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A B S T R A C T   

The rising demand for automated methods in the Construction Management Systems (CMS) sector highlights 
opportunities for the Transformer architecture, which enables pre-training Deep Learning models on large, un-
labeled datasets for Natural Language Processing (NLP) tasks, outperforming traditional Recurrent Neural 
Network models. However, their potential in the CMS domain remains underexplored. Therefore, this research 
produced the first CMS domain corpora from academic papers and introduced an end-to-end pipeline for pre- 
training and fine-tuning domain-specific Pre-trained Language Models. Four corpora were constructed and 
transfer learning was employed to pre-train BERT and RoBERTa using the corpora. The best-performing models 
were then fine-tuned and outperformed models pre-trained on general corpora. In two key NLP tasks, text 
classification using an infrastructure condition prediction dataset and named entity recognition using an auto-
matic construction control dataset, domain-specific pre-training improved F1 scores by 5.9% and 8.5%, 
respectively. These promising results demonstrate extended applicability beyond CMS to the Architecture, En-
gineering, and Construction sectors.   

1. Introduction 

Machine Learning (ML) and Deep Learning (DL) have been widely 
used in construction management Systems (CMS) for modeling struc-
tured data, whereas the application for unstructured text data analysis is 
still nascent. Text data, such as inspection reports, contain valuable in-
formation on infrastructure conditions but are underutilized due to their 
unstructured format. With over 80% of CMS data being unstructured 
and predominantly textual, this represents a significant barrier to 
effective data utilization [1]. For instance, the evaluation of building 
designs has traditionally been conducted manually by domain experts. 
This method, while reliant on expert knowledge, inherently introduces 
subjective biases, thus limiting the capability to efficiently and sus-
tainably manage the vast and diverse array of building information and 
regulations [2]. Furthermore, the process of analyzing near-miss in-
cidents in safety reports is notably laborious and time-consuming, 
posing significant challenges in terms of resource allocation and 
timely response [3]. These scenarios underscore the critical need for 
adopting data-driven methodologies that can transcend the constraints 
of conventional, labor-intensive practices in the field. Consequently, 
efforts have been directed toward applying DL-based Natural Language 

Processing (NLP) technologies in the CMS, including automated 
compliance checking (ACC) [4], asset condition prediction [5], and 
filtering information [6]. 

In general, the DL-based NLP methodologies employed in the CMS 
sector predominantly encompass these two tasks [7]:  

• Text classification (TC) involves assigning predefined categories (or 
labels) to a text based on its content. Example applications in the 
CMS domain include hierarchical text classification for ACC [8], 
construction site accident classification using documents [9], and 
near-miss information classification from safety reports [3]. 

• Named entity recognition (NER) identifies and classifies named en-
tities in a text into predefined categories. Example applications in 
CMS domain include IFC-regulation semantic information alignment 
[4], rule-based electrical and plumbing information extraction [10], 
and extraction of requirements from regulatory documents into 
computer-processable representations [11]. 

DL methods typically require a larger amount of data for training and 
have significantly more parameters than traditional machine learning 
models [11]. In the realm of CMS, this poses a significant challenge due 
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to the scarcity of publicly available, large-scale training datasets with 
unified semantic labels. The scarcity of such datasets necessitates sub-
stantial manual effort for dataset preparation, making it both resource- 
intensive and expensive [12]. This challenge is exacerbated by the 
heterogeneous nature of CMS data, which includes a variety of docu-
ment types and formats, further complicating the data preparation 
process. Moreover, evaluating and comparing the performance of 
various DL models within CMS is fraught with difficulties. Each model 
may be trained on distinct datasets with varying quality and scope, 
leading to inconsistencies in performance metrics and benchmarking 
standards. This variability hinders the development of universally 
applicable and robust DL solutions in the CMS domain. Recently, Large- 
scale Pre-trained Language Models (PLMs) such as bidirectional encoder 
representation from transformers (BERT) [13] and generative pre- 
training (GPT) series [14] have made significant strides, and become a 
major achievement in the field of artificial intelligence (AI) [15]. 

Pre-training and fine-tuning a neural network is a process that 
comprises an initial training phase, which is typically conducted on a 
large and unlabeled dataset using self-supervised learning techniques. 
This is followed by a fine-tuning phase in which the model obtained 
from the initial training phase is further optimized on a downstream task 
or dataset using supervised learning methods. By fine-tuning the model 
parameters for specific tasks, the extensive knowledge implicitly con-
tained within them can be used to enhance the performance of a wide 
range of downstream tasks. It is currently the general agreement within 
the AI community to utilize PLMs as the foundation for downstream 
tasks, rather than training models from scratch [15]. 

Large-scale pre-trained language models are predominantly trained 
on general-domain corpora, which usually have a different word 
embedding compared to domain-specific corpora. A word embedding is 
a learned representation for text where words that have the same 
meaning have a similar representation. The quality of the word 
embedding usually has a significant influence on the model’s accuracy. 
To enable DL models to learn, every word must be represented as a real- 
valued vector in a predefined vector space. For example, the BERT 
model uses WordPiece embeddings [16] with a 30,000 token vocabulary 
in which the word embeddings are based on general English dictio-
naries, as shown in Fig. 1a. 

It should be noted that many words in the field of civil engineering 
possess distinct meanings in comparison to their usage in the general 
English lexicon. An illustration of this can be found in the word”mo-
ment,” which in the field of civil engineering denotes a force that in-
duces rotation or bending in a structure, whereas, in the general English 
lexicon, it usually denotes a brief period. It is imperative to note that the 
differences in terminology may result in an inability to capture the exact 
meaning of terminologies in the CMS domain and can result in subop-
timal model performance when applied directly to CMS-related tasks. 
Additionally, the issue of domain specificity in PLMs is a critical gap. The 
general-domain training of PLMs overlooks the specific linguistic and 
contextual intricacies of CMS-related texts, leading to a lack of precision 
and accuracy in tasks such as ACC, risk assessment, and asset condition 
prediction. 

This gap in domain-specificity within PLMs highlights the 

importance of applying transfer learning using domain-specific corpora, 
which are carefully tailored to meet the unique linguistic demands of the 
CMS field [7]. Transfer learning, as defined by Weiss et al. [17], involves 
enhancing a model’s performance in one domain by transferring 
knowledge from a related domain. In this context, the pretraining of 
PLMs on CMS domain corpora constitutes a form of transfer learning, 
where the model initially pre-trained on a general corpus is further pre- 
trained using specialized CMS domain data. 

Developing the first corpora in the CMS domain and PLMs trained on 
domain-related corpora is important for several reasons [2,7,11,18–20]: 
(1) Data availability: Civil engineering datasets are typically smaller and 
more specialized than those used to train general-purpose models. Pre-
training on domain-related corpora allows us to better leverage the 
available data and improve the performance of models on civil engi-
neering tasks. (2) Domain knowledge: Pre-training on domainrelated 
corpora allows the model to learn the specific terminology and concepts 
used in civil engineering, which can improve its performance on civil 
engineering tasks. (3) Transfer learning: Pre-trained models can be fine- 
tuned on smaller, task-specific datasets, which can reduce the need for 
large amounts of labeled data. (4) Efficiency: Pre-training allows for 
faster training times and better results by utilizing knowledge already 
learned from the pre-training task. (5) Cost: Collecting and labeling 
large amounts of data for training can be expensive. Pre-training on a 
related corpus can reduce the need for additional labeled data and thus, 
reducing the cost of training models. 

To bridge these gaps, the current investigation presents the devel-
opment of four open-source corpora in the CMS domain and the pre- 
training of large language models (LLM) including BERT and RoBERTa 
using the developed CMS domain corpus. Additionally, an ablation 
study, a comprehensive evaluation to systematically analyze the impact 
of various elements of the model, is performed. This includes examining 
the effects of different pre-training techniques, hyperparameters, the 
choice of LLMs, and data-cleaning methodologies. 

