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ABSTRACT 

 

 

 

This comprehensive study presents a holistic approach to predictive maintenance through 
vibration analytics, specifically targeting motors within water supply systems. Leveraging a 

dataset spanning 10 months, our methodology encompassed a multifaceted data handling 
system that included exploratory data analysis, deep learning techniques, and the 

development of a dynamic data visualization dashboard. The project effectively addressed 
common challenges in vibration-based predictive maintenance, such as data anomalies and 
computational constraints, by implementing sophisticated models and techniques like the 
sliding window and recurrent neural networks. The outcome is a robust system capable of 

continuous motor health monitoring, operational efficiency evaluation, and actionable 
insights for maintenance optimization. This initiative underscores the critical role of 

advanced analytics in predictive maintenance and sets a precedent for future enhancements in 
smart infrastructure management.
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1. Introduction 
 

1.1 Background  
The fusion of technology with industry has ushered us into the age of intelligent 
facilities, where integrated systems and smart components are the norms. In this 
landscape, motors are the unsung heroes, powering critical systems from 
manufacturing lines to water supply networks. Their uninterrupted operation is 
pivotal for the smooth execution of processes within these facilities. Within the 
realm of smart facility management, Vibration Analytics emerges as a crucial tool. 
This sophisticated technology not only ensures the peak performance of motors but 
also safeguards their longevity through continuous monitoring and data-driven 
insights. 

1.2 Objective  
Leveraging the advancements in smart technology, our project is committed to 
advancing the field of predictive maintenance with a focus on Vibration Analytics 
for motors in water supply systems. These motors are crucial for the seamless 
operation of urban infrastructure, analogous to the heart within the human body. 
With an understanding of the severe implications that motor failures can have, our 
approach involves the detailed analysis of a 10-month high-frequency vibration time 
series dataset. Our aim is to continuously monitor the health of these motors, 
evaluate their operational efficiency, and formulate strategies for optimization based 
on thorough vibration analysis. Embracing a proactive maintenance strategy will not 
only improve motor performance but also significantly reduce downtime and 
operational costs. The project seeks to provide actionable insights that lead to 
operational improvements and maintenance optimizations, ultimately prolonging the 
life of motors, enhancing system efficiency, and ensuring the reliability and 
sustainability of the water supply system, thereby guaranteeing continuous service 
and safeguarding public health. 

Despite the widespread acknowledgment of the benefits of using vibration signals 
for monitoring the health of smart motor devices, several challenges persist. Firstly, 
the issue of missing values and records due to sensor anomalies poses a significant 
hurdle. Secondly, there's a delicate balance to be struck among computational costs, 
hysteresis effects, and the inherent complexity of the systems. Lastly, the collection 
of failure-state samples involves considerable expense, making it a formidable 
challenge to overcome. Our project intends to address these common difficulties by 
implementing innovative solutions and methodologies to improve the reliability and 
effectiveness of vibration-based predictive maintenance.  
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2. Literature Review 
 

The seamless functioning of motors is pivotal in a plethora of industrial and 
commercial settings, where their failure can precipitate substantial operational 
downtime and consequent financial losses. Presently, three distinct maintenance 
strategies are prevalently adopted to manage motor health across its lifecycle: usage 
until failure, routine preventive maintenance, and condition-based maintenance 
(CBM). CBM relies heavily on the adept identification of motor faults to maintain 
optimal health (Ribeiro et al., 2021). A critical component in this detection 
mechanism is vibration analysis. This analytical approach, as supported by De Melo 
et al. (2022), involves scrutinizing the motor's vibration profile to discern various 
types of faults. This comprehensive literature review delves deeper into the domain 
of motor fault detection with a specific emphasis on the application of vibration 
analysis as an essential diagnostic instrument. Recent progress in this field has 
brought forth an amalgamation of intricate data mining methodologies, sophisticated 
computational models, and cutting-edge hardware. These advancements collectively 
work towards augmenting the accuracy and dependability of fault detection 
processes in motors, thereby enhancing the effectiveness of CBM strategies. 

 

In the realm of motor operation, certain variables have proven to be particularly 
indicative of the motor’s condition. Ramtekkar et al. (2023) highlighted that the 
vibration signals measured along the X, Y, and Z axes (Axial, Radial, Tangential) 
can reveal significant insights about the motor's operational status. Consistently 
monitoring these vibrations in critical areas such as bearings, motor feet, and 
housing is crucial for preventing severe defects. Echoing this sentiment, Del Rosso 
et al. (2021) reinforce the importance of utilizing accelerometers in the axial and 
radial directions to capture comprehensive data about the motor's condition. They 
further advocate that statistical indexes like peak-to-peak and skewness, particularly 
in the axial direction, are effective in categorizing data into healthy and faulty 
clusters. In healthy motors, one would expect to observe symmetric probability 
density functions (PDFs) and minimal variance in the peak-to-peak values of the 
signal, providing a clear demarcation from faulty motors (Del Rosso et al., 2021). 
Such detailed analysis not only enhances the understanding of motor conditions but 
also paves the way for more precise maintenance interventions. 

