Recall: For (C,Q) E Cat ^P , we define the L-groups:
- $L_0(\mathcal{C},\mathcal{Q}) \coloneqq \operatorname{coker}(\pi_{\mathcal{O}}\operatorname{Reinc}(\operatorname{Met}(\mathcal{C},\mathcal{Q})) \longrightarrow \pi_{\mathcal{O}}(\operatorname{Reinc}(\mathcal{C},\mathcal{Q})))$
→ forms / cobordism
$- L_{\mathbf{N}}(\mathbf{C}, \mathbf{G}) \coloneqq L_{\mathbf{C}}(\mathbf{C}, \mathbf{G}^{\mathbf{C}-\mathbf{N}}) \xrightarrow{\mathbf{C}}$
<u>Today</u> : L-theory space, additive functors, bordism invarience &
L-theory spectrum.
§1 L-Theory space
<u>Construction</u> : For [n] eA:
Functional (1 [1. joy] T := P (Fra joy apposite all cubigany (maps incl.)
The lease of LP
Poincaré by I.6.6.1 ~weich is stable
For a care structure: $\lim_{k \to \infty} (f_{un}(\tau_{n}, e)) \rightarrow e^{-2} = sp) : Funlt_{n}, e)^{e^{-2}} > sp$
i eTn
where e_{v_i} : Fun $(T_n, C) \rightarrow e$ is evaluation at $2eT_n$. We then done there is evaluation at $2eT_n$. We then the there is evaluated by the term of term of the term of the term of
Write P. (P. C) := (Fun(Th, P), Q Th) E(+ P "colorison"
N> P-concernation Be formation
$P : e e_1 : \Delta^{c_p} \longrightarrow Cate T. p. 102$
$[n] \longrightarrow \mathcal{O}_{n}(\underline{\mathcal{C}}_{\underline{\mathcal{C}}})$
Def: let E be an ac-category us sifted columb and
$f: (at^{\circ} \rightarrow \mathcal{F}, a)$ finctor
$ad \pm : Cat^{\circ} \longrightarrow \mathcal{C}$
$(\mathbf{c}, \mathbf{f}) \mapsto \mathbf{f} \mathbf{o}(\mathbf{c}, \mathbf{f}) $
Using functionality of oin-1 up can extend this to a
$f_{\text{post}} = T \left(c \right)^{p} \left(e^{1} \right) \longrightarrow T \left(c \right)^{p} \left(e^{1} \right)$
$ad: toul(ata, C) \longrightarrow toul(ata, C)$

Note: Poincle, 2) for (e,2) & cat of extends to a functor
$\operatorname{Poinc}:\operatorname{Cal}_{\infty}^{\operatorname{Poinc}}\longrightarrow \operatorname{S}$
Det: the L-theory space is the functor
$d := ad (Poinc) Cat_{\infty}^r \longrightarrow 3$
$(c,q) \longrightarrow ad (Binc (e,q))$
Poinc P(e, g)
Rem: L(C, Q) (considered as simplicial space) is Kay V(C, E) (Cather
Claim: $L_0(C, \mathcal{L}) \cong \pi_L(C, \mathcal{L}) \forall (C, \mathcal{L}) \in Cot^{2}$
<u>Pf:</u> First we note that $P_{o}(e, 2) \ge (e, 2)$ so we get a canonical map
$Peinc(P, Q) \longrightarrow \int (P, Q) \cdot Peinc(P, (P, Q))$
(it claime that the natural map ". Oterm) poinc (e.2))
$\pi_{o} \operatorname{Poinc}(C, \mathcal{L}) \to \pi_{o} \mathcal{L}(C, \mathcal{L}) \qquad \text{ colimit have}$
descends to an equivalence colimit
$L_{\mathcal{O}}(\mathcal{C},\mathcal{P}) \xrightarrow{\sim} \pi_{\mathcal{O}} \mathcal{L}(\mathcal{C},\mathcal{P})$
Now in general for AB monoids, f.g. A-B two maps.
Then coeq(fg) = Bh,
where n is the relation generated by
b~b' <=> JacA sil. b <= 1 a 13 b
In our case, since L(C,Q) is Kan, we get
$\pi_{o}\mathcal{L}(\mathcal{C},\mathcal{I}) = \operatorname{coeq}(d_{o},d_{u}, \operatorname{Toh}(\mathcal{C},\mathcal{I})_{u} \longrightarrow \operatorname{Toh}(\mathcal{C},\mathcal{I})_{o})$
$\simeq \pi_{o} \mathcal{L}(\mathcal{C}, \mathcal{L})_{o} / \omega$
N TTO Poinc (e,Q)/N