The structure of the remainder of this paper is delineated as follows. 
Section 2 provides a comprehensive review of the work related to this 
topic. The strategies for pre-training and fine-tuning PLMs on domain- 
specific corpus and datasets are elaborated upon in Section 3. The 
development of the dataset and the procedures for data cleaning and 
pre-processing are detailed in Section 4. Section5 not only depicts the 
experimental setup and results but also facilitates an analytical discus-
sion of them. Last but not least, the advantages, contributions, conclu-
sion, potential limitations, and prospective directions for future 
investigations of this research are discussed in Section 6. 

2. Literature review 

Early research on rule-based NLP applications in construction man-
agement has contributed to the successful extraction of information 
from textual data in this domain [21] [22] [23]. For example, Xu et al. 
developed a rule-based NLP approach to extracting domain knowledge 
elements (DKEs) from Chinese text documents in the domain of con-
struction safety management [23]. However, the rules are defined with 
respect to their own dataset. Rule-based models usually have a hard time 

Fig. 1. Overall pre-training and fine-tuning procedures for our model.  
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generalizing to another dataset to cover variant scenarios, especially 
considering the heterogeneous nature of the inspection reports 
composed by different professional inspectors. Existing ML based ap-
plications typically rely on leveraging word frequency features [8] or 
syntactical features [24], which provides a certain level of automation. 
For example, Zhou et al. [8] developed a machine learning-based TC 
algorithm for classifying clauses in environmental regulatory documents 
based on the TC topic hierarchy. Such an approach treats each word as 
an atomic symbol. With such representation, one often ends up with 
huge sparse vectors. In addition, the relationship between any pair of 
words is often ignored, which restricts the model’s ability to take 
advantage of the semantics in inspection reports. The application of 
context-aware DL-based NLP methods in construction management is 
relatively limited, but the complexity of tasks requires such a model to 
capture both the words and the contexts so that it can extract accurate 
information and achieve high accuracies on various datasets. Li et al. 
[25] employed a bi-directional Long Short Term Memory (LSTM) neural 
network architecture that is able to automatically extract information 
from the raw textual data in bridge inspection reports into five condition 
categories. The inherently sequential nature of recurrent models pre-
cludes parallelization within training examples, which becomes critical 
at longer sequence lengths, as memory constraints limit batching across 
examples [26]. For Recurrent models such as bi-directional LSTM, it is 
challenging to speed up the computation with parallelization and pro-
cess long sequences such as structural inspection reports. The reason is 
that the decoders of LSTM only has access to the final hidden states from 
the encoder and it’s hard to summarize long sentence in a single vector. 

Transformer, a new deep learning architecture that is more paral-
lelizable than recurrent models, has already been used in NLP tasks in 
the domain of construction management. Transformer is proposed by 
Vaswani et al. [26] in the computer science domain which relies entirely 
on attention mechanism [27] to calculate all dependencies between 
input and output. Transformer has achieved better accuracies and BLEU 
scores than previous state-of-the-art models on the English-to-German 
and English-to-French newstest2014 tests at a fraction of the training 
cost in the year that it was published [26]. What’s more important is that 
Transformer’s ability for computation with parallelization enables the 
pre-training and transfer learning for NLP tasks. Pre-training means 
training model parameters on some tasks and then initializing the model 
parameters of new tasks with previous parameters. Transfer learning 
means taking the relevant parts of a pre-trained model and applying it to 
a new but similar problem. Jacob et al. [13] proposed a new language 
representation model called BERT, which stands for Bidirectional 
Encoder Representations from Transformers. The pre-trained BERT 
model can be fine-tuned with just one additional output layer to create 
state-of-the-art models for a wide range of tasks such as language 
inference and question answering and without substantial task-specific 
architecture modifications [13]. 

Transformer-based models are able to transfer learning from one 
domain to another domain. Using it for text-related analysis in con-
struction management may enhance accuracy and make the automation 
of analysis more feasible. Transformer architecture will speed up 
computation, and help solve gradient vanish or explosion problems 
caused by long sequences for current machine learning and recurrent 
models, especially in Recurrent Neural Networks (RNNs) [28]. RNNs are 
a class of neural networks that are suitable for processing sequences of 
inputs, such as text. However, they often struggle with long-range de-
pendencies due to the gradient issues [29]. Furthermore, pre-training 
usually requires less effort in building the model’s architecture. 
Finally, Transformer-based models typically increase the accuracy of 
predictions compared to RNN-based models. 

Zheng et al. [7] proposed the first domain corpora in Chinese and 
enhanced DL-based transfer learning techniques for various NLP tasks in 
the Architecture, Engineering, and Construction (AEC) domain. In the 
evaluation of all NLP tasks, it was found that the PLMs such as BERT pre- 
trained on domain-specific corpora demonstrated superior performance 

when compared to PLMs pre-trained on general corpus. The improve-
ment for embedding-based DL models was observed in the weighted F1 
score for TC at 6.4%, and in the macro F1 score for NER tasks at 5.4%. 
The F1-score, being the harmonic mean of precision and recall, provides 
a more comprehensive evaluation of a model’s performance. The 
weighted F1-score in TC accounts for the importance of each class in 
proportion to its representation in the dataset, thus ensuring a balanced 
assessment across all categories. Conversely, the macro F1-score in NER 
considers each entity category equally, regardless of its frequency, 
thereby ensuring that rare entities are given equal importance in the 
evaluation. While these advancements constitute a significant step for-
ward, it is also worth noting that some areas in this paper may benefit 
from further exploration and refinement. 1) A considerable part of the 
corpora comes from sources such as Wikipedia and other online-crawled 
text. Since the PLMs used were initially trained on a diverse range of 
online data, including Wikipedia, this scenario could potentially render 
their pretraining process akin to fine-tuning. Future research could 
consider distinct datasets to mitigate this overlap. 2) The focus on the 
Chinese language in the dataset limits its direct applicability to tasks in 
English. This constraint opens an opportunity for future work to 
construct English domain corpora, thus extending the applicability of 
these models and techniques to tasks in English. 

Furthermore, it should be noted that various improvements can be 
made in regard to pre-training, word embedding, optimization tech-
niques, and the selection of deep learning models, as discussed in the 
paper by Zheng [7]. In light of the absence of an English CMS domain 
dataset suitable for pretraining, this research will engage in the devel-
opment of the first CMS domain corpus. The text will be extracted from 
academic publications for several compelling reasons. Firstly, academic 
papers present a novel data source. A majority of PLMs do not incor-
porate the text in scholarly papers during pretraining, mainly due to 
copyright considerations and data format challenges, especially since 
academic papers are commonly found in PDF format. Secondly, aca-
demic publications offer reliability. They generally undergo a rigorous 
process of peer review before being published, indicating that they have 
been critically evaluated and approved by field experts. This review 
process assures the reliability of the content and its contribution to the 
body of knowledge. Thirdly, scholarly papers ensure accuracy. The 
stringent editorial standards of academic publishing mean that these 
papers maintain a high level of accuracy in both content and language 
use. This precision is beneficial for NLP tasks requiring detailed semantic 
understanding. Lastly, the content depth of scholarly papers usually 
surpasses the content found in average online text data. These docu-
ments often contain thorough analyses, in-depth research, and extensive 
discussions on specific topics. This makes academic publications a 
valuable resource for numerous NLP tasks. 

To address these needs, this research will be developed in four steps: 
(1) Developing the first corpus in the English language specific to the 
domain of CMS; (2) Pre-train PLMs that have been pretrained on a 
general corpus with domain corpus; (3) Assessing the efficacy of 
domain-specific PLMs in comparison to PLMs that are only pre-trained 
on general corpora and baseline models; and (4) Conducting a gird 
search of hyperparameters to further improve model performance. 