 

In the intricate process of vibration analytics, various classification models have 
been identified as effective tools in distinguishing between healthy and faulty motor 
conditions. Sharma & Jia (2021) emphasize the efficacy of models such as Support 
Vector Machine (SVM), Random Forest (RF), Sparse Representation Classifier 
(SRC), k-Nearest Neighbors (KNN), and Back Propagation Neural Network 
(BPNN) in this context. Notably, the RF model demonstrated superior performance 
in terms of accuracy, precision, and recall values in their research. De Melo et al. 
(2022) also validate the usefulness of SVM and KNN models in similar studies. 
Another notable approach is the Sliding Window Technique, recommended by 
Bagheri (2018 as cited in Henríquez et al., 2014), which is instrumental in 
classifying time series data. This technique aids in identifying recurring patterns 
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within the dataset, thereby facilitating a deeper understanding of the data's structure. 
A critical aspect of these models is their reliance on labeled data, encompassing both 
healthy and faulty examples, to conduct effective supervised learning. However, a 
challenge often encountered in vibration analytics is the scarcity of faulty data, 
which can impede the learning process (Henríquez et al., 2014, as cited in Henríquez 
et al., 2014). 

 
This literature review synthesizes key findings from various studies on motor fault 
detection using vibration analysis, underscoring the vital role of analytical models in 
diagnosing motor health. The integration of different variables, particularly vibration 
signals along multiple axes, offers a nuanced understanding of motor conditions 
(Ramtekkar et al., 2023; Del Rosso et al., 2021). Advanced classification models 
like SVM, RF, SRC, KNN, and BPNN have shown promising results in 
differentiating between healthy and faulty motors, with specific models exhibiting 
superior capabilities in certain aspects (Sharma & Jia, 2021; De Melo et al., 2022). 
The Sliding Window Technique further enriches the analysis by identifying patterns 
in time series data, enhancing the predictive accuracy (Bagheri, 2018 as cited in 
Henríquez et al., 2014). However, the efficacy of these models is often challenged 
by the limited availability of faulty data, emphasizing the need for comprehensive 
datasets for more robust machine learning outcomes (Henríquez et al., 2014, as cited 
in Henríquez et al., 2014). Overall, the advancements in vibration analytics and 
machine learning herald a new era of efficient and reliable motor fault detection, 
crucial for minimizing downtime and ensuring uninterrupted industrial and 
commercial operations. 
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3. Method 
 

3.1 Proposed Method 
To continuously monitor motor health, assess efficiency, and provide optimization 
suggestions and eventually enhance the water supply system's overall reliability and 
sustainability while reducing the cost of operation and maintenance, this project will 
develop a full data handling, analyzing and report system.  

3.2 Data Source  
The data set used in this project is collected at Tamar Central Government Office 
Sea Water Pump Room with smart sensor from 8th November,2022 to 11th 
August,2023. There are total of 7 set of pump and motor installed in the pump room. 
The project will be using data of Motor 2 as pilot to examinate the methodologies.  

3.3 Data acquisition and processing approaches 
In the data collection and preprocessing phase, the primary task involves obtaining 
and structuring a 10-month dataset of vibration time series data acquired from 
sensors installed on motors. To ensure data uniformity and accessibility, a data 
pipeline will be designed to systematically transform the raw sensor data into a 
consistent format, subsequently storing the transformed data in a database for 
efficient retrieval and analysis. Within this pipeline, data preprocessing tasks will be 
addressed, such as handling missing values and implementing noise reduction 
techniques, it is to enhance data quality and reliability, thus setting the stage for 
robust and accurate motor vibration analytics. 

3.4 Data storage 
Following the preprocessing phase, the data will be temporarily housed in a CSV file 
to streamline subsequent analyses. Upon the completion of model development, 
evaluation, and refinement, this processed dataset will be funneled into the models 
for predictive analytics and computations. The outcomes of these predictions and 
computations will then be securely archived in a MySQL database, primed for data 
visualization purposes. This database will adhere to the star schema configuration, as 
illustrated in Figure 1, ensuring an organized and efficient data structure for easy 
access and analysis.  
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Figure 1: Database design 

 

3.5 Data analysis approaches  
Due to the complexity and the nature of the motor data set, it is difficult to construct 
a predictive model to directly predict the probability of fault. Therefore, other 
method must been taken. As the current data set of motor contain no data recorded 
during imnormal situation of motors. The usual approach of supervised learning on 
directly predicting fault could not be apply to the dataset. The methodology 
proposed will center on leveraging current operational data from a motor to develop 
a predictive model that functions as a classifier. This model is designed to assess the 
motor's operational status by analyzing real-time data against established patterns 
and thresholds derived from historical data. Through this approach, it aims to 
identify potential warning signs or confirm normal operation, enabling proactive 
maintenance and ensuring optimal performance of the motor. 

 Exploratory Data Analysis (EDA) 

In the realm of exploratory data analysis (EDA), an initial exploration of the 
dataset will be carried out to gather insights into its underlying characteristics. 
Through a combination of statistical and visual techniques, key data statistics, 
trends, and patterns will be vividly visualized and analyzed. This process will 
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provide help in the identification of potential issues with motors, laying the 
foundation for more in-depth analysis and targeted actions to ensure motor health 
and performance optimization. 

 

 Frequency domain analysis 

In the context of frequency domain analysis, algorithms for transforming time 
domain data into the frequency domain will be investigated, for example, the Fast 
Fourier Transform. This enables the examination of the frequency spectrum to 
pinpoint prominent vibration frequencies and detect any potential anomalies in 
motor vibrations. 

 

 Feature Extraction 

Within the domain of feature extraction, pertinent attributes will be extracted 
from the frequency domain data to facilitate health assessment of motors. These 
attributes encompass characteristics such as amplitude, frequency components, 
and various statistical measures, all of which play an important role in the 
comprehensive analysis of motor vibrations for diagnostic purposes. 