		, l	•	`°				0 0 0	נ נ נ	, ct		~(₽[), c	ج) .																	
						لبا	ی د د	Ĵ.	π	F		vc	-(u	et			ג) גי)		s!	•		۲°۲ ۲°۲	K -	- (= (, c [c	d d	رور ر	•			
	ح	sl.	∧c	e	•••••••••••••••••••••••••••••••••••••••	e	K0	ب لم	لبع		Ň		M	•	.	h	<u>,</u>		Ç	د , د	ŧ)	0 0 0			ð	•	(c	، - ک و		, ,	Ş		
		ملا	00	d	¢.	~	↓.	° °	`` ` ``	, , , ,	\$î.v	nci	e.	•		•	۲	t, P	bine	c (c	່ເຊັ)												
											لر	, L'	e,e	2))		for	Ŵ	5./	ר, ים	ob '	6	ರು	: s v	ŝ								
	.+	فس	ປີ	r	50	lŀ	fo	lo	ws	• • •																						IJ	

§2 d	Idditive functors
<u>Def:</u>	A sequence do de a contraction do de a
	$(\mathscr{C}, \mathscr{D}) \xrightarrow{C} (\mathscr{C}, \mathscr{D}) \xrightarrow{C} (\mathscr{C}, \mathscr{D})$
	in Cat [®] w vanishing composition is called a Poincané-Verdier sequence
	if it is both a fiber and a cofiber sequence in Cato.
	We say that it is split if the underlying functor $\sharp^2: \mathbb{C}^2 \longrightarrow \mathbb{C}$,
	or equivalently $f: G \rightarrow C'$, admits both adjoints.
Def:	Let E be an as-category w. finite limits and F: Cata -> E
፹ .1.5.4	a functor. We say I is reduced if I (0) is terminal in
	E. We forther say a reduced functor of is additive
	[Split Poincare-Verdier sequences] ~> [Carlesian squares]
	We denote the full subcategory spanned by such functors by
	$\operatorname{Fun}^{\operatorname{odd}}(\operatorname{Cal}_{\infty}^{\mathbb{P}}, \mathbb{E}) \subseteq \operatorname{Fun}(\operatorname{Cal}_{\infty}^{\mathbb{P}}, \mathbb{E})$
Prop:	Criven a Poince ré. Verdier sequence
	$(\mathcal{C},\mathfrak{L})\to(\mathcal{D},\mathfrak{P})\longrightarrow(\mathcal{E},\gamma)$
	the functor Poinc(P(D, II))→Poinc(P(E, V))
	is a Kan fibration of simplicial spaces w. fibre Poinc(P(E, E))
Cor:	The L-theory space
	$\mathcal{L}: Corl_{\infty}^{\mathcal{C}} \longrightarrow \mathfrak{S}$
	is additive,
<u>Pf</u> :	First we need to show that I is reduced: Catoo is
	additive with 0-object

		and we see C(*,9 C(*,9	(P= - Hhat = 1 P - R = Pai = 8 (= 8*	oinc p inc $[x, \frac{x}{2}, \frac{x}{2}]$	ی یہ بے ہ (٭، ۲) (٭، ۲) کے یہ) عاد تحص ع),] _(, ,)) +		çovd. Z			
		as desired	• • • •	(
		To further	see the	+ Z ;	is indeed	1 addi ¹ 0))=17	hue,	we r	ر م <i>ا ا</i> ا	<u>ict</u>	
		So using I	u.u.2	togethe	er with	the :	fact	that	acom	etric	
		realization	takes	Kan f	brations	w. fit	one to	Car	tesian		
					,,,				1 01-014		
		squares,	the de	sirecl	follou	ບຣ.					•
	• •	squerres,	the de	și recl	follou	<u>ی</u> د.			• • •	· · · ·	
		syveres,	the de	sirecl	follou	ວຣ.				· · · · ·	
		spucies,	the de	sirecl	follou	ວຣ					•
		spucies,	tine de	și recl	follow	S					· · · · · · · · · · · · · · · · · · ·
		Squeres,	tere de	și recl	follow	S			 . .<	· · · · · · · · · · · · · · · · · · ·	
						S			 . .<	· · · · · · · · · · · · · · · · · · ·	
					follow	S			· · · · · ·		
						S					
						US			· · · · · · <th></th> <th></th>		
						US			· · · · · ·		
						S			· · · · · ·		