3. Research methodology 

This section outlines the research methodology employed to inves-
tigate the efficacy of pre-trained deep learning models on domain- 
specific tasks within the CMS domain. The central premise of this 
study is that deep learning models, initially pre-trained on a general 
corpus as shown in Fig. 1a, will benefit from additional pre-training on a 
CMS-specific domain corpus. This additional pre-training phase, depic-
ted in Fig. 1b, is hypothesized to enhance the models’ comprehension of 
domain-specific nuances, thereby optimizing their performance in 
downstream NLP tasks, a.k.a. CMS-related NLP tasks such as TC and 
NER, without necessitating increased manual annotation efforts. The 
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overall procedure for pre-training and fine-tuning is shown in Fig. 1b 
and c. The methodology of this research is further detailed through the 
workflow depicted in Fig. 2. The proposed workflow consists of three 
parts: (1) Domain corpora development: This phase involves the 
development of four unique domain corpora, each subject to differing 
data cleaning and pre-processing techniques. Further details of this stage 
can be found in Section 4.1. (2) Pre-train PLMs on domain corpora - a 
detailed exposition of this phase is available in Section 3.1. (3) The fine- 
tuning of pre-trained domain models - this phase encompasses the 
development and assessment of several DL models of varying architec-
tural designs for TC and NER tasks. A more extensive explanation of this 
step is provided in Section 3.2. 

The entirety of the workflow is implemented in Python 3.9 and le-
verages a multitude of Python packages including Transformers, 
PyTorch, Selenium, Pandas, Pickle, Sklearn, Matplotlib, and Numpy, to 
facilitate the development of our models. 

The research presented herein employs two prominent PLMs: the 
BERT (Bidirectional Encoder Representations from Transformers) 
model, as conceptualized by Devlin et al. [13], and the RoBERTa (A 
Robustly Optimized BERT Pretraining Approach) model, developed by 
Liu et al. [30]. Both models are built upon the innovative architecture of 
the Transformer encoder, which is illustrated in Fig. 3a. Specifically, the 
encoding procedure of Transformer encoder is shown in Fig. 3b, which 
will be discussed in detail in Section 3.1.1. The RoBERTa model repre-
sents a sophisticated evolution of the original BERT architecture, 
distinguished by several key enhancements. These include an extended 
period of training, larger batch sizes during this phase, and a broader 
spectrum of training data. Notably, RoBERTa omits the next sentence 
prediction task, a feature of its predecessor, in favor of training on 
extended sequence lengths. Additionally, it incorporates a dynamic 
approach to altering the masking pattern employed in the training data, 
further refining the learning process. 

3.1. Pretrain PLM on domain corpus 

The series of steps constituting the pre-training procedure, as dia-
grammatically represented in the middle section of Fig. 2, will be 
elucidated in sequential order in the following Section 3.1.1, 3.1.3, and 
3.1.4. 

3.1.1. Word embedding methods 
Word embeddings serve as a method for encoding semantic infor-

mation in words, where learned representations of text enable words 
with analogous meanings to exhibit similar representations. Essentially, 

this is a form of word vectorization, a technique to convert textual data 
into a numerical form that can be comprehended by a machine. The 
quality of these word embeddings frequently exerts a substantial impact 
on the accuracy of a model. Utilizing word embeddings necessitates that 
every word is represented as a real-valued vector within a predefined 
vector space, facilitating machine learning algorithms to comprehend 
and learn from the text data. 

In their research, Zheng et al. [7] employed the skip-gram model 
with negative sampling [31] as their word embedding technique for 
deep learning models that rely on static word embeddings. However, 
this approach presents a limitation as each word can only possess a 
singular representation, not considering the context in which the word is 
used. Contrasting traditional word embeddings like Word2Vec [32] or 
GloVe [33], where each word or token has a single static vector repre-
sentation, the transformer architecture fosters dynamic word embed-
dings. This implies that the representation of a word is contingent upon 
the context of its use in a sentence, thereby enabling a more nuanced 
understanding of word meanings. Consequently, this paper utilizes 
WordPiece embeddings [16] as a form of dynamic word embedding in 
the stages of pre-training and fine-tuning PLMs. 

Inspired by word embedding methods in transformers [26], the 
initial token for each sequence is consistently a special classification 
token ([CLS]). The final hidden state corresponding to this token is 
utilized as the aggregate sequence representation for classification tasks. 
Sentences are separated with a unique token ([SEP]). In addition to 
WordPiece embedding, segment embedding indicates which sentence 
the token belongs to, and position embedding indicates the relative 
position of the token in the sentence is applied to every token. In Fig. 3b, 
the token embedding is denoted as Etoken, the segment embedding as Esn, 
and the positional embedding for the ith token in a sentence as Ei. 

The word embeddings for prevailing PLMs, as depicted in Fig. 1a, 
rely on general English dictionaries. Such a method may not encapsulate 
the exact meanings of terminologies in the field of civil engineering, 
thereby potentially complicating the process of information extraction. 
The majority of text analysis research in construction management 
employs a general English dictionary for word embedding which often 
leading to less precise results. In contrast, our model will undergo self- 
supervised training on domain-specific corpora. As a result, texts 
within the CMS domain can be better represented by domain word 
embeddings, and consequently, PLM performance is expected to be 
enhanced. This procedure is demonstrated in the middle section of 
Fig. 2, dedicated to the re-training of PLMs on the domain corpus. 

Fig. 2. Detailed workflow of domain corpus-enhanced transfer learning methods.  
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3.1.2. Sentence concatenation 
In their study, Liu et al. [30] posited that the utilization of individual 

sentences during pre-training could negatively impact performance on 
downstream tasks. They hypothesized this detriment to be the result of 
the model’s incapacity to learn long-range dependencies from isolated 
sentences. Furthermore, it is observed that the sentences contained 
within the CMS domain dataset exhibit an average length of approxi-
mately 30. Given this context, we presume that concatenating sentences 
to the maximum token length accepted by a pre-trained model (512 for 
BERT) might significantly enhance the training speed. Thus, we plan to 
conduct a comprehensive evaluation wherein the pre-training of the 
PLM is carried out on the CMS dataset both with and without sentence 
concatenation. Subsequently, we aim to compare the resultant outcomes 
to discern the impact of sentence concatenation on the model’s perfor-
mance and training efficiency. 

Following data cleaning, sentence concatenation is executed in the 
following procedural steps: (1) Tokenize all sentences to yield a list of 
individual tokens. (2) Concatenate tokens into a single string, adhering 
to their original sequential order. (3) When the aggregate token count 
within the string surpasses the predefined maximum token length 
acceptable for the PLM, the string comprising the tokens that precede 
the sentence that exceeded the limit is appended as an independent data 
point. This systematic approach allows us to efficiently concatenate 
whole sentences while maintaining compliance with the constraints of 
the PLM’s maximum token capacity. 

3.1.3. Dynamic masked language modeling 
In order to pre-train a PLM on domain-specific corpora, we initiate 

by randomly masking a certain percentage of the input tokens. This 
process, known as Masked Language Modeling (MLM), involves 
obscuring parts of the input text and training the model to predict these 
masked tokens. Subsequently, these masked tokens are predicted using 
the final hidden vectors, which are fed into an output softmax over the 
vocabulary, akin to a standard language model. As proposed in BERT 
[13], this method entails masking 15% of all WordPiece tokens with 
[MASK] token in each sequence randomly, then exclusively predicting 
the masked words rather than reconstructing the entire input. Though 
this strategy enables the attainment of a bidirectional pre-trained model, 

it may also lead to a mismatch between pre-training and fine-tuning due 
to the absence of the [MASK] token during the fine-tuning phase. 

To alleviate this issue, BERT [13] introduced randomization into the 
[MASK] token. Using this method, our training data generator randomly 
selects 15% of the token positions for prediction. If the ith token is chosen 
for prediction, the ith token is replaced with (1) the [MASK] token 80% 
of the time, (2) a random token 10% of the time, and (3) the unchanged 
ith token 10% of the time. Following this, cross-entropy loss will be 
employed to predict the original token, denoted by: 

L CE(y, t) = −
∑K

k=1
tklog yk = − tT(log y)

where the log is applied element-wise, t signifies the true one-hot 
encoded label, K stands for the dimension of the label vector, and y 
refers to the predicted label. 

