Paul 07.10.22: Introduction
Motivation
X a topological space \sim $\pi_0 X$, $x \in X$, $\pi_1(X, X)$ $\pi_{c_1}(X, X) = cat$ (ob = pts in X $\pi_{c_1}(X, X) = cat$ (morp = hunpty classes of rings in X
$Hom_{\pi\chi}(x,x) = \pi_{1}(\chi,x)$
2: What sort of "gadget" contains the data of a homotopy theory? - as - categories
- All (small) categories as functors and nathtraves form a 20at.
- An (small) categories a functors and not trave form a 20at. - Convenient usay to do homotopy theory ?
Def: A poset Q is a set with a partial order
Every poset P determines a category:
$OP(\mathcal{Y}) = \mathcal{O}$
]) (a. "){∅ ×,¥Ŋ
$Hom_{\mathcal{P}}(x,y) = \begin{cases} \emptyset & x \neq y \\ x & x \neq y \end{cases}$
$\frac{\xi_{X}}{[n]} = \left\{ o \leq 1 \leq \dots \leq n \right\}, n \geq 0$
$ = \begin{cases} ob = 3 E^{1/2} \\ Hom_{\Delta}([n], [m]) = Fon([n]) \end{cases} $
Distinguished maps:
di: [n] [n+1] injective and misses ;
Sj:[1] → [1-1] surgective and [5j (1)]=2
Def: A simplicial set is a functor $\mathbb{A}^{p} \rightarrow Set$
Xo = X([0]) the 'objects' of X
X1:=X([1]) the 'morphisms' of X
$\underline{\mathcal{E}_{X:}}$ Δ^{n} the standard n-simplex := Hom $\Delta(\cdot, [-1])$

$\underline{\operatorname{Prop}}: \qquad X_{\mathcal{N}} \cong \operatorname{Houn}_{\operatorname{sSet}} (\Delta^{\mathcal{M}}, \chi)$
Def: Topological N-simplex $\Delta_{top} = \{(x_{0,-}, x_{n}) \in \mathbb{R}^{n+1} x_{i} \ge 0, \Sigma \times i = 1\}$
<u>Def</u> : Singular simplicial set of a space X is
Sing $(X) = Hom_{Top}(\Delta_{top}, X)$ Def. Geometric realization of a sset X
Def. Geometric realization of a sset X
$ \times = \bigcup \times m \times \Delta_{top} / or given along faces & digeneracy maps$
This is a topological space (CW-complex).
Prop: There exists an adjunction
(•): sSct Z Top: Sing.
~ Pouve (wite & multe
~> have write & counits. (X) -> X. weak htpy eq ON-approximation
$\sum_{i=1}^{n} \int dx_{i} = \int dx_{i}$
UEF: O a cat, The norde N, G: (M= ton (LMJ, G) N can see tolly the more
<u>Def:</u> G a Cat, the nerve N. G: [n]=Fon([n],G) N: Cat -set tolly huthhel
Def: The homotopy category hX of a simplicial set X:
<u>Def:</u> The homotopy category hX of a simplicity set X : ob $hX = X_0$
Def: The homotopy category hX of a simplicial set X ob hX = Xo Hom _{hx} = free compositions of composable morphisms in X1/
<u>Def:</u> The homotopy category hX of a simplicity set X : ob $hX = X_0$
Def: The homotopy category hX of a simplicited set X : $ob hX = X_{0}$ Hom _{hx} = free compositions of composable morphisms in $X_{1}/$ Punch line: $h \to N$, $G = hNG$ f = g Construction: $(\partial \Delta^{m})_{G} = maps [h^{2}] \to h$ Hut's met sug $d_{2} = f$
Def: The homotopy category hX of a simplicial set X ob $hX = X_0$ Hom _{<math>hx = free compositions of composable morphisms in X_1/ <u>Ponch line</u>: $h + N$, $G \neq hNG$ <u>Construction</u>: $(\partial \Delta^m)_{b_2} = maps$ [h^2] $\rightarrow tr$] Heat's not sug. $A_2 = f$ $S_0(x) = id_x$ $\Lambda_1^m := The jth hom = maps [h] \rightarrow tr] s.t.$</math>}