 

3.6 Peak-to-Peak Value Analysis 

 
The Peak-to-Peak Value Analysis involves examining the range between the 
maximum and minimum values in the current data set and comparing these to the 
corresponding range in historical data. Minimal variance in the peak-to-peak values 
of the signal, providing a clear demarcation from faulty motors (Del Rosso et al., 
2021).  By setting thresholds based on historical min-max ranges, this method allows 
for the classification of new data points. If a new data point's peak-to-peak value lies 
outside the historical range, it is classified as a 'warning', indicating a potential 
anomaly or deviation from normal operation. Otherwise, it is classified as 'normal', 
suggesting that the motor is operating within expected parameters. 

 
 
 

3.7 Sliding Window Technique 
 

The Sliding Window Technique is employed to measure the similarity between the 
current operational data of the motor and its historical data using Dynamic Time 
Warping (DTW). This technique involves moving a 'window' across the data series 
to compare different segments over time, focusing on the alignment and distance 
between these segments. If the distance calculated for a new record exceeds the 
maximum distance observed in the historical data, the motor’s status is classified as 
a 'warning'. This method is particularly effective in identifying significant deviations 
over time, highlighting potential issues that may not be immediately apparent. 
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3.8 Health Assessment Model 
Multiple machine learning or statistical models will be used to construct a health 
assessment model to perform health assessments on motors. This model will 
incorporate techniques including anomaly detection to effectively evaluate the 
condition of the motors. By utilizing this model, potential issues can be identified 
and flagged, contributing to the overall health assessment and maintenance of the 
motors. Recurrent neural network 

 

3.9 Deep learning 
Incorporating Recurrent Neural Networks (RNNs) into deep learning strategy 
leverages their potent capability to process sequential data, making them ideal for 
analyzing the intricate time-series data generated by motor vibrations. The core 
strength of RNNs lies in their architecture, which allows for the propagation of 
information across time steps, enabling the network to make informed predictions 
based on historical data. This project will harness the power of RNNs to construct a 
dynamic model that continually adapts to new data, enhancing its predictive 
accuracy over time. By systematically identifying patterns and anomalies in 
vibration data, the RNN model serves as a critical tool in the preemptive 
identification of potential faults, thereby facilitating timely interventions and 
maintenance actions. 

 

3.10 Data visualization 

 Dashboard Development 

A web-based dashboard will be designed to provide a comprehensive overview of 
motor health status in real-time or near-real-time. This dynamic dashboard will 
present visualizations of crucial metrics, allowing users to monitor motor 
performance efficiently. It will also feature an alert system that promptly notifies 
users of any detected anomalies, ensuring timely attention to potential issues and 
facilitating informed decision-making for motor maintenance and optimization. 
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4. Project Scope 
 

4.1 Literature Review 

Through the review of the literature, academic publications concerning vibration 
analytics on motors will be investigated. The primary objectives are to identify 
potential determinizing features and examine the methodologies employed in the 
realm of vibration analytics on motors. During the thorough examination of relevant 
literature, insights into the key factors influencing motor vibrations will be gained 
and effective approaches for conducting vibration analysis on motors will be 
discerned. 

 

4.2 Documentation and Reporting 

Throughout the whole project, comprehensive documentation will be maintained, 
including data preprocessing steps, analysis techniques, model development, and 
dashboard design. Project’s findings, outcomes, insights and recommendations will 
be summarized in the final report.  

 

4.3 Dashboard Design 

The dashboard will be user-centric, providing clear visualizations of motor 
performance data like speed, operational duration, and efficiency metrics such as 
missing records and idling percentages. It will enable users to select specific or 
multiple days for data analysis, enhancing the understanding of motor conditions. 
Predictive model outcomes will be integrated, offering straightforward 
interpretations of motor health predictions. This design aims to facilitate informed 
decision-making by making complex data accessible and actionable. 

 

4.4 Decision support model 

Decision support models will incorporate a robust blend of statistical and 
mathematical methodologies, alongside advanced deep learning techniques, to 
analyze and interpret motor data comprehensively. These models will be 
meticulously optimized for individual devices, ensuring a tailored approach to 
assessing each motor's health state. This customization will significantly enhance the 
precision and relevance of the insights provided, enabling more accurate predictions 
of device performance and potential maintenance needs. The integration of diverse 
analytical techniques ensures a comprehensive evaluation, elevating the overall 
effectiveness of the decision support framework in guiding maintenance strategies 
and operational optimizations. 
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5. Results  

5.1 Data analysis 
 

 Understanding the data and Data Cleaning 

There are total of 7 set of motor data and 7 set of pump data through the time 
period of 8th November,2022 to 11th August,2023. The project will be first 
focusing on motor 2 dataset. After primary transforming the data into consistent 
format, there are total of 12196 rows of data with 19 columns. The data type and 
the non-null values of each column are listed in Figure 2. The percentage of 
missing value is calculated in table 2.  