The original BERT implementation carried out masking once during 
data preprocessing, resulting in a single static mask and a higher prob-
ability of overfitting. In contrast, Liu et al. [30] discovered that dynamic 
masking, where the masking pattern is generated every time a sequence 
is fed into the model, can enhance model performance on multiple 
datasets. Hence, we employ dynamic masking in the succeeding 
experiments. 

The following steps outline the technical detailed procedure for pre- 
training the DL models mentioned above using the dynamic MLM 
approach:  

1. Tokenization: The text is tokenized into three distinct tensors, 
namely input ids, token type ids, and attention mask. Token type ids 
is not required for MLM.  

2. Creation of labels tensor: A labels tensor is created by replicating 
input ids. This tensor aids in calculating the loss and optimizing the 
model.  

3. Masking of tokens in input ids: A random selection of tokens in input 
ids is masked for each batch of data.  

4. Calculation of loss: The masked input ids and predicted labels tensors 
are processed through the BERT model to calculate the loss between 
them. The loss is computed as the discrepancy between the output 

(a) Overall Structure

(b) Encoding Procedure

Fig. 3. Transformer Encoder Model Architecture.  
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probability distributions for each output token and the true one-hot 
encoded labels. 

It is essential to underscore that the MLM is a self-supervised task, 
thereby obviating the necessity for supplementary manual labeling en-
deavors. Following the pre-training of the BERT model on domain- 
specific corpora, the model parameters undergo optimization, thereby 
aligning them for potentially better results of NLP tasks within the 
context of CMS. Then, for diverse tasks, users can simply modify the last 
output layer and subsequently fine-tune the model, as depicted in 
Fig. 1c. 

3.1.4. Pre-training with domain corpora procedure 
The predominance of transformer-based models, which are 

frequently pre-trained on general-domain corpora [13], results in a data 
distribution that differs notably from that of the target domain. Conse-
quently, it becomes compelling to consider an effective strategy that 
involves further pre-training these transformer-based models on data 
specific to the target domain. As illustrated in the middle segment of 
Fig. 2, the transfer learning method, when applied to pre-train trans-
former-based models using the domain corpus, is comprised of four main 
stages. 

In the first stage, sentence concatenation is performed to produce 
more complex sentence structures as shown in Section 3.1.2. This step 
allows the model to develop a better understanding of how different 
sentences in the domain are related and contextually interconnected 
while reducing training time. 

The second stage involves the vectorization of concatenated sen-
tences in the CMS corpora built in Section 4.1, achieved by utilizing 
contextual word embeddings as shown in Section 3.1.1. The objective is 
to accurately encapsulate the specific semantic and syntactic attributes 
of the target domain. 

The third stage entails the application of dynamic masking on the 
vectorized corpora as shown in Section 3.1.3, a method vital to enabling 
the model to better comprehend the context of each word and learn 
useful representations from both the preceding and succeeding tokens. 

In the fourth and final stage, PLMs are pre-trained using CMS domain 
data following the successful execution of all preceding steps. The pur-
pose here is to inculcate a comprehensive understanding of the CMS 
domain knowledge, thereby enhancing the performance of the pre- 
existing transformer-based models. The steps of this stage are shown 
in Fig. 4. Specifically for step 1, pre-training configurations encompass 
various facets such as the number of training epochs, learning rate, 
batch size, and other related parameters as delineated in Section 5.1. 

Upon the completion of the pre-training phase for all PLMs using 
various pre-processed CMS domain corpora, the models that exhibit the 
least pre-training loss on the test dataset are selected separately for both 
BERT and RoBERTa. These models are then processed through the final 
phase, the fine-tuning process, which further enhances their perfor-
mance within the context of the CMS domain. 

3.2. Fine-tune pretrained model 

The process of fine-tuning and prediction utilizing the domain- 
specific PLM for TC and NER tasks is illustrated in the right segment 
of Figs. 1 and 2. The BERT and RoBERTa models used in this study will 
serve as representative models for elucidation in this section. The entire 
process encompasses six principal steps: 

1) Data collection for TC and NER, which involves erosion control 
structures inspection records dataset and information extraction dataset 
for ACC; 2) TC and NER data cleaning and pre-processing; 3) The 

creation of a custom dataloader to import data into PLMs. This process 
includes word embedding and encoding, where all tokens of the input 
sentence are initially turned into word embeddings, followed by the 
utilization of a PLM to encode the position and segment embeddings into 
contextual representations; 4) Fine-tuning of the domain-specific PLM 
on TC and NER dataset by obtaining prediction via output layer, where 
the contextual representations in the last hidden layer are then input 
into to obtain the prediction result; 5) Construct a set of baseline models 
that include a Bidirectional Gated Recurrent Unit (BiGRU) [34], a form 
of RNN [28], as well as a Logistic Regression (LR) with Gaussian Kernel 
[35]. When contrasted with other deep learning models, notably RNN- 
based models that have been widely employed for NLP tasks, 
transformer-based models have demonstrated substantial advancements 
in both language modeling performance and computational efficiency 
during model training [4]. To prove that transformer-based models 
exhibit particular prowess in handling long-term dependencies in tex-
tual content, which significantly bolsters their overall performance, 
these baseline models have been selected and compared to transformer- 
based models; 6) Execute a comparative analysis of the results produced 
by the original PLM, the domain-specific PLM, and the aforementioned 
baseline models. This comparison will provide a holistic overview of the 
efficacy and applicability of the various models in our specific context. 

In step 4, a crucial procedure that requires emphasis is pre- 
processing. For baseline models, data pre-processing is executed 
instead of tokenization with the aid of the Natural Language Toolkit 
(NLTK) library and regular expressions. This pre-processing includes a 
series of operations such as conversion to lowercase, punctuation 
removal, handling of digit-word combinations, stopword removal, text 
rephrasing, stemming and lemmatization, and white space removal. On 
the other hand, transformer-based models necessitate less extensive and 
more automated pre-processing procedures, resulting in a more 
streamlined operation when compared to traditional machine learning 
and RNN-based models. The pre-processing phase for transformer-based 
models typically encompasses the addition of special tokens to differ-
entiate sentences, padding sequences to a constant length, and the cre-
ation of an attention mask (which entails the generation of arrays 
populated with 0 s (representing pad tokens) and 1 s (indicating real 
tokens)). 

The versatility of the transformer architecture permits PLMs to be 
effectively fine-tuned for a variety of downstream tasks by simply 
modifying the final output layer and the associated loss function. During 
this fine-tuning process, task-specific inputs and outputs are integrated 
into the PLM, facilitating an end-to-end adjustment of all model pa-
rameters. Fig. 5a illustrates the fine-tuning process for the TC task, 
where the input is a single sentence, and the output is the class label of 
that sentence. In this context, the figure underscores how the PLM dis-
cerns the overall thematic category or sentiment of the sentence, cate-
gorizing it into predefined classes. Conversely, Fig. 5b demonstrates the 
finetuning for the NER task. Here, the input remains a single sentence, 
but the output consists of labels for each semantic element within that 
sentence. Both figures collectively demonstrate the flexibility and 
effectiveness of PLMs in adapting to diverse NLP tasks, showcasing how 
the same underlying model architecture can be tailored to meet the 
specific requirements of different applications within construction 
management systems. 

3.2.1. Performance evaluation metrics for fine-tuning tasks 
The averaged F1 score, recognized by numerous researchers in the 

domain [11] [7], is employed as a yardstick for evaluating the perfor-
mance of the deep learning models. Conceptually, the averaged F1 score 
is characterized as the harmonic mean of precision and recall, wherein 

Fig. 4. Pre-training PTM workflow.  
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an ideal F1 score equates to 1 while the least preferable score converges 
to 0. For multi-class and multi-label situations, the averaged F1 score 
constitutes the weighted average of the F1 scores of each class, with the 
weights being determined by the average parameter. The average F1 
score is a reflection of the model’s overall performance across all in-
stances, which aligns with our goal to maximize the general accuracy in 
practical applications where the distribution of entities mirrors their 
real-world frequencies. Furthermore, the predominant classes in our 
dataset are of particular interest due to their higher practical relevance 
in the intended application of our NER system. Due to the complexity 
and diversity of the data, it’s common to encounter imbalanced datasets. 
In such situations, relying solely on accuracy can be misleading since a 
high accuracy does not always translate to a good model, especially 
when there’s a significant class imbalance. In these scenarios, metrics 
such as precision and recall become especially relevant. Therefore, the 
averaged F1 score is used because it effectively balances the trade-off 
between the two. 