<u>.</u> <u>8</u> 3	Bordism invariance	
Let	(E,g), (D,) c cata, then we define the hermitian	
<u> </u>	category internal functor category:	
	$F_{UN}^{ex}((e,e),(O,D)) := (F_{UN}^{ex}(e,D), \underline{Y}_{F_{UN}})$	
vec define of of of of of of of of of of of of of	even the <u>quadratic functor</u> 2_{Fm} : $(Fun^{ex}(C, \Omega))^{P} \longrightarrow Sp$ is quadratic by $\pm 6.2.4$	
Leally -	\mathcal{L}_{Fun} : $Fun^{ex}(\mathcal{C}, \mathcal{D})^{op} \longrightarrow Sp$	
	P wat (Q, f*) (PP) (D) (L) P	
<u>.</u>	$\operatorname{hen} \operatorname{Tun}^{ex}((\operatorname{eq}), (\operatorname{D}, \overline{\mathfrak{Q}})) \in \operatorname{Cat}_{\mathrm{G}}^{\mathbb{P}}, \qquad $	
<u>Def.</u> I.p.45	A cobordism between two poincare objects (x,q) , (x',q') in $(e,q) \in Carly,$ is a span of the form	
	$\mathbf{x} \xleftarrow{\mathbf{x}} \mathbf{\omega} \xrightarrow{\mathbf{\beta}} \mathbf{x}^{2}$	
	a path $\gamma: \alpha^* q \longrightarrow \beta^* q'$ in $\Omega^{\circ} \mathcal{L}(\omega)$ s.t.	
	fib(w -> >c) ~ SLDg (fib(w -> x)) about this? "Poincare - Letsa	ehts
Def.	Let $(\mathcal{C}, \mathcal{D}), (\mathcal{D}, \Phi) \in \operatorname{Cat}_{\infty}^{\mathcal{P}}$ and	
ш. э.ч.	$f'd:(\mathcal{G}'\mathcal{F})\longrightarrow(\mathcal{D}'\mathcal{F})$	
	two Poincaré functors. A cobordism between f and g	
	is a cobordism in Fonex ((e, g), (n, 5)) between the	
	Poincere objects corresponding to f and g	
Rem: I. p.67	A cobordism f to g is a span	
	in Funex (C,D), and X, B natural transformations.	

	There exists a Poinrare as - category Q1 (C, ?) which has spars of
	Cas the undelying stable as-calegory
	Using this we note that the data of a cobordism of to g equivalently
	can be encoded in a Poincare functor
	$\phi: (\mathcal{C}, \mathcal{L}) \longrightarrow \mathcal{Q}_1(\mathcal{O}, \Phi)$
	$d_0 \phi = f$, $d_1 \phi = g$.
Def:	A Poincare functor $(f, \gamma): (e, \varphi) \rightarrow (D, Q)$ is a bordison
J. 5. 5 1	equivalence if there exists a Poincare functor
	$(q, \phi): (\phi, \phi) \longrightarrow (c, e) $ s.t. the composites
	$(f, \gamma) \circ (g, 0)$, $(g, 0) \circ (f, \gamma)$
	are cobordant to the respective identifies.
Def :	Let E be an 00-category w. finite products. Then we
	say that an additive functor f. Cat? -> E is bordism
	invariant if it sends bordism equivalences of Poincare
	00-categories to equivalences in E.
	We write Funder (Cate, 2) = Funded (Cate, E) for the full
	subcategory spanned by the bordism invariant functors
Rem:	Bordism invariant functors vanishes on all metalookic Poincaré a-
 . 	catigories:
	Let F: Cato -> E be bordism invariant. Then we claim that Holds since F in particular is reduced
	$F(Me+(C,Q)) \le O = F(O),$
	i.e. want a bordism equivalence since F is bordisminuarier
	Met(e,e) = (0, 2) Mapped to 0 by F Terminal and initi
	Crid: V object so commical map into and out of