 

Figure 2: Data information of moto2 dataset 

 Number of nan row Percentage 
Bearing Condition 9723 79.7% 
Peak to Peak 6086 49.9% 
Output Power 5959 48.9% 
Peak to Peak (Radial) 5945 48.7% 
Acceleration RMS (Radial) 5945 48.7% 
Acceleration RMS (Axial) 5945 48.7% 
Total Number of Starts 5945 48.7% 
Speed 5945 48.7% 
Skin Temperature 5945 48.7% 
Peak to Peak (Tangential) 5945 48.7% 
Vibration (Axial) 5945 48.7% 
Peak to Peak (Axial) 5945 48.7% 
Vibration (Radial) 5945 48.7% 
Overall Vibration 5945 48.7% 
Total Running Time 5945 48.7% 
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Table 2: Number of nan row and percentage in motor 2 data frame 

 
 
 

From the table, most of the columns contains 48.9% of missing value, Peak to 
Peak column contain 49.9% of missing value, and Bearing Condition contain the 
most missing value, high up to 79.7% of missing value. It is unusual to such large 
amounts of missing value. To gain deeper insights into the situation, a scatter plot 
was generated using the Overall Vibration and Speed columns. Notably, the first 
occurrence of Not a Number (NaN) values in both columns was observed on 
2023-02-28 at 14:43:00. Subsequently, a distinct pattern emerged, with one NaN 
record appearing every two hours. This pattern is visually represented in Figure 3. 

 

 
Figure 3: Scatter Plot on Overall Vibration and Speed 

 
Such pattern is repeated through the rest of the dataset, it might be caused by the 
sensor setting error or related networking issue. However, it is not the key areas 
of the studies. To further transform the data frame to better fit the use of the 
project. The data had been filtered by the Speed column by only keeping the row 
which the motor was in active state with condition of Speed value over 0. The 
filter further reduces the size of the data set to 2651 rows which is 21.7% of the 
whole dataset. However, performing such filtering might also remove the missing 
rows between records. It might cause the time series became noncontinuous. 
Therefore, further action must be taken to reconstruct the time series. Missing 
rows between record had been search and reinsert into the data set. The data type 
and the non-null values of each columns are listed in Figure 4. The percentage of 
missing value is calculated in table 3. 

 

Number of Starts Between 
Measurements 5945 48.7% 
Motor Supply Frequency 5945 48.7% 
Vibration (Tangential) 5945 48.7% 
Acceleration RMS 
(Tangential) 5945 48.7% 
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Figure 4: Data information of filtered moto2 dataset 

Table 3: Number of nan row and percentage in filtered motor 2 data frame 

  

 Number of nan row Percentage 
Bearing Condition 295 2.42% 
Peak to Peak 177 1.45% 
Output Power 130 1.07% 
Vibration (Axial) 116 0.95% 
Skin Temperature 116 0.95% 
Ideal time 116 0.95% 
Motor State 116 0.95% 
Acceleration RMS (Tangential) 116 0.95% 
Acceleration RMS (Radial) 116 0.95% 
Acceleration RMS (Axial) 116 0.95% 
Total Number of Starts 116 0.95% 
Speed 116 0.95% 
Peak to Peak (Radial) 116 0.95% 
Peak to Peak (Tangential) 116 0.95% 
Vibration (Radial) 116 0.95% 
Peak to Peak (Axial) 116 0.95% 
Overall Vibration 116 0.95% 
Total Running Time 116 0.95% 
No. of Starts Between Measurements 116 0.95% 
Motor Supply Frequency 116 0.95% 
Vibration (Tangential) 116 0.95% 
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From the table, the column with the most missing value is the Bearing Condition 
of 2.42% missing, followed by Peak-to-Peak, Output Power and another column. 
None of the column had more than 2.5% of missing values. Forward filling was 
being applied to handle the missing values. 
 

 Exploratory Data Analysis (EDA) 

Bases on the finding during literature review, key variables of analytics, vibration 
signal and accelerometers in the axial and radial could be helpful in identifying 
motor's operational status (Del Rosso et al. 2021). The key variables had been 
selected out form the dataset alone with Speed and Output power. Figure 5 is a 
correlation heatmap that represents the relationship between different measured 
variables in a motor vibration dataset. The color scale on the right indicates the 
correlation coefficient values, where 1 is a perfect positive correlation (indicated 
by dark red), 0 represents no correlation (white), and -1 indicates a perfect 
negative correlation (dark blue). Each cell in the heatmap shows the correlation 
coefficient between the variables at the intersection of the corresponding row and 
column. High positive values suggest that as one variable increases, the other 
tends to increase as well, while high negative values indicate an inverse 
relationship. 

 

Figure 4: Heatmap of correlation of selected variables 

From Figure 5, a strong negative correlation between Acceleration RMS (Axial) 
and Speed of the correlation can be observed as -0.97. It means when the speed is 
higher, the axial acceleration RMS will be lower. Figure 6 support such findings. 
From figure 5, there is a strong correlation between Acceleration RMS (Radial) 
and Vibration (Radial) with correlation as 0.91. It means when the Acceleration 
RMS (Radial) is higher, the radial vibration will be higher. Figure 7 support such 
findings.   
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Figure 6: Scatter plot of between 'Acceleration RMS(Axial)' and 'Speed' 

Figure 6 is a scatter plot showing the relationship between 'Acceleration RMS 
(Axial)' and 'Speed'. Each dot represents an observation from the dataset. The 
general trend is indicated by a fitted line, which appears to show a negative 
relationship, as speed increases, the RMS of axial acceleration decreases. The 
density of the points varies, but they appear to follow the trend line closely, 
suggesting a strong correlation between these two variables. 
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Figure 7: Scatter plot of between 'Acceleration RMS(Radial)' and ‘Vibration (Radial)’ 

Figure 7 is a scatter plot visualizing the relationship between 'Vibration (Radial)' 
and 'Acceleration RMS (Radial)'. The data points are plotted as blue dots, and a 
red fitted line indicates the trend in the dataset. It appears there is a positive 
relationship between the two variables; as the RMS of radial acceleration 
increases, the radial vibration also tends to increase. The distribution of data 
points forms a distinct elongated cluster, showing a concentration of observations 
along the fitted line, which suggests a strong linear correlation between these 
variables. The increasing trend is consistent throughout the range of the data, 
which might indicate that radial acceleration is a good predictor of radial 
vibration in this context. 