4. Data collection and data cleaning 

In this research, we plan to engage an unlabeled dataset for the 
purpose of implementing self-supervised pre-training, as illustrated on 

the left side of Fig. 2. In an effort to provide a comprehensive analysis, 
four separate CMS datasets will be compiled as shown in Fig. 6. These 
datasets differ based on whether references have been omitted and 
whether sentence concatenation has been executed. Simultaneously, 
two labeled datasets will be employed, with the primary purpose being 
supervised finetuning, which is represented on the right side of Fig. 2. 
Subsequently, we will assess the effectiveness of domain corpora using 
both the Text TC and NER datasets. 

4.1. Domain corpora construction 

4.1.1. Data collection procedure and rationality 
The first CMS domain corpus is constituted of academic publications 

pertinent to CMS, inclusive of scholarly journal papers, conference pa-
pers, articles, whitepapers, and a few books, reflecting a comprehensive 
range of academic discourse in the field. The rationale for this selection 
is grounded in the recognition that academic publications offer a rich 
source of specialized terminology and advanced concepts within the 
CMS domain, as emphasized in previous research [36]. These publica-
tions were primarily sourced from Google Scholar, selected for its 
extensive coverage and constant expansion of relevant academic liter-
ature [37]. Compared to other databases such as Scopus or Web of 

ksaTnoitingoceRytitnEdemaN)b(ksaTnoitacifissalCtxeT)a(

Fig. 5. Fine-tuning process illustration.  

Fig. 6. Illustration of CMS domain datasets.  
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Science, Google Scholar provides an easier way of automatic informa-
tion retrieval from experiments by the author and is therefore selected. 

The academic publications were procured from the outcomes of the 
first 99 pages of Google Scholar using the keyword”construction man-
agement”. Out of 732 papers earmarked for training, 60 were discarded 
due to the inability to recognize the text in some of the older PDFs. In 
total, the corpus comprises 5.7 million words, and when references are 
excluded, the word count stands at 4.5 million. The total count of tokens 
is 7.7 million, and discounting the references (processed with BERT 
tokenizer), it is 5.8 million. It should be noted that more than 90% 
sentences are less than 40 tokens long. The corpus size, which comprises 
5.7 million words, holds significance when compared to the in-domain 
dataset of 10 million Chinese characters in the earlier work by Zheng 
et al. [7], taking into account that individual English words are typically 
represented by multiple Chinese characters. The developed corpus offers 
a substantial volume of domain-specific data, essential for training 
effective PLMs in niche fields like CMS. The volume of this corpus aligns 
with established research underscoring the importance of corpus size for 
the successful training of language models, particularly in specialized 
domains where nuanced understanding is critical [38]. 

4.1.2. Data cleaning and pre-processing 
CMS Domain corpus data is cleaned and pre-processed in the 

following steps: 

1. Convert PDF to plain text (txt) automatically using Adobe Automa-
tion. This is essential to facilitate the subsequent data manipulation 
and analysis steps.  

2. Remove website links because they generally do not contribute 
substantive content necessary for the pre-training process [39].  

3. Only retain English text on the paragraph level using regular 
expression [40]. This serves to discard unrecognizable characters 
and any non-English text that could potentially disrupt the pre- 
training process.  

4. Divide paragraphs into distinct sentences. Additionally, paragraphs 
lacking terminal punctuation marks are purged to exclude potential 
remnants of formulas and tables that are inherent to the PDF format.  

5. Filter sentences that are too short to further remove any residual non- 
textual elements of formulas and tables, ensuring the quality and 
relevance of the data.  

6. Filter references within the journal papers. These references may not 
contain useful context or topic-specific content beneficial for the pre- 
training process. To assess the impact of this step, datasets both with 
and without references were prepared for pre-training. 

7. Removal of duplicate sentences. This measure ensures the unique-
ness of each sentence, enhancing the diversity and coverage of the 
dataset for the pre-training task, aligning with the approaches in 
[13]. 

Following the comprehensive data cleaning procedure, exclusive of 
the reference filtration step, approximately 5% of the words in the 
original dataset have been excised. Subsequently, during the process of 
filtering references, a further reduction of approximately 20% in word 
count is observed. This signifies that the reference sections constituted a 
substantial portion of the original word count, reinforcing the necessity 
for their careful scrutiny and selective filtration to maintain the rele-
vance and quality of the corpus for pre-training tasks. The domain 
corpora released as part of this study contain both uncleaned and un-
processed data and cleaned data. The rationale for this decision stems 
from the understanding that a universally optimal procedure for various 
pre-training and fine-tuning tasks does not currently exist. Conse-
quently, providing the raw data allows researchers the flexibility to 
adopt or design appropriate preprocessing methods tailored to their 
specific task requirements. A repository containing the dataset was 
established on GitHub at https://github.com/zhongyunshun/domain-co 
rpora. 

4.2. CMS domain dataset construction 

4.2.1. Text classification dataset construction 
Assessing conditions of erosion control structures is fundamental to 

monitoring and maintenance of existing erosion control structures along 
Toronto and Region Conservation Authority (TRCA)’s rivers and valleys 
that protect public greenspace, park amenities, and municipal infra-
structure in the Great Toronto Area (GTA) [41]. Therefore, the analysis 
of inspection records can offer invaluable insights into maintenance 
needs, structural stability, and investment requirements. In this 
research, the TC dataset comprises records of inspections from 1950 to 
2021 derived from TRCA’s Erosion Risk Management Program. The 
objective is to apply Transformer models pre-trained on CMS domain 
corpora to predict the structural condition of the erosion control struc-
tures, an application particularly suited due to the complexity of the 
unstructured data and the need for nuanced interpretation. 

The dataset encompasses both unstructured data—such as inspection 
records detailing structural conditions and maintenance priority 
rationales—and structured data, including elements like overall condi-
tion, structure stability, maintenance priority, location, inspection time, 
and required maintenance investment. The inspection records pertain-
ing to structural conditions serve as inputs, while the corresponding 
structural overall conditions function as labels in the dataset. The 
dataset encompasses a total of 30,637 inspection records. A detailed 
data cleaning process was implemented to enhance prediction accuracy, 
encompassing the removal of duplicate or irrelevant observations, the 
rectification of structural errors such as typographical errors and inap-
propriate capitalization, filtration of undesired outliers, handling of 
missing data, and conversion to the lower casing. This systematic 
approach to data cleaning and classification contributes to the reliability 
and accuracy of the ensuing analysis and predictions. 

Following the data cleaning process, the resultant dataset includes 
7199 structures categorized as being in excellent condition, 12,022 
structures in good condition, 6700 structures in fair condition, and 2796 
structures classified as being in poor condition. Fig. 7 shows the distri-
bution of structural conditions by region. Toronto has the most erosion 
control structures, followed by Peel, York, and Durham regions. 
Approximately 50% of the erosion control structures are categorized as 
being in good condition. The quantities of structures in both excellent 
and fair conditions are nearly equivalent. A mere count of approxi-
mately 3000 structures are classified as being in poor condition. An 
example of an erosion control structure in excellent condition is “The 
structure and slope behind the structure appear to be stable. Minor 
Displacement of structure in the D/S portion of the structure. No other 
deficiencies were observed at the time of inspection.” An example of an 
erosion control structure in poor condition is”Cribwall armors the left 
bank along a straight section. Field staff unable to inspect the entire 
length of structure due to major sediment buildup on top of structure. 
Moderate debris buildup throughout entire length.” 