I vid: This composite is the O-map, so wayt a
burdism between
$Mel(e, q) \stackrel{id}{\rightarrow} Mel(e, q)$
It can be shown that this bordism is given
by the chicigram
$\begin{aligned} q \in S^{\infty} \underline{c}(d) \\ & \text{id} \begin{pmatrix} c \\ d \end{pmatrix} = \underbrace{d}_{d} \underbrace{d}_{N} \\ & \text{id}_{d} \begin{pmatrix} c \\ d \end{pmatrix} = \underbrace{d}_{d} \underbrace{d}_{N} \\ & \text{id}_{N} \\ & \text{id}_{d} \begin{pmatrix} c \\ d \end{pmatrix} = \underbrace{d}_{d} \underbrace{d}_{N} \\ & \text{id}_{d} \begin{pmatrix} c \\ d \end{pmatrix} \\ & \text{id}_{d} \end{pmatrix} = \underbrace{d}_{d} \underbrace{d}_{N} \\ & \text{id}_{d} \begin{pmatrix} c \\ d \end{pmatrix} \\ & \text{id}_{d} \end{pmatrix} = \underbrace{d}_{d} \underbrace{d}_{N} \\ & \text{id}_{d} \begin{pmatrix} c \\ d \end{pmatrix} \\ & \text{id}_{d} \end{pmatrix} = \underbrace{d}_{d} \underbrace{d}_{N} \\ & \text{id}_{d} \end{pmatrix} \\ & \text{id}_{d} = \underbrace{d}_{d} \underbrace{d}_{N} \\ & \text{id}_{d} = \underbrace{d}$
Would Heis Dast
For so called "group-like" additive functors, we have that the converse
holds, i.e. that it is boodism invaniant exactly when it dissepters on metabolics
Lem: The forgetful functor I.I.S.? Fun ^{and} (Cat ^p , Mon _F (E)) ~ Fun ^{add} (Cat ^P , E)
is an equivalence,
Def: An additive functor F: Cat 2 -> E is called grouplike if the
I.1.5.8 nateral lift of F to Monero (E) takes values in the communative monoids
full subcategory (EPE (E) _ Experience (or group-like monoids)
Rem: It & is additive, then any additive functor GrpE (E) & Hom (C) II.1.5.4
F: Cat? -> & is group-like since both forgetful functors
$M_{e_{\omega}}(\mathcal{E}) \xrightarrow{\sim} \mathcal{E}_{\mathcal{S}} G_{r} \rho_{e_{\omega}}(\mathcal{E}) \xrightarrow{\sim} \mathcal{E}$ are equivalences.
Rem: If To of the image of F is a group, then F is group-like
\sim (1) (at) (at) (at) (b)

	$\pi_{o} \mathcal{L}(\mathcal{C}, \mathcal{D}) \cong \mathcal{L}_{o}(\mathcal{C}, \mathcal{D})$ is a group. Hence \mathcal{L} is grouplike.
Prop.	Let $F: Cat_{\infty}^{p} \rightarrow \mathcal{E}$ be a group-like additive functor. Then F is bordism
ш. э. э. ч	invariant iff. F(Met(G.2)) = + for all (E,2) ∈ Catio.
Rop	For any (C, 2) e Cat & we have
	$\pi_n \mathcal{L}(\mathcal{C},\mathcal{L}) \simeq L_n (\mathcal{C},\mathcal{Q}) = L_o(\mathcal{C},\mathcal{Q}^{\mathcal{C}^{n_j}})$
<u>Pf:</u>	See seperate clocument
<u>Ρωρ</u> π.3-5-5	L: Cat ^p -> S is bordism invertant:
<u>P</u> ? :	Consider doudre Q[E, 2] \rightarrow (C, 2)
	$\pi_{n}\mathcal{L}(-) \begin{cases} x^{\mathcal{L}^{\mathcal{V}}} \\ z $
	$\pi_n \mathcal{L}(Q_1(\mathcal{C}, \mathcal{L})) \longrightarrow \pi_n \mathcal{L}(\mathcal{C}, \mathcal{L})$
	so we get that do and do induce the same map on L-groups.
	Now. let f,g: C > D be cobordant. Then we equivalently
	have a Poincare functor
	$H: (\mathcal{C}, \mathcal{C}) \longrightarrow \mathcal{Q}_1(\mathcal{D}, \Phi)$
	dolf 2f , dy H2g.
	Then using that we by the above argument knows that
	π, L(do) V π, L(de)
	$\pi_n \mathcal{L}(\xi) \simeq \pi_n \mathcal{L}(d, H)$
	$\simeq \pi_n \mathcal{L}(d_t H)$
	$\underline{\mathbf{s}} = \pi_{\mathcal{L}} \mathcal{L} (q)$
	hance any corbordant functors Metween Poincare
	00-categories) induces equivalent maps on the