Def: The homotopy category hX of a simplicited set X : $ob hX = X_{o}$ Hom _{hx} = free compositions of composable morphisms in $X_{1/o}$ <u>Punch line</u> : $h + N$, $G = hNG$ Construction: $(20^{n})_{b} = maps$ $[r_{2}] \rightarrow tn$ that is net surg. $A_{20} = f$ $S_{a}(X) = id_{x}$
Def: The homotopy category hX of a simplicial set X ob $hX = X_0$ Hom _{<math>hx = free compositions of composable morphisms in X_1/ <u>Ponch line</u>: $h + N$, $G \neq hNG$ <u>Construction</u>: $(\partial \Delta^m)_{b_2} = maps$ [h^2] $\rightarrow tr$] Heat's not sug. $A_2 = f$ $S_0(x) = id_x$ $\Lambda_1^m := The jth hom = maps [h] \rightarrow tr] s.t.$</math>}
Def: The homotopy category hX of a simplicial set X ob $hX = X_0$ Hom _{<math>hx = free compositions of composable morphisms in X_1/ <u>Ponch line</u>: $h + N$, $G \neq hNG$ <u>Construction</u>: $(\partial \Delta^m)_{b_2} = maps$ [h^2] $\rightarrow tr$] Heat's not sug. $A_2 = f$ $S_0(x) = id_x$ $\Lambda_1^m := The jth hom = maps [h] \rightarrow tr] s.t.$</math>}
Def: The homotopy category hX of a simplicial set X : $bherefore X_{0}$ Hom _{fix} = free compositions of composable morphisms in X_{1} Poinch line: $h + N$, $G \neq hNG$ Construction: $(2G'')_{0} = maps [i_{2}] \rightarrow [n]$ that is net surg. $A_{2} = f$ $A_{2} = f$ $A_{2} = f$ $A_{3} = (n_{3})_{1} = n_{3} = (n_{3} + n_{3}) = (n_{3$
Def: The homotopy category hX of a simplicial set X ob $hX = X_0$ Hom _{<math>hx = free compositions of composable morphisms in X_1/ <u>Ponch line</u>: $h + N$, $G \neq hNG$ <u>Construction</u>: $(\partial \Delta^m)_{b_2} = maps$ [h^2] $\rightarrow tr$] Heat's not sug. $A_2 = f$ $S_0(x) = id_x$ $\Lambda_1^m := The jth hom = maps [h] \rightarrow tr] s.t.$</math>}
Def: The homotopy category hX of a simplicial set X: ob hX = Xo Hom _{hx} = free compositions of composable morphisms in Xy/ Punch line: $h + N$, $G = h N G$ for g , $f = h$, g , $f = h N G$ Construction: $(\partial \Delta^n)_{b} = maps [l_2] \rightarrow [n]$ that is not sug. $A_{2} = f$ $A_{2} = f$ $A_$
Def: The homotopy category hX of a simplicial set X : $bherefore X_{0}$ Hom _{fix} = free compositions of composable morphisms in X_{1} Poinch line: $h + N$, $G \neq hNG$ Construction: $(2G'')_{0} = maps [i_{2}] \rightarrow [n]$ that is net surg. $A_{2} = f$ $A_{2} = f$ $A_{3} = (n_{3})_{1} = n_{3} = (n_{3})_{1}$

Def:	A Kan complex is a simplicial set with the form extrusion property for all homs:
	$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i$
<u>£×:</u>	XETOP ~> Sing (X) E Kan follows by the adjonction 1.1+ Sing, and In" I a Mil def. retracts.
	N.C is a Kan complex => C is a groupoid Talk morphisms are invertible
	G a category ~? BE= [N.G] is the classifying space of C
	L> Book recommodation: "Classifying spaces & classifying topos" - Mac Lane
	G group, model it as $BG = OW; *, Hom_{BG}(*,*)^{2}G$
	BG = Classifying space of G (in the classical sense)
	-> What does this classify for general 6?
<u>Def:</u>	A simplicial set is a composer if it has the spine extension property, i.e.
	In the weaker than a cart requires
Prop :	In N.C. there are unique inner horn extensions
<u>Def:</u>	An 00-codegory is a simplicial set 5 with the horn extension property for
	all inner horns, i.e.