In summary, this dataset construction paves the way for an innova-
tive application of Transformer models pre-trained on CMS domain 
corpora to analyze and predict the condition of erosion control struc-
tures, a task of significant importance for the safety and sustainability of 
the GTA region. By converting complex inspection records into a format 
suitable for deep learning, this research offers a practical solution for 
enhancing the monitoring and maintenance of infrastructure, with po-
tential applications extending to other civil engineering contexts. 

4.2.2. Named entity recognition dataset construction 
In this study, we leverage an information extraction dataset 

comprising building code sentences designed for ACC. This NER task is 
vital for ensuring that various construction elements are in alignment 
with legal and regulatory standards. The dataset, specifically curated for 
this task, serves to identify, classify, and extract specific entities, rules, 
and attributes related to construction compliance, thus automating the 
complex and time-consuming process of manual compliance checking. 
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These sentences have been annotated with relevant semantic and syn-
tactic information elements, as proposed by Zhang and El-Gohary [11], 
for the purpose of the NER task. 

The dataset incorporates eight critical semantic information ele-
ments, a.k.a. part-of-speech tags, detailed in Table 1, which include the 
subject, compliance checking attribute, deontic operator indicator, 
comparative relation, quantity value, quantity unit, subject relation, and 
reference. These elements are fundamental in understanding and 
interpreting building codes, as they encapsulate the nuanced re-
quirements and constraints that must be adhered to in construction 

projects. The syntactic information elements, though essential for the 
formation of grammatically correct building code sentences, do not 
contribute directly to the articulation of the building code requirement’s 
semantics. These syntactic elements encompass conjunctions (e.g., 
“and”), disjunctions (e.g., “or”), negations (e.g., “not”), and terminal 
punctuation marks (e.g., “.”, “,”, “:”, and “;”). A comprehensive list of all 
information elements is provided in Table 1, and a graphical represen-
tation of the dataset distribution is depicted in Fig. 8 [11]. In the figure, 
the X-axis shows each part-of-speech tag and the Y-axis shows the 
number of values for each tag. 

The utilization of Transformer models in this NER task has consid-
erable advantages. With their self-attention mechanism, Transformers 
can accurately capture long-range dependencies and intricate relation-
ships within building code sentences. This leads to a more effective 
identification and extraction of the requisite entities and attributes. 
Moreover, by pre-training on a domain-specific corpus, Transformer 
models can gain an enhanced understanding of the specific terminology 
and context of construction management, ensuring both accuracy and 
efficiency in ACC. 

In addition, Fig. 9 shows example sentences from the International 
Building Code (IBC), International Energy Conservation Code (IECC), 
and Americans with Disabilities Act (ADA) Standards, and how the 
sentences are annotated using the proposed semantic and syntactic in-
formation elements. These examples further illustrate the complexity 
and diversity of building code sentences, emphasizing the need for 
advanced machine learning techniques such as Transformer models to 
tackle the ACC task. 

5. Experiments, results, and discussion 

To explore the effectiveness of domain corpora and transfer learning 
methodologies for domain-related NLP tasks, specifically TC and NER 
within the CMS domain, we conduct several experiments in this section. 

During the pre-training phase, we partition the domain corpus 
dataset into a 97:3 training-to-test ratio. This ratio is chosen based on the 
large size of the dataset, where a 3% test set is deemed adequate for a 
robust evaluation. 

In the subsequent fine-tuning phase, the TC and NER datasets are 
divided into training, validation, and test sets in an 80:10:10 ratio. This 

Fig. 7. Number of structures in each condition by region.  

Table 1 
Semantic information elements for representing requirements for compliance 
checking [11].  

Semantic information 
element 

Definition 

Subject 
This represents an ontology concept of an entity (e.g., 
building element) subject to a specific requirement. 

Compliance checking 
attribute 

This ontology concept represents a distinct characteristic 
of a”subject” that is checked for compliance 

Deontic operator 
indicator 

A term or phrase that deontic type of the 
requirement (i.e., obligation, permission, or prohibition) 

Comparative relation 
A term or phrase for quantitive comparisons such 
as”greater than or equal to”,”greater than”,”less than or 
equal to”,”less than”, and”equal to” 

Quantity value A numerical value that defines the quantity 
Quantity unit The unit of measure associated with a”quantity value” 

Subject relation 
A term or phrase that clarify the type of relation between 
two subjects, a subject and an attribute, or a subject or an 
attribute and a quantity 

Reference 
A term or phrase indicating references to a chapter, 
section, document, table, or equation within a building- 
code sentence 

Conjunction 
A term that unifies two or more sentences, phrases, or 
clauses together, thereby forming a conjunctive 
statement. 

Disjunction A term indicating alternatives among two or more 
sentences, phrases, or clauses. 

Negation 
A logical operation that inverts the truth value of a 
statement, phrase, or clause. 

Terminal punctuation 
marks 

A symbol used to signify the end of a complete thought or 
statement. They mark the conclusion of a sentence, thus 
delineating its boundary.  
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division is executed using a random data division approach to ensure 
that the datasets represent a wide range of examples and to avoid any 
potential bias. This setting is the same as prior work by Zheng et al. [7]. 
This division is executed using a random data division approach to 
ensure that the datasets represent a wide range of examples and to avoid 
any potential bias. Here, the training set is utilized to train and itera-
tively update PLMs. Concurrently, the validation set serves to evaluate 
model performance and assist in identifying the optimal combination of 
hyperparameters, as well as the best model variant. Lastly, the test set is 
employed for the final evaluation of model performance. 

5.1. Pre-training configuration 

This experiment aims to investigate the performance of different 
PLMs on domain-specific datasets. In the phase of PLMs pre-training on 
the domain corpora, we take into consideration four distinct types of 
domain corpora. These include 1) domain corpora devoid of reference 
and sentence concatenation (D); 2) domain corpora without reference, 
yet incorporating sentence concatenation (DS); 3) domain corpora 
incorporating reference but without sentence concatenation (DR); 4) 
domain corpora employing both reference and sentence concatenation 
(DSR). Two PLMs, BERT [13] and RoBERTa [30], have been meticu-
lously chosen for this task. 

5.1.1. BERT model 
The BERT base model [13], a seminal figure in the landscape of 

PLMs, utilizes the transformer encoder. Upon its advent, it surpassed its 
competitors over a broad spectrum of tasks. BERT’s commendable ca-
pacity to discern context and produce semantically meaningful embed-
dings has earned it significant appreciation. The model architecture is a 
multi-layer bidirectional Transformer encoder based on Vaswani et al. 
[13,26]. It has stacked self-attention and point-wise, fully connected 

layers. The model is composed of a stack of N = 12 identical layers 
(Transformer blocks). Each layer has two sublayers: one is a multi-head 
self-attention mechanism, and the other is a simple, position-dependent 
fully connected feed-forward network. Following a residual connection 
[42] around each sub-layer, we normalize the layers by applying the 
function LayerNorm(x + Sublayer(x)) [43], where Sublayer(x) is the 
function implemented by the sub-layer itself. We denote the hidden size 
as H = 768, the number of self-attention heads as A = 12, and the 
embedding length E = 512. The total parameters are 110 M. 

5.1.2. RoBERTa model 
The RoBERTa [30] model is an enhanced iteration of the BERT model 

with the same architecture as BERT, characterized by its extended 
training duration, larger batch sizes, and more comprehensive data 
coverage. It eschews the next sentence prediction objective in favor of 
training on lengthier sequences, while also dynamically altering the 
masking pattern applied to the training data. It has delivered superior 
performance across a wide range of datasets compared to BERT model 
and has demonstrated its adeptness and flexibility in managing a diverse 
range of NLP tasks [30]. 

5.1.3. Hyperparameters and training 
Four BERT and RoBERTa models pre-trained on CMS domain 

corpora are obtained, as listed in Table 2. 

Fig. 8. Number of values for each tag.  

Fig. 9. Example building-code sentences annotated with the proposed syntactic and semantic information elements [11].  

Table 2 
PLMs with different CMS domain corpora.  