	•	-		0		of	op	y	•	g	0	P	5	0	ę.	+	ĥ		(Ĺ	- 5	spa		e 5	•								
		•	0	•		ŝ	اب	ef		e		ivc.	Le	لمد	de	9.	, U	4	lie	•	Ļ	- cy	101	ur P	•								
		N	sù c) <mark>`</mark>	ູດ	x5	SU	Ņ	٩	ł	لبد	ъ Ъ			F	.2) :		Le	, G	2)	•	•	Ĺ	D'	G	Ĵ	•	i S				
		F))))	rd	isi	Ň		egr		al	lv	H,	M	zit	li	•	: ./.	$\tilde{\mathcal{M}}$	rer	rse	° •	gì	به	\sim	<i>.</i> /0	y							
								•		Ġ,	ė);	C	<i>В</i> ,	5)		» (le	ંદ્ર	Ś	U				Ů							
		•	e.		ĺ	÷ F), L		lG	, . ,	0)	50)C	bna	id a	`` ``	•	51	•	ج ص	, vc	L									• •	
		•	• •) · (2	. ^ \`c	· 。'(Ē	•	. `).			••••	r (03	• •	¥°) °		0												
		• • •			ب •	9	۰ ۲			•	۱. ۲	(.)	•		<u>م</u> عر	, ``	<mark>م</mark> (e,	<u>(</u> 2))		•	•	•	•								
		[4	٩	ر م	e.	.\	Dy	.+	h	L	. 0	р ,	0 0	€.	ں د	بو	g	et S	•	ter	جر	A.	ġ	off		. (`ov	nl	00	șit	وہ		
		้เห	à	UC	وح	•	ÌĊ	ف	Ś	i,te	5	<u></u> , (שׂע		L	-ဌ	ושת	R		π	nd	ر ، (Ŝ	Q		ĹŦ	Ņ)	ູ່ທ	ļu	دو ؟		
		a	Ņ		i5	0	M	270	pe	بنو	şņ	• •	้น	. و	•	iv.	ve		se]v	nd	vc	ed	••	لعع	°	Ċ	5. (0)	• •			
			۰ ب	· ·		π.	, 	<u>(</u> 1	- , v	2)		ìS	۰ D		A	Š			. 11.	· / ·	`	L		ا	ري ري	0	e ç	ŀ.				۵	
																																•	

<u>ે</u> કું પ્	L-Theory Spectrum	
Prop	Assume F: Coto - DE is Dordison invariant. Then the nature	•
₩.3.5.8	$\Omega F(\mathcal{C}, \mathcal{D}) \longrightarrow \mp (\mathcal{C}, \mathcal{L}^{c, 3})$	
	anising from the metallolic Poincare-Verdier sequence is an	
	equivalence.	
<u>Pt:</u>	The metabalic Poincave-Verdier sequence has the form	
	Split Princaré (e, gt-1) -> Met (e, 2) -> (G,2) Fibre sequence	
	$= \frac{1}{2} \sum_{i=1}^{n} $	
	Libre sequence F(C, 2) -> F(FVEX(G, I)) -> F(FVEX(G, I)) -> F(C, Y) since F is in particular additive	
	By I.3.5.4 we know I's bordism invariant iff	
	F(Met (EQ)) 2* V (e, g) & Coto, so we get fibre sequence	
	$F(c, 2^{c(1)}) \longrightarrow r$ $J \sim J$ $J \sim J$ $Such a pullback$ $J \sim J$ $S per definition$ $F(c, 2) J$ $F(c, 2) J$ $F(c, 2) J$ $F(c, 2) + Le loopspace, ie$	0 0 0 0 0
	$F(\mathcal{E}, \mathcal{E}^{C^{i}}) \xrightarrow{N} \mathcal{D}F(\mathcal{E}, \mathcal{E})$	•
Since	L: Cat => S is pordism inverient we get	
	~L(e,2) ± L(e, 2[-,])	
	\sim π ; $\mathcal{L}(e, \mathcal{Q}) \simeq \pi_{\bullet}\mathcal{L}(e, \mathcal{Q}^{c; J})$	
	= Lo(G, Q, C-13)	
	$= L_{i}(c, q)$	
In g	eneral, II.3.5.8 gives us that the image of any bordism	
innonya	ant functor can be deelooped by shifting the Poincan	,e

