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1 K-theory by the Q-construction

Throughout let C denote an exact category. First of all we wish to de�ne a new category

QC which has the same objects as C, i.e obC = obQC. To de�ne the morphisms let

c0, c1 ∈ obC and consider diagrams of the form

c0 c01
p
oooo // i // c1, (1)

in C where p is an admissible epimorphism and i an admissible monomorphisms. We say

that two such diagrams between c0 and c1 are equivalent if there exist an isomorphism

making the following diagram commute

c0 c01
p
oooo // i //

'
��

c1

c′01.
p′

aaaa

== i′

==

A morphism f : c0 → c1 in QC is all diagrams (1) up to this above equivalence. We de�ne

the composition of two such morphisms f : c1 → c2 and g : c0 → c1 as the pullback:

c02 // //

����

c12 // //

����

c2

c01

����

// // c1

c0

with c02 = c01 ×c1 c12. It can be checked that this indeed de�nes a category, which can

be depicted as
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c0,3

{{{{

##

##
c0,2

{{{{

##

##

c1,3

{{{{

##

##
c0,1

{{{{

##

##

c1,2

{{{{

##

##

c2,3

{{{{

##

##
c0,0 c1,1 c2,2 c3,3.

We will now introduce the de�nition of higher algebraic K-theory using the Q-
construction for small, exact categories. So let C be a small exact category and 0 a

given zero-object.

De�nition 1.1. For an exact category C, we de�ne the K-theory space by K(C) :=
ΩBQC. The K-groups are then given by KiC := πnKC = πi+1(B(QC), 0).

here B(QC) denotes the classifying space of QC, i.e |N(QC)[−]|. This de�nition of

the K-groups are independent of the choice of basepoint 0, since if we are given another

zero-object 0′, then there would be a unique map 0 → 0′ in QC hence a canonical path

from 0 to 0′ in B(QC). Therefore we will not denote the basepoint from now on. One

of the fundemental properties we wish satis�ed for our K-groups is that K0 canonically

isomorphic to the Groethendick group of C.

2 Localization of co�bered functors

We wish to construct an alternative de�nition of the K-theory space for the category of

�nitely generated projective modules over an integral domain, which we denote by P.
This will be done by introducing co�bered functors and localization of a category with

respect to the action of a monoidal category. Let S be a monoidal cateogory and X a

category.

De�nition 2.1. A left action of a monoidal category S on a category X is a functor

+ : S ×X →X

together with natural isomorphisms

A+ (B + F ) ∼= (A�B) + F, e+ F ∼= F

where � is the monoidal product of S , e the unit object, A,B ∈ obS , F ∈ obX such

that some appropiate associtivity and unit diagrams commutes.

De�nition 2.2. Let S be a monoidal category acting on X . The orbit category 〈S ,X 〉
is the following category:

• The objects are the same as the objects of X ,
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• A morphism F → G is an isomorphism class [A,ϕ] where A ∈ obS and ϕ :
A + F → G is a morphism in X . We say that two such pairs (A,ϕ) and (A′, ϕ′)
are isomorphic if there exists an isomorphism a : A → A′ in S such that the

triangle

A+ F
a+idF //

ϕ
##

A′ + F

ϕ′
{{

G

is a commutative triangle.

De�nition 2.3. Let S be a monoidal category acting on a category X . Then we

de�ne the localization S −1X to be the category 〈S ,S ×X 〉 where the action of S
on S ×X is given by

S ×S ×X → S ×X

(a, b, c) 7→ (a�b, a+ c).

This de�nition is not related to Bous�eld localization, but is a form of a generalization

of localizing a commutative ring with respect to the action of a monoid.

De�nition 2.4. A functor f : C → D is said to be co�bered if the following two conditions

hold:

1. For every c ∈ obC and ϕ ∈ D(f(c), d) there exists a morphism ϕ̂ ∈ C(c, c′) such

that f(ϕ̂) = ϕ.

2. ϕ̂ is the universal such morphism, i.e. if ϕ̂′ ∈ C(c, c′′) is another morphism satisfying

f(ϕ̂′) = ϕ, then there exists a unique morphism γ ∈ C(c′, c′′) such that

c
ϕ̂
//

ϕ̂′
��

c′

∃!γ
��

c′′

is a commutative triangle.

In this case we will say that ϕ̂ is the co�ber lift of ϕ.

So a co�bered functor f : C → D lets us describe a lift of any morphism ϕ ∈
D(f(c0), d1) by a morphism between the �bers ϕ̂ ∈ D(c0, f

−1(d1). When f is co�bered

we will consider the category f−1(Y ) for �xed Y ∈ obD as a subcategory of C. This

category reminds us a lot about f\Y and there is a good reason for that, the classifying

space of these two are equivalent:

Theorem 2.5. B(f−1(Y )) ' B(f\Y ) when f is co�bered.
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This gives us a reformulation of Quillen's theorem B in the setting of co�bered func-

tors:

Theorem 2.6 (Quillen's Theorem B - for co�bered functors). Let f : C → D be a

co�bered functor and assume that for all ϕ ∈ D(Y, Y ′) the co�ber lift ϕ̂ : f−1(Y ) →
f−1(Y ′) of ϕ, satisfying f(ϕ̂) = ϕ, is a homotopy equivalence. Then

B(f−1(Y ))→ BC B(f)−−−→ BD

is a quasi�bration.

Now, we turn to our speci�c case again. Let iP denote the subcategory of P with

isomorphisms and let τP denote the exact subcategory of P with injective morphisms

with cokernels in P. Recall that the Segal subdivision sd(τP) with objects (c0 � c1)
and morphisms (c0 � c1)→ (c′0 � c′1) commutative squares

c0 // //
��

��

c1

c′0
// // c′1.

OO

OO

We wish to consider a speci�c functor f : sd(τP)→ QPop, which maps objects (K � L)
in sd(τP) to a �xed L/K in P. Further we let f map the morphism (a, b) described by

K // //
��

a
��

L

K ′ // // L′
OO
b

OO

to the morphism h : L/K → L′/K ′ in Q(P)op represented by the diagram

L′/K ′ L′/Koooo // // L/K.
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