Among the selected columns of ‘Vibration (Axial)’, ‘Vibration (Radial)’, 
‘Acceleration RMS(Axial)’, ‘Acceleration RMS(Radial)’, ‘Speed’, ‘Output 
Power’, correlation consisted between columns. Variables ‘Acceleration 
RMS(Axial)’ and ‘Speed’ appeared to be the strongest negative correlation with 
the value of -0.97. The moving trend between two variables appear to be 
opposite. Variables 'Acceleration RMS(Radial)' and ‘Vibration (Radial)’ appear 
to be the strongest positive correlation with the value of 0.91. The moving trend 
of two variables appear to be at same direction. Knowing the correlation between 
variables, it identifies the proper predictor of different variables. By knowing the 
relationship between variables, predicted model could be constructed between 
variables. For example, ‘Speed’ might be useful to predict the value of 
‘Acceleration RMS(Axial)’.  
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Figure 8: Scatter plot of clustering with 4 cluster 

To gain insights into the operational dynamics of the machinery, categorizing the 
operating speeds into distinct segments is imperative. Engaging the expertise of 
seasoned technical and operational personnel from the facilities could provide a 
pragmatic framework for determining the optimal number of categories. 
Nonetheless, leveraging a machine learning strategy presents a viable alternative. 
The application of k-means clustering, experimenting with k values ranging from 
1 to 6 and evaluating metrics such as the silhouette score, inertia, and the Davies 
Bouldin score, facilitates the discernment of the most appropriate cluster count. 
As depicted in Figure 8, the analysis delineates four as the optimal cluster count 
for Motor 2's data. In alignment with the clustering outcomes, operating speeds 
below 893 should be classified under cluster 0; speeds ranging from 894 to 1020 
under cluster 1; those from 1021 to 1271 under cluster 2; and speeds exceeding 
1271 under cluster 3. These clusters are indicative of the operational modes: off, 
low, medium, and high speed, respectively. 
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5.2 Peak-to-Peak Value Analysis 

 

Figure 8: Idealized Waveform 

Figure 9 represents an idealized waveform, commonly found in theoretical or 
simplified representations of vibrational signals. The term "Peak-to-Peak" (P-P) 
refers to the difference between the maximum positive amplitude and the maximum 
negative amplitude of a signal (Chandel, 2023). 

 

 

Figure 10: Scatter Plot of Peak-to-Peak (Axial)  

 

Figure 10 is a scatter plot displaying a series of peak-to-peak measurements at hour 
level from an axial vibrational signal. The Y axis represents the peak-to-peak values 
of the vibrational signal for each corresponding index. A clear distinction is made 
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between the highest recorded value, noted at approximately 5.1289, and the lowest, 
at around 0.1455. These values are marked by horizontal lines.  

 

Figure 11: Scatter Plot of Peak-to-Peak (Radial) 

Figure 11 is a scatter plot that showcases a collection of peak-to-peak values of 
radial vibrational signa. The Y axis corresponds to the signal's peak-to-peak values 
at each index. In this plot, the peak values are marked by horizontal lines, with the 
upper limit at approximately 2.7344 and the lower boundary at roughly 0.0439. 

Peak-to-Peak value analytics could be used for setting an acceptable range of 
vibration value during the operation of the motor. If a peak-to-peak signal was being 
detected during operation, it could be label as warning to notify the technicians. By 
construction such decision rule, it could help to identify abnormal operation 
efficiently to better perform CBM on the motor.  
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5.3 Sliding Window Technique 

The Sliding Window Technique, as recommended by Bagheri (2018) and referenced 
in the work of Henríquez et al. (2014), plays a pivotal role in the classification of 
time series data. This project will utilize a method known as Dynamic Time 
Warping (DTW) to assess the similarities between a target pattern and 
corresponding patterns from historical data of equal length. This process involves 
systematically comparing the target pattern against all possible matching-length 
patterns in the historical dataset, calculating the DTW distance for each comparison. 

A practical example of this technique is illustrated in Figure 12, where the window 
comprising rows 1 to 13 of the dataset serves as the target pattern. The algorithm 
searches the entire dataset to find the most similar pattern, which, in this instance, is 
identified as rows 675 to 687. The calculated DTW distance between these two 
windows is 0.10225, indicating their degree of similarity. 

 

 

Figure 12: DTW between Rows 1 to 13 and Rows 675 to 687 

This method is particularly useful for identifying recurring patterns within the 
dataset, which can be instrumental for technicians in spotting unusual vibration 
patterns. Given the absence of fault data for the motor, the emergence of an 
unexpected vibration pattern could signal a potential fault. However, the 
effectiveness of the sliding window approach hinges on determining an optimized 
threshold value to enhance accuracy. The determination of this threshold value is 
currently in progress, underscoring the ongoing refinement of this technique to 
achieve precise and reliable results. 
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5.4 Deep learning   
Data selection prioritized active states, specifically those instances where the speed 
exceeded zero. The dataset was subsequently divided using a train-test split, 
allocating 80% of days for training purposes and 20% of days for testing. 

