion. Since we use multi-temporal images, it
is difficult to ensure that the viewing angle of each photo is
absolutely consistent, which will lead to displacement moni-
toring distortions. In addition, for large landslides or land-
slides with large lateral dimensions, the trailing edge may
exceed the camera’s viewing angle. The second limitation is
that the landslide type may limit the monitoring accuracy,
such as loess landslide. We have used the method that is
proposed in this paper to carry out image recognition exper-
iments on a loess landslide in Gansu Province. The results
show that the color of the stable body of the trailing edge is
almost the same as that of the sliding body, which presents a

great difficulty for our identification. The third limitation is
image registration. Strictly speaking, multi-temporal images
require registration to improve accuracy (Feng et al. 2019a).
The method proposed in this paper constrains the consistency
of image sensors, photographing positions, and viewing angles
as much as possible, which may be suitable for on-site emer-
gency landslide monitoring (Travelletti et al. 2012). However, if
we conduct long-term deformation observations, we need to
study the registration method further (Bentoutou et al. 2005;
Feng et al. 2019b).>

It should be pointed out that there is no publicly recognized
definition of the azimuth and motion displacement of the land-
slide body. The curve identification and “interval median compar-
ison” algorithm proposed in this paper to calculate the change in

Fig. 27 Curve based on the calculated data (Panzhihua Airport landslide)

Fig. 28 Photo of the monitor installed (Wang et al. 2013)
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the crack displacement at the trailing edge of landslide needs to be
further tested and improved.
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