Base model/ 
Corpus 

D DS DR DSR 

BERT BERT-D BERT-DS BERT-DR BERT-DSR 
RoBERTa RoBERTa- 

D 
RoBERTa- 
DS 

RoBERTa- 
DR 

RoBERTa- 
DSR  
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The aforementioned models are trained with a maximum of 5 
epochs, which exceeds the epoch count used in the original training of 
the BERT model (namely 4 epochs). The exploration of diverse learning 
rates and batch sizes is performed via grid search, encompassing initial 
learning rates of 1 × 10− 3, 5 × 10− 4, 3 × 10− 4, 1 × 10− 4, 5 × 10− 5, 3 ×
10− 5, and 1 × 10− 5; weight decay of 0.001, 0.003, 0.005, 0.008, 0.01, 
0.03, 0.05, 0.08, and 0.1; and warmup steps of 20, 50, 80, 100, 150, 200, 
fostering an optimal balance between model adaptability and overfitting 
control. Furthermore, a variety of maximum token lengths (128, 256, 
and 512) and batch sizes (16, 32, and 64) are considered. Upon the 
completion of this training process, an initial learning rate of 1 × 10− 4 is 
selected, along with maximum token lengths of 512, a batch size of 16, a 
weight decay of 0.01, and a warmup steps of 200. These parameter 
choices emerge from our experimentation as the most conducive to 
achieving robust performance in our specific modeling context. For 
optimization, the AdamW algorithm [44] is employed with all other 
parameters kept at their default settings. The cross-Entropy loss function 
is employed to measure the difference between the predicted probability 
distribution for the masked tokens and the ground truth, aligning with 
the original BERT and RoBERTa model. 

5.2. Pre-training results 

In Table 3 and Table 4, the training and evaluation loss associated 
with the domain corpus as well as training time for all BERT and RoB-
ERTa models are displayed. It can be seen that the utilization of sentence 
concatenation strategies has yielded significant efficiency benefits, 
reducing the requisite training time to a sixth of the original duration 
while simultaneously lowering evaluation loss by 14% and 27% for 
BERT and RoBERTa models. The excision of reference citations from the 
training corpus has led to an increase in evaluation loss by 4%, but it 
reduces training time by 28% for BERT model. On the contrary, the 
excision of reference citations from the training corpus slightly reduces 
evaluation loss and also reduces training time by 29%. The potential 
explanation for this observation could be the role that reference citations 
play in the dataset, acting more akin to noise. Consequently, their 
removal does not substantially impact the pre-training loss. 

Based on the outcomes procured from the pre-training phase, the 
selection of models for subsequent fine-tuning tasks focused on two 
variants: the BERT model, pre-trained on domain-specific data with both 
reference citations and sentence concatenation (BERT-DSR), and the 
RoBERTa model, pretrained on domain-specific data but with references 
removed and sentence concatenation implemented (RoBERTa-DS). This 
decision was informed by the outstanding performance metrics 
demonstrated by these models, compounded by the aforementioned 
benefits of sentence concatenation. 

5.3. Fine-tuning configuration 

This experiment aims to investigate the performance of PLMs pre- 
trained on CMS domain corpora for TC and NER tasks. BERT-DSR and 
RoBERTa-DS are selected for TC and NER tasks. After being pre-trained 
on domain corpora, domain-specific PLMs are fine-tuned with a 
maximum of 10 epochs, which exceeds the epoch count typically used in 
downstream datasets (usually 2–4 epochs). The exploration of diverse 
learning rates and batch sizes is performed via grid search, encom-
passing initial learning rates of 1 × 10− 3, 5 × 10− 4, 3 × 10− 4, 1 × 10− 4, 
5 × 10− 5, 3 × 10− 5, 1 × 10− 5, 5 × 10− 6, 3 × 10− 6, and 1 × 10− 6; weight 

decay of 0.001, 0.003, 0.005, 0.008, 0.01, 0.03, 0.05, 0.08, and 0.1; and 
warmup steps of 20, 50, 80, 100, 150, 200, fostering an optimal balance 
between model adaptability and overfitting control. Furthermore, a 
variety of maximum token lengths (128, 256, and 512) and batch sizes 
(16, 32, and 64) are considered. Upon the completion of this training 
process, an initial learning rate of 1 × 10− 5 is selected, along with 
weight decay of 0.05, warmup steps of 80, maximum token lengths of 
512, and a batch size of 32. These parameter choices emerge from our 
experimentation as the most conducive to achieving robust performance 
in our tasks. For optimization, the AdamW algorithm [44] is employed 
with adam beta2 of 0.001, 0.003, 0.005, 0.008, 0.01, 0.03, 0.05, 0.08, 
0.1. Adam beta2 of 0.995 is selected after grid search. The control group 
in this experiment comprises models identical to the test group but ex-
cludes the pre-training on domain-specific corpora; that is to say, these 
control models are exclusively pre-trained on the general corpora 
(original BERT and RoBERTa). 

5.4. Text classification results 

The evaluation of the various pre-trained models on the TC dataset is 
detailed in Table 5 and Fig. 10. All PLMs that are pre-trained on domain- 
specific corpora exhibit superior performance compared to those trained 
only on generic corpora. Among the investigated models, the domain- 
specific RoBERTa, employing sentence concatenation, recorded the 
highest F1-score of 0.754. On average, an improvement of 5.9% in the 
F1-score was observed. This increase is distributed between BERT and 
RoBERTa with enhancements of 5.6% and 6.1% respectively, rendering 
the F1-score of RoBERTa marginally superior to that of BERT. Compared 
to baseline models (LR and BiGRU), all transformer-based models have 
significantly higher F1-score. For instance, the F1-score of the domain- 
specific RoBERTa outperformed the kernelized LR by 16.6% and the 
BiGRU by 10.8%. 

The observed performance improvements can be attributed to the 
domain-specific pre-training, which significantly enhances the models’ 
comprehension of CMS-specific terminology and contextual nuances. By 
training on a corpus rich in construction management terminology, the 
models develop a more refined understanding of the semantic re-
lationships and contextual usage specific to this domain. This specialized 
training enables the models to more accurately classify texts in CMS, as 
they can better discern subtle differences in meaning that generic 
models might overlook. These observed advancements underscore the 
potential utility of domain-specific PLMs when employing Deep 
Learning models for TC tasks within the CMS domain. 

It merits mentioning that our TC task is predicting structural con-
ditions of erosion control structures, a task that aligns more closely with 

Table 3 
Domain-specific BERT model pre-training results.  

Results/ Model BERT-D BERT-DS BERT-DR BERT-DSR 

Training loss 2.363 1.658 2.359 1.879 
Evaluation loss 2.089 1.910 2.009 1.679 
Pre-training time (hrs) 2.54 0.44 3.54 0.59  

Table 4 
Domain-specific RoBERTa model pre-training results.  

Results/ Model RoBERTa- 
D 

RoBERTa- 
DS 

RoBERTa- 
DR 

RoBERTa- 
DSR 

Training loss 2.166 1.499 2.128 1.496 
Evaluation loss 1.781 1.297 1.788 1.305 
Pre-training time 

(hrs) 
2.79 0.49 3.90 0.65  

Table 5 
Performance of different domain-specific and original models on text classifi-
cation dataset.  

Model Precision Recall F1 score 

Original BERT-DSR 0.694 0.689 0.689 
Domain BERT-DSR 0.751 0.750 0.745 
Original RoBERTa-DS 0.702 0.709 0.693 
Domain RoBERTa-DS 0.753 0.758 0.754 
Kernelized Logistic Regression 0.601 0.578 0.588 
BiGRU 0.624 0.669 0.646  
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infrastructure asset management in the AEC domain rather than con-
struction management. However, our corpus is in the CMS domain. This 
observation suggests that our domain-specific pre-training approach can 
enhance performance across a wider spectrum in the AEC domain. 