 

Figure 13: RNN model visualization 

The model employed a Gated Recurrent Unit (GRU) architecture, this recurrent 
neural network model is adept at processing sequential data to estimate triaxial 
vibration values—axial, radial, and tangential. Configured to process inputs with 16 
features, the model generates a 512-dimensional hidden state output from the initial 
GRU layer. To bolster the model's proficiency in pattern recognition across 
sequential data, the GRU layer is replicated fourfold, with a dropout rate of 0.1 
applied to all but the final layer to minimize overfitting by selectively deactivating 
10% of the outputs. 

The sequence data, once processed through GRU layers, is funneled through a extra 
tensor module designed to extract the final time step's hidden state. This conversion 
from a sequence to a fixed-size vector ensures that the model's focus is trained on 
the latest and often most critical information in the sequence. 

Subsequent to the extraction process, the model's architecture incorporates two fully 
connected linear layers. These sequentially reduce the hidden state dimensions from 
512 to 256 and finally to a trio of output values. 
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For assessing model accuracy, the Mean Squared Error Loss function is utilized, 
evaluating the average of the squared differences between predicted and actual 
values. The Adam optimizer, with its learning rate set at 0.001, dynamically adjusts 
learning rates for each parameter based on the gradient's first and second moments. 

 

Figure 14: Loss curve of RNN model after 1000 epochs 

Figure 14 delineates the model's loss curve across the initial 1000 epochs. Initially, 
the model's loss was significantly high but quickly descended. Post-100 epochs, the 
loss plateaued in the single digits, eventually stabilizing at approximately 0.9 after 
1000 epochs. 
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Figure 15: Loss curve of RNN model after 2000 epochs 

Extending the training epochs beyond the initial 1000 brought an unexpected turn, 
asindicated in Figure 15. The loss which had previously stabilized, started to climb. 
It revealed signs of overfitting. This was evident as the model began to learn not 
only the pattern but also the noise within the dataset. 

To combat this, a checkpointing system was implemented, saving the model only 
when it achieved a lower running loss. This strategy was proven effective, as shown 
in the loss curve.  

Ultimately, the model's final loss was recorded at 0.901, which is considered to be 
within a satisfactory range. This performance benchmark suggests that the model 
possesses a reliable predictive ability. It can estimate the vibrational values in three 
dimensions based on the given features, demonstrating its practical utility in real-
world applications. 
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Figure 16a: Prediction and Ground true of radial vibration 

 

Figure 16b: Prediction and Ground true of radial vibration  

Figure 16a and 16b plot the prediction of radial vibration from the model and the 
ground truth of the testing days. The blue line representing the prediction vlalue 
from the RNN model and the orange line representing the ground true from the 
dataset.  

In figure 16a, the radial vibration signal ranging from approximately 0.1 to 0.7. It 
record the vlaue between the first sequence to 400 seqquencecs. The two lines 
follow a similar pattern, indicating that the model's predictions closely align with the 
actual target values, although there are some discrepancies where the orange line 
deviates from the blue line.  

In figure 16b, ther radial vibration signal ranging from approximately 0.1 to 1, 
indicating higher vibration values than in the figure 14a. It record the vlaue between 
the 401 sequence to 800 seqquencecs. The model's output largely follows the trend 
of the target values, capturing the general pattern quite well. 
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5.5 Dashboard Design  
 

Figure 17: Dashboard Page1 

 

Figure 18: Dashboard Page2 
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Figure 17a: Dashboard (Device name) 

 

Figure 17b: Dashboard (Device installation date) 

 

 Figure 17c: Dashboard (calendar slicer) 

 

The calendar slicer featured in Figure 17c enhances user interaction by enabling the 
selection of specific dates or date ranges for display on the dashboard. This slicer 
dynamically adjusts the data presented in all charts across pages 1 and 2, ensuring a 
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tailored viewing experience.

 

Figure 17d: Dashboard (Donut chart showing percentage of Missing Record) 

 

In Figure 17d, a donut chart vividly illustrates the proportion of missing versus valid 
records for a chosen timeframe. The chart uses yellow to denote missing records and 
blue for valid ones, with detailed percentages and record counts for each category 
clearly displayed. 

 

 

Figure 17e: Dashboard (Pie chart showing percentage of Idling hour) 

Figure 17e introduces a pie chart that quantifies the idle hours as a percentage of 
total operational time within the selected timeframe. The chart contrasts idling hours 
in yellow against active operating hours in blue, providing a visual breakdown along 
with precise percentages and record numbers. 
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Figure 17f: Dashboard (Line chart showing the operation speed) 

The line chart in Figure 17f delineates the operational speed of the device on the 
selected date, categorizing the data into four distinct groups labeled 0 through 3, 
which correspond to off, low, medium, and high speeds respectively. 

 

 

Figure 18a: Dashboard (Gauge Chart for average DTW score) 

Figure 18a showcases a gauge chart that presents the average Dynamic Time 
Warping (DTW) score for the chosen date. Uncomputable DTW scores are indicated 
with a -1. The chart marks the minimum and maximum values on the left and right, 
respectively, with the average DTW score centered for quick reference.. 

 

 

Figure 18b: Dashboard (Area Chart showing DTW score) 

An area chart in Figure 18b breaks down the DTW scores by hour for the selected 
date, providing a granular view of the data. In instances where the DTW score 
cannot be calculated, a -1 is used to denote these gaps. 
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Figure 18c: Dashboard (Line Chart show RNN prediction and ground true) 

Figure 18c features a line chart that compares the RNN model's predictions against 
the actual data, with the model's forecasts shown in light blue and the true values in 
deep blue. This visualization focuses on the axial vibration data, offering insights 
into the model's predictive accuracy. 