stucture: $[f(e,e), f(e,e^{CI}), f(e,e^{CI}),]$
with structure maps given by I.35.8.
Del: We define the L-Theory spectrum L: Cat & -> Sp by
$L(C, 2) = LL(C, 2), L(C, 2^{L3}), L(C, 2^{L23}), \dots] $ structure maps from
Cor: By definition we have canonical equivalences
$\mathcal{V}_{\infty-i} \Gamma(\mathcal{C}'\mathcal{J}) \overline{\mathcal{V}} \mathcal{C}(\mathcal{C}'\mathcal{J}) A : \in S$
hence we have isomorphisms.
$\pi_{i} L(e, e) E L(e, e^{C_{i,j}}) = L(e, e)$
$\frac{\nabla l}{\pi_i} L(\mathcal{C} \mathcal{L}) \simeq \pi_o \Omega^{*+i} L(\mathcal{C} \mathcal{L})$
≤ To L(C, 2 ^{E·13})
$\approx L_{o}(\mathcal{E}, \mathcal{Q}^{\mathcal{I}^{-1}})$
=: L; (e, f)
Cor: The functor L: Cal 2 - Sp is bordism invariant. I.41.6
<u>Pt:</u> Follows by the facts that
$\pi_{i} L(e, 2) \cong \pi_{o} \mathcal{L}(\mathcal{C}, \mathcal{Q}^{\mathcal{L}, i}) \forall i \in \mathbb{Z}$
and that I is borchism invariant.
Thus Ramicki Remoducity let R be a discrete ving spectrum and
M a discrete invertible module w. involution. Then
$\neg \mathcal{O}_{5} \Gamma (\mathcal{O}_{p}(\mathcal{B}), \mathcal{J}^{\mathcal{W}}_{\mathbb{Z}^{\mathcal{N}}}) = \Gamma (\mathcal{O}_{p}(\mathcal{B}), \mathcal{J}^{-\mathcal{W}}_{\mathbb{Z}^{\mathcal{M}}})$
In particular we get that LLD ^b Led, 2 ² m) is 4-periodic.
<u>Pf:</u> First recall the categorical equivalence
$(\mathcal{D}^{b}(\mathcal{P}), \mathcal{Z}^{2}\mathcal{Q}^{2m}) \xleftarrow{\mathcal{Z}} (\mathcal{D}^{b}(\mathcal{P}), \mathcal{Q}^{2m+1})$
By THILL use brance thank 1: Cat P -> So is boundinger insurvingent co

			م ر	ح	ц.		.ş.	R, 1	we	J	ęt	ļ,	Ç	cit	•	su	pe	Ņ	nit	٨	. +	أبو	•	sp	ود	Ļη	, W		ŝ	eq	Ļ,	بع	ier	xf.
			ંન	Ċ	Э	spe	ene	chi	مع	Ĥ	, ,	đì	عمر	dic	tic	•	fu	nc	+0	ر ۲	Ł	her	vc	L	•									
	$\mathcal{O}_{\mathcal{S}}\Gamma(\mathfrak{W}_{p}(\mathcal{O}), \mathcal{E}_{\mathcal{S}}^{\mathcal{M}}) \simeq \Gamma(\mathcal{O}_{p}(\mathcal{O}), \mathcal{E}_{\mathcal{S}}^{\mathcal{O}} \stackrel{\mathcal{M}}{\geq} \mathcal{N})$																																	
			So by categorical equivalence we get																															
							'.	•	•	•	ں. س	•		•	•	•			•	• •	•	•	•	•	>v	•								
			$\mathcal{O}_{\mathcal{C}}(\mathcal{O}_{\mathcal{C}}(\mathcal{O}), \mathcal{E}_{\mathcal{C}}^{\mathcal{H}}) \simeq \Gamma(\mathcal{O}_{\mathcal{O}}(\mathcal{E}), \mathcal{E}_{\mathcal{C}}^{\mathcal{T}}, \mathcal{H})$																															
		بر ر م ا													٦	2)2 - M																		
			.0	ب	ć	le	٩																											р.