5.5. Named entity recognition results 

Similar to the TC task, the evaluation of the various pre-trained 
models on the NER dataset is detailed in Table 6 and Fig. 11, reveals 
that domain-specific pre-training yields better performance. Among the 
investigated models, the domain-specific RoBERTa, employing sentence 
concatenation, recorded the highest F1-score of 0.956. On average, an 
improvement of 8.5% in the F1-score was observed. This increase is 
distributed between BERT and RoBERTa with enhancements of 8.8% 
and 

8.1% respectively, rendering the F1-score of RoBERTa marginally 
superior to that of BERT. Recalls for all models except BiGRU are higher 
than precisions, leading to a high number of false positives. For the NER 
task, Precision ensures that the entities the model identifies are indeed 
correct and recall assesses the model’s ability to find all instances of a 
specific entity within the text. For instance, in identifying the”com-
pliance checking attribute” entity in the sentence”Dwelling unit shall be 
equipped with steel doors not less than 34.9 mm thick.”, high recall 
would mean that the model effectively identifies most or all occurrences 
of”compliance checking attribute” such as”thick” in the dataset. How-
ever, this might be at the expense of incorrectly tagging other types of 
entities as”compliance checking attribute”. Compared to baseline 
models (LR and BiGRU), all transformer-based models have significantly 
higher F1-score. For instance, the F1-score of the domain-specific RoB-
ERTa outperformed the kernelized LR by 24.2% and the BiGRU by 
20.3%. 

This improvement is particularly significant given the complexity of 
NER tasks in the CMS domain, where accurate identification of technical 
terms and specific jargon is crucial. The domain-specific pretraining 
equips the models with a nuanced understanding of CMS-related texts, 
enabling them to more effectively differentiate and label entities specific 
to construction management. These observed advancements underscore 
the potential utility of domain-specific PLMs when employing Deep 
Learning models for NER tasks within the CMS domain. 

Fig. 10. Barplot of performance of different domain-specific and original models on text classification dataset.  

Table 6 
Performance of different domain-specific and original models on named entity 
recognition dataset.  

Model Precision Recall F1 score 

Original BERT-DSR 0.826 0.892 0.858 
Domain BERT-DSR 0.943 0.948 0.946 
Original RoBERTa-DS 0.866 0.883 0.875 
Domain RoBERTa-DS 0.954 0.957 0.956 
Kernelized Logistic Regression 0.742 0.688 0.714 
BiGRU 0.794 0.764 0.753  

Fig. 11. Barplot of performance of different domain-specific and original models on named entity recognition dataset.  
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6. Discussion and conclusion 

This work is primarily characterized by its contribution to the 
development of the first CMS domain corpus, and by its advancement of 
DL-based transfer learning methodologies for several NLP tasks within 
the CMS domain. We have comprehensively applied four datasets to two 
popularly used PLMs during pretraining to enhance the performance of 
DL models in CMS downstream tasks without manual annotation. 
Consequently, the best model for each PLM during pretraining is 
selected for fine-tuning on the TC and NER datasets. The domain corpus 
and pre-training framework we propose may also be applied effectively 
in other civil engineering contexts. Compared to previous efforts, this 
research specifically contributes in three ways. 

First, this study presents the first publicly accessible domain corpus 
designed specifically for transfer learning within the CMS domain for 
pre-training domain-specific PLMs. Our approach leverages advanced 
Transformer-based architectures and transfer learning methodologies to 
harness both general and domain-specific information for NLP tasks 
within the CMS domain. We have developed four corpora employing 
varied data cleaning and pre-processing techniques to systematically 
analyze the impact of domain corpora and transfer learning techniques. 
Our work provides a means of leveraging domain semantics for word 
and sentence representation, thereby facilitating the analysis of highly 
technical, domain-specific texts within the construction management 
realm. Additionally, our approach offers a procedure for obtaining, 
cleaning, and pre-processing text data from PDF files, an asset that is of 
significant value and scarcity within the CMS domain. 

Second, our research has established a highly automated, end-to-end 
pipeline for pre-training and fine-tuning domain PLMs with minimal 
pre-processing and hyperparameter tuning. This stands in contrast to 
existing machine learning and recurrent neural network-based methods, 
which typically require heavy pre-processing to achieve satisfactory 
results. Utilizing this pipeline, we have developed eight models during 
the pre-training stage and four domain-specific models for NER and TC 
tasks in fine-tuning stage. By changing only the last output layer of the 
models, they are capable of handling various types of datasets for NLP 
tasks within the CMS and related domains. 

Third, this study is the inaugural endeavor to employ domain pre- 
trained transformer-based models in text and knowledge analytics to 
support ACC as well as infrastructure condition prediction. Our pro-
posed models are able to handle diverse datasets within the CMS 
domain, and even some datasets within the broader AEC domain as 
shown in Section 5.4. The proposed models can not only consider the 
context of the word but also take different meanings of a word in 
different contexts into account, especially within the CMS domain. 

This project aims to address the current lack of a comprehensive and 
dedicated corpus and language model for the IMS domain, which will 
enable more accurate and efficient natural language processing tasks 
such as text classification, information extraction, and named entity 
recognition. This research undertakes a systematic examination of how 
domain-specific corpora can potentially enhance the performance of 
deep learning models deployed for TC and NER in the CMS domain. 
Corpora in the CMS domain are developed and made publicly accessible 
for further exploration and utilization. In particular, sentence concate-
nation can reduce the training time to one-sixth of the original training 
time. The advantages of the developed domain corpora and domain- 
specific contextual word-embedding based DL models (such as BERT 
and RoBERTa) are demonstrated through TC and NER tasks. 

For all evaluated NLP tasks, the PLMs pre-trained on domain-specific 
corpora consistently outperform those pre-trained on general corpora. 
For TC tasks, the application of domain corpora enhances the perfor-
mance of PLMs pre-trained on general corpora, delivering a substantial 
increase of 5.9% in the F1 score. For NER tasks, the domain corpora 
similarly bolster the effectiveness of PLMs pretrained on general 
corpora, registering a marked improvement of 8.5% in the F1 score. 
Across all tested NLP tasks, PLMs pre-trained on both domain-specific 

and general corpora outperform static word-embedding based baseline 
models, with an average improvement F1-score of 10.3% for TC and 
17.5% for NER tasks, thus highlighting the superior capabilities of the 
transformer architecture. In summary, this research project advances 
our understanding and application of PLMs within the CMS domain, 
offering new avenues for enhancing the performance of NLP tasks in this 
field. 

While the advancements presented in this research are noteworthy, 
there remain considerable opportunities for future investigations that 
could potentially be of significant value to both academia and industry. 
Several potential directions for future work are outlined here. Firstly, 
the domain corpus constructed in this study could be further enriched by 
incorporating additional text resources such as Wikipedia entries and 
regulatory documents that are relevant to the CMS domain. However, 
the nature of Wikipedia content necessitates careful consideration and 
verification of the information to ensure its accuracy and relevance to 
the CMS domain. Such an expansion could potentially improve the 
representation of domain-specific knowledge in the corpus and thereby 
enhance the performance of domain-specific PLMs. Secondly, in-
vestigations into the impacts of dataset characteristics on model per-
formance may also be performed. This could involve experiments 
designed to understand how factors such as the type, quality, and size of 
datasets influence the accuracy and robustness of the pre-trained 
models. Additionally, a more comprehensive exploration of model pa-
rameters and hyperparameters should be undertaken in future studies. 
This would provide a more granular understanding of the effects of 
different configuration choices on model performance and could iden-
tify optimal settings for various tasks within the CMS domain. Lastly, 
while this work has examined word embedding techniques and specific 
pretraining strategies, there are additional transfer learning methodol-
ogies that may prove beneficial within the CMS domain. Future research 
could explore approaches such as multitask training or the utilization of 
more recent PLMs. These strategies could potentially offer more efficient 
ways to leverage the rich patterns captured in large-scale general- 
domain corpora for tackling downstream tasks in the CMS domain. 

In conclusion, while our study has paved the way toward an 
improved understanding and utilization of PLMs within the CMS 
domain, there remains a myriad of unexplored avenues that hold great 
potential for further enhancing the performance of NLP tasks in this 
field. 
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