 

Figure 18d: Dashboard (Area chart for Peak-to-peak value analysis) 

Figure 18d's area chart focuses on peak-to-peak value analysis, plotting these values 
hourly with a blue line and dot. The chart highlights the maximum value observed in 
the selected period with a dotted blue line, while a red line establishes the 
operational thresholds for the device, facilitating an immediate assessment of 
deviations from the norm.  
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6. Discussions  

6.1 Difficulties  
When it comes to datasets pertaining to mechanical systems or engineering, a limited 
understanding of mechanical principles can serve as a considerable obstacle. Accurate data 
interpretation and problem resolution in these fields necessitate a thorough grasp of the 
foundational mechanical concepts. A methodical review of existing literature stands out as a 
practical method to surmount this barrier. Engaging with scholarly articles and studies 
allows for the acquisition of vital knowledge on mechanical theories and applications, 
thereby filling in the knowledge gaps and facilitating more informed analyses and decisions 
within mechanical or engineering endeavors. 

In the realm of data analysis, inconsistent sampling times pose a notable challenge, 
rendering the identification of missing records a daunting task. Such irregularities can 
introduce gaps that disrupt the continuity of the dataset, potentially skewing the accuracy of 
further analyses. Moreover, the dataset is significantly compromised by a high prevalence of 
invalid records, initially encompassing 12,196 rows and eventually dwindling to 6,514 rows. 
This considerable amount of flawed data undermines the dataset's integrity and complicates 
the processes of data handling and analysis. 

The application of the DTW technique in data analysis demands significant computational 
resources, including extensive RAM and CPU capabilities, especially when managing 
sizable datasets or aiming for real-time analysis. In such scenarios, the utilization of the 
Department of Computer Science's research machines offers a strategic resolution to the 
computational demands imposed by DTW. This approach ensures the availability of 
adequate processing power to carry out efficient data analysis with DTW, surpassing the 
constraints posed by standard computational tools. 

Furthermore, the absence of continuous data during motor operation presents a considerable 
challenge in training RNN, which rely on sequential data to forecast future states. The 
implementation of dynamic sequencing provides a creative resolution to this issue. By 
dynamically generating sequences from the available data, it's feasible to emulate scenarios 
of continuous operation. This strategy enables the effective training of RNN models, despite 
the intermittent nature of the data, ensuring that the models can assimilate the operational 
dynamics of the motors and accurately predict their forthcoming states. 
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6.2 Limitations 
 Peak-to-Peak Value Analysis 

In the Peak-to-Peak Value Analysis, the method's primary limitation lies in its inability to 
predict faults effectively. Minor misalignments or damages are challenging to detect 
directly in the signal, which means that by the time a peak-to-peak value signals an issue, 
the situation might already be dire. This limitation suggests that while peak-to-peak value 
analysis can be a useful tool for identifying significant problems, it might not be the most 
reliable method for early fault detection or for situations where small discrepancies need 
to be identified promptly. 

 

 Dynamic Time Warping 

The DTW technique, while powerful for pattern recognition and sequence alignment, 
comes with its own set of challenges. The foremost issue is its high computational 
demand; DTW requires considerable time to regenerate pattern sequences and calculate 
similarities across all sequences. This computational burden only grows as more data is 
collected, exacerbating the situation since calculations are constrained to CPU 
processing. Furthermore, DTW suffers from a long reaction time, needing continuous 
data over 12 hours to construct a single valid window. This means any interruption can 
lead to significant delays, requiring another 12-hour period to establish a new window, 
thus potentially missing critical early warning signs. 

 

 Deep learning 

The use of deep learning, specifically RNN, in this project introduces a different kind of 
limitation. While RNNs can be highly effective for sequential data analysis, their 
complexity can obscure the interpretability of the results. The visualization of warning 
signals is not straightforward, heavily relying on technicians' continuous observation and 
monitoring. This limitation highlights the need for enhanced interpretative tools or 
methodologies that can make the warning signals more apparent and actionable to non-
expert users. 

 

 Data dashboard 

The dashboard designed to visualize and interact with the project's data exhibits several 
shortcomings. Primarily, the reliance on Microsoft software, Power Bi, for visualization 
purposes might not offer the most user-friendly or intuitive interface for all users. The 
dashboard's lack of mobile device support, particularly the calendar slicer's 
incompatibility with online web and mobile views, further restricts accessibility and 
convenience. Moreover, the absence of practical feedback from partners and users 
indicates that the dashboard may not be fully optimized for its intended audience, 
suggesting a gap in user-centric design and functionality.   
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6.3 Future Development 
To address the limitations identified in the Peak-to-Peak Value Analysis, the integration of 
machine learning techniques can significantly enhance the method's predictive capabilities, 
enabling the system to forecast trends in peak-to-peak values and potentially identify issues 
before they escalate. This approach leverages historical data to improve fault detection and 
predict future trends, making the system more proactive rather than reactive. 

For the Dynamic Time Warping (DTW) method, a strategic replacement of the standard 
DTW algorithm with more efficient variants like soft-DTW can offer significant benefits. 
Soft-DTW not only enhances pattern recognition capabilities but also supports GPU 
acceleration, thereby optimizing computational efficiency. Furthermore, the adoption of 
parallel processing and GPU acceleration can dramatically decrease the processing time 
required for data analysis, making the system more efficient and capable of handling larger 
datasets without significant delays. 