	$\sum_{i=1}^{n} \frac{\forall f}{\forall i} \times \frac{\forall n \ge 2}{2}, \forall 0 \in i \in N$
	Kan Cpi's Nerves of Cats Ociani Osiani Osiani Osiani Osiani

Prop:	• XE Top; Sing. XE Catoo
	· CeCat, N.CECut _∞
	e c cat 2; N ^{Deskin} E c cat _{oo}
	• CE Catkon, Ne CE Cata Ce Cata is only a composer.
Def.	Nec Top = 8 as - cat, of spaces
<u>Der</u> .	See $f,g \in X_1$ are equivalent for f if there exists $\sigma \in X_2$ s.t. $d_2 = f$ $d_1 = g$ $d_0 = i d_y = S_0(y)$ $d_1 = f$ $d_1 = f$ $d_2 = f$ $d_1 = f$ $d_2 = f$ $d_3 = f$ $d_1 = f$ $d_2 = f$ $d_3 = f$ $d_$
	$d_2 \sigma = q$
	$d_{0} \phi = i d_{i} = S_{0} (q) $
Prop.	If X is a composer & has 2 and/or 3 inver horn extensions, then this
	is an equivalence then this is an equivalence relation
	Or if X is an 00-category
Def,	πX = O simplices & I simplices / Nequivelent
	4
Prop.	$\pi_X \simeq \chi_\pi$
	XECato, call fr Xy an equivalence if fehx is an isomorphism
Def.	XECato, call frX, an equivalence if fehx is an isomorphism. An or-groupoid is an or-cost where all 1-morphisms are all invertible
Def. Thur:	$X \in Cat_{\infty}$, call $f \in X_{+}$ an equivalence if $f \in LX$ is an isomorphism An ∞ -groupoid is an ∞ -cost where all 1-morphisms are all invertible Kan complex $\Longrightarrow \infty$ -Groupoid
De f. Thur	XECato, call frX, an equivalence if fehx is an isomorphism. An or-groupoid is an or-cost where all 1-morphisms are all invertible
Def.	$X \in Cat_{\infty}$, call $f \in X_{4}$ an equivalence if $f \in LX$ is an isomorphism. An ∞ -groupoid is an ∞ -code where all 1-morphisms are all invertible. Kan complex $\Longrightarrow \infty$ -Groupoid
De f.	$X \in Cat_{\infty}$, call $f \in X_{+}$ an equivalence if $f \in LX$ is an isomorphism $A \cap \infty$ -groupoid is an ∞ -cat where all 1-morphisms are all invertible Kan complex $\Longrightarrow \infty$ -Groupoid
Def.	$X \in Cat_{\infty}$, call $f \in X_{4}$ an equivalence if $f \in f \times is an isomorphism.$ $A \in \Omega$ -groupoid is an ∞ -cat where all 1-morphisms are all invertible. Kan complex $\Longrightarrow \infty$ -Groupoid
De f.	$X \in Cat_{\infty}$, call $f \in X_{1}$ an equivalence if $f \in LX$ is an isomorphism. $An \infty$ -groupoid is an as-cell where all 1-morphisms are all invertible. Kan complex $\Longrightarrow \infty$ -Groupoid
Def.	Xe Cat _o , call $f \in X_{4}$ an equivalence if $f \in I_{1} \times s$ an isomorphism $A = 0$ groupoid is an ∞ -cet where all 1-morphisms are all invertible Kan complex $\Longrightarrow \infty$ -Groupoid
Def.	$X \in Cat_{\infty}$, call $f \in X_{+}$ an equivalence if $f \in I \times is an isomorphism A = \alpha - groupoid is an \alpha - cat where all 1-morphisms are all invertibleKan complex \Rightarrow \infty - Groupoid$
Def.	$X \in Cat_{\infty}$, call $f \in X_{1}$ an equivalence if $f \in I \times is an isomorphism.$ $A \in \Omega$ or groupoid is an ∞ -code where all 1-morphisms are all invertible. Kan complex $\iff \infty$ -Groupoid
