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1 K-theory by the Q-construction

Throughout let C denote an exact category. First of all we wish to define a new category
OC which has the same objects as C, i.e obC = obQC. To define the morphisms let
co,c1 € obC and consider diagrams of the form

P 7
Co &—— Co1——Cq, (1)

in C where p is an admissible epimorphism and ¢ an admissible monomorphisms. We say
that two such diagrams between ¢y and ¢; are equivalent if there exist an isomorphism
making the following diagram commute
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A morphism f : ¢y — ¢ in QC is all diagrams (1) up to this above equivalence. We define
the composition of two such morphisms f: ¢y — ¢o and g : ¢ — ¢1 as the pullback:
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with cp2 = co1 X, c12. 1t can be checked that this indeed defines a category, which can
be depicted as
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We will now introduce the definition of higher algebraic K-theory using the Q-
construction for small, exact categories. So let C be a small exact category and 0 a
given zero-object.

Definition 1.1. For an exact category C, we define the K-theory space by K(C) :=
QBQOC. The K-groups are then given by K;C := 1, KC = m;+1(B(QC),0).

here B(QC) denotes the classifying space of QC, i.e |[N(QC)[—]|. This definition of
the K-groups are independent of the choice of basepoint 0, since if we are given another
zero-object 0/, then there would be a unique map 0 — 0’ in QC hence a canonical path
from 0 to 0’ in B(QC). Therefore we will not denote the basepoint from now on. One
of the fundemental properties we wish satisfied for our K-groups is that Ky canonically
isomorphic to the Groethendick group of C.

2 Localization of cofibered functors

We wish to construct an alternative definition of the K-theory space for the category of
finitely generated projective modules over an integral domain, which we denote by P.
This will be done by introducing cofibered functors and localization of a category with
respect to the action of a monoidal category. Let . be a monoidal cateogory and 2" a
category.

Definition 2.1. A left action of a monoidal category .¥ on a category 2 is a functor
+: XX > X
together with natural isomorphisms
A+ (B+F)=(AOB)+F, e+ F2F

where [ is the monoidal product of .7, e the unit object, A, B € ob., F € obZ" such
that some appropiate associtivity and unit diagrams commutes.

Definition 2.2. Let .¥ be a monoidal category acting on 2. The orbit category (., Z")
is the following category:

e The objects are the same as the objects of 27,
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e A morphism F — G is an isomorphism class [A, p] where A € ob.” and ¢ :
A+ F — G is a morphism in 2". We say that two such pairs (A, ¢) and (A',¢’)
are isomorphic if there exists an isomorphism a : A — A’ in . such that the
triangle

ApFp—_ e 4y

G
is a commutative triangle.
Definition 2.3. Let . be a monoidal category acting on a category Z . Then we

define the localization .#~* 2 to be the category (.,.7 x 2') where the action of .%
on . x Z is given by

IXIXEY - xX
(a,b,c) — (aldb,a + c).

This definition is not related to Bousfield localization, but is a form of a generalization
of localizing a commutative ring with respect to the action of a monoid.

Definition 2.4. A functor f : C — D is said to be cofibered if the following two conditions
hold:

1. For every ¢ € obC and ¢ € D(f(c),d) there exists a morphism @ € C(¢, ) such
that f() = .

2. @ is the universal such morphism, i.e. if 4,/0\’ € C(c, ") is another morphism satisfying
f(¢') = @, then there exists a unique morphism v € C(¢, ¢”) such that

)
c——c

is a commutative triangle.

In this case we will say that ¢ is the cofiber lift of .

So a cofibered functor f : C — D lets us describe a lift of any morphism ¢ €
D(f(co),d1) by a morphism between the fibers ¢ € D(cg, f~1(d1). When f is cofibered
we will consider the category f~(Y) for fixed Y € obD as a subcategory of C. This
category reminds us a lot about f\Y and there is a good reason for that, the classifying
space of these two are equivalent:

Theorem 2.5. B(f~1(Y)) ~ B(f\Y) when f is cofibered.
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This gives us a reformulation of Quillen’s theorem B in the setting of cofibered func-
tors:

Theorem 2.6 (Quillen’s Theorem B - for cofibered functors). Let f : C — D be a
cofibered functor and assume that for all o € D(Y,Y") the cofiber lift ¢ : f~H(Y) —
f7YY") of ¢, satisfying f(P) = @, is a homotopy equivalence. Then

B(f~Y(v)) — Bc 2Y% Bp

s a quasifibration.

Now, we turn to our specific case again. Let iP denote the subcategory of P with
isomorphisms and let 7P denote the exact subcategory of P with injective morphisms
with cokernels in P. Recall that the Segal subdivision sd(7P) with objects (cop — ¢1)
and morphisms (cp — ¢1) — (¢ = ¢}) commutative squares

cor— C1

|

h— .

We wish to consider a specific functor f : sd(7P) — QP which maps objects (K — L)
in sd(7P) to a fixed L/K in P. Further we let f map the morphism (a,b) described by

K— L

]

K'——1'
to the morphism h: L/K — L'/K’ in Q(P)°" represented by the diagram

L'/K'«—L'/K—— L/K.
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