In the realm of Deep Learning, replacing the current GRU architecture with LSTM could 
offer better performance due to LSTM's enhanced ability to capture long-term dependencies 
in data sequences. Moreover, the introduction of feedback loops, where technicians' insights 
and corrections inform continuous model training, can significantly improve the model's 
predictive accuracy and reliability. This iterative process ensures that the model evolves and 
adapts to new patterns or anomalies, maintaining its effectiveness over time. 

Finally, for the Dashboard, setting up a cloud server for local deployment, combined with a 
user-centered optimization of the dashboard design, can ensure that the visualization is both 
intuitive and accessible. This should be informed by user feedback to meet the specific 
needs and preferences of its audience. Implementing a responsive design and ensuring cross-
platform compatibility are critical steps toward making sure the dashboard's features, 
including the calendar slider, are fully functional and user-friendly across all devices, 
thereby enhancing overall user accessibility and satisfaction.  
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7. Conclusions  
In conclusion, the project successfully developed and implemented a comprehensive 
vibration analytics system for motor health monitoring in water supply systems. Through the 
use of advanced data acquisition, processing techniques, and deep learning models, the 
project was able to continuously monitor the health of motors, evaluate their operational 
efficiency, and formulate optimization strategies. The exploratory data analysis and feature 
extraction methods provided significant insights into the condition of the motors, enabling 
early detection of potential issues and facilitating proactive maintenance strategies. 

The peak-to-peak value analysis and sliding window technique further enhanced the 
system's ability to detect anomalies and assess motor health accurately. The development of 
a user-friendly dashboard for data visualization and the deep learning model utilizing 
recurrent neural networks for predicting motor conditions were key achievements of the 
project. 

Despite facing challenges such as dealing with large amounts of missing or invalid data, 
computational limitations, and the need for continuous data for effective model training, the 
project overcame these obstacles through innovative solutions and optimizations. The 
limitations identified, such as the peak-to-peak value analysis's inability to detect minor 
faults effectively and the computational demands of the DTW technique, provide areas for 
future development. Enhancements such as integrating machine learning techniques for 
trend forecasting, adopting more efficient DTW variants, and optimizing the deep learning 
model could further improve the system's performance and reliability. 

Overall, the project has laid a foundation for the advancement of predictive maintenance in 
the context of water supply systems, contributing to operational improvements, cost 
reductions, and the prolongation of motor life. The insights gained and the methodologies 
developed have  implications for the broader field of smart facility management, 
highlighting the potential for technology-driven solutions to enhance system efficiency and 
sustainability.  
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APPENDICES   
1. Analytical Environments and Tools  

 Tools Description 
OS Windows 11 / 
Language Python 3.10.13 / 
 Conda 20.1 / 
Code editor  Visual Studio Code / 
Code storage Github / 
Libraries Numpy It provides a high-performance 

multidimensional array object and tools for 
working with these arrays. 
 

 Pandas Pandas is a fast, powerful, flexible, and 
easy-to-use open-source data analysis and 
manipulation tool, built on top of the 
Python programming language. 
 

 Matplotlib Matplotlib is a comprehensive library for 
creating static, animated, and interactive 
visualizations in Python. 
 

 Seaborn Seaborn is a Python data visualization 
library based on matplotlib. It provides a 
high-level interface for drawing attractive 
and informative statistical graphics. 
 

 Datetime The datetime module in Python supplies 
classes for manipulating dates and times. It 
offers various functions and constants for 
all date and time manipulation needs. 
 

 Ts-learn Tslearn is a Python package designed for 
machine learning with time series data. It 
is built upon other popular libraries like 
scikit-learn, numpy, and scipy, providing 
specialized tools and functionalities for 
time series analysis. This makes it a 
valuable resource for tasks that involve 
temporal data. 
 

 Scikit-learn Scikit-learn is a machine learning library in 
Python that offers simple and efficient 
tools for predictive data analysis. It is 
accessible and reusable in various contexts, 
built on top of libraries like NumPy, SciPy, 
and matplotlib. Scikit-learn is known for 
its versatility in implementing numerous 
machine learning algorithms for 
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classification, regression, clustering, and 
more. 
 

 Tqdm Tqdm is a Python library that provides fast, 
extensible progress bars for loops and 
other iterable objects. It is designed to be 
simple to use and highly customizable, 
adding immediate feedback on the 
progress of Python functions. 
 

 Multiprocessing The multiprocessing module in Python 
supports spawning processes using an API 
similar to the threading module. It provides 
local and remote concurrency, effectively 
sidestepping the Global Interpreter Lock 
by using subprocesses instead of threads. 
 

 Scipy SciPy is an open-source Python library 
used for scientific and technical 
computing. It includes modules for 
optimization, integration, interpolation, 
eigenvalue problems, algebraic equations, 
differential equations, and others. SciPy 
builds on NumPy, and its array operation is 
the core part of SciPy. 
 

 Ydata_profiling YData Profiling provides comprehensive 
profiling for various types of data such as 
tabular, time-series, text, and image data. 
 

 Torch Torch is an efficient and flexible open-
source machine learning library, focused 
on deep learning. Built on Lua, it supports 
diverse neural network architectures and 
optimization algorithms, making it ideal 
for rapid prototyping and complex model 
development. 

Visualization 
tool 

Power Bi Desktop Power BI Desktop is an interactive data 
visualization and analytics tool from 
Microsoft. It allows users to connect to a 
wide array of data sources, transform data, 
and create rich, interactive reports and 
dashboards. 

Database MySQL 8.0 MySQL is an open-source relational 
database management system. It facilitates 
efficient data storage, retrieval, and 
manipulation, making it a cornerstone for 
dynamic websites and applications. 

Table 1: Used Tools and Environments 