Def.	XeCato, call frX, an equivalence if felix is an isomorphism. An an groupoid is an an-cost where all 1-morphisms are all invertible. Kan complex \Leftrightarrow on Groupoid
Def.	$X \in Cat_{\infty}$, call $f \in X_{4}$ an equivalence if $f \in EX$ is an isomorphism. An ∞ -groupoid is an ∞ -cat where all 1-morphisms are all invertible. Nan complex $\Longrightarrow \infty$ -Groupoid

2: Darviel Narlow - Small object argument 31: Small object argument Number $\Lambda = [\Lambda_3^{n_1} \rightarrow \Lambda^{n_1}(\Lambda_2^{n_2})]$ Ennes: $O = j \in M$ Ennes: $O = j \in M$ Equals $O < j \in M$ Equals	2. Daniel Marlowe - Small Object argument
Notation: $\Lambda = \{\Lambda_{1}^{n} \rightarrow \Delta^{n} n^{2} \cdot \}$ There : $O \in j \in \mathcal{Y}$ Left: $O \in j \in \mathcal{Y}$ Rept: $O \in j \in \mathcal{Y}$. Given $S \in ArcSet denote by$ $\mathcal{K}_{1}(S) = \{g \text{ to: } LLF \text{ ourt: } s \in S\}$ $\mathcal{K}_{2}(S) = \{g \text{ to: } LLF \text{ ourt: } s \in S\}$ $\mathcal{K}_{2}(S) = \{g \text{ to: } LLF \text{ ourt: } s \in S\}$ $\mathcal{K}_{2}(S) := \mathcal{K}_{2}(\mathcal{K}_{2}(S))$ Def. SS $Mar(SST)$ is saturated if it is observed order if pishoots (ii) arbitrary corpeducts). It working to: not get M indexed colours, the iv) $N = indexed$ colouits $\mathcal{K}_{2}(S) = \mathcal{K}_{2}(S)$ $\mathcal{K}_{2}(S) = \mathcal{K}_{2}(S)$ $\mathcal{K}_{3}(S) = \mathcal{K}_{3}(S)$ $\mathcal{K}_{3}(S) = \mathcal{K}_{3$	\$1: Small object argument
Inner: $0 \leq j \leq v$ $1 \neq 1$: $0 \leq j \leq v$. Given $3 \leq 4rs2et$ denote by $\chi_{i}(5) = \{g \in v. RiP, wrt. se \}\}$ $\chi_{i}(5) = \{g \in v. RiP, wrt. se \}\}$ $\chi_{i}(5) = \{g \in v. RiP, wrt. se \}\}$ $\chi_{i}(5) = \chi_{i}(\chi_{i}(5))$ Def. Sc Martist is saturated if it is closed order i) primots (ii) arbitrary copreducts.) It washing when the intered colored the iii) Retrad- ivid Class from interest $V_{i}(5) = \chi_{i}(\chi_{i}(5))$ $\sum_{i=1}^{i} Retrad- V_{i}(5) = \chi_{i}(\chi_{i}(5))Retrad- V_{i}(5) = \chi_{i}(\chi_{i}(5))\sum_{i=1}^{i} Retrad- V_{i}(5) = \chi_{i}(\chi_{i}(5))\sum_{i=1}^{i} Retrad- \sum_{i=1}^{i} Retrad- Retrad- \sum_{i=1}^{i} Retrad- Retrad- \sum_{i=1}^{i} Retrad- Retrad-$	
Left : $\mathcal{C}_{j} \leq v_{j}$ Regular $0 \leq j \leq v_{j}$ Given $3 \leq Ar;Set denote by$ $\mathcal{K}_{l}(3) = \{g \text{ in }LP \text{ out, }s \in S\}$ $\mathcal{K}_{R}(S) = \{g \text{ in }RP \text{ out, }s \in S\}$ $\mathcal{K}_{R}(S) = \mathcal{K}_{L}(\mathcal{K}_{R}(S))$. Def. Sc Nor(isst) is saturated if it is above downed (ii) Arbitrary copreducts.) It working in and get N riddred colling, by iii) Retract iv) N-intered autimite \mathcal{K}_{ret} solutions \mathcal{L}_{R} . All maps \mathcal{C}_{R} coperated clocure \mathcal{L}_{R} . All maps \mathcal{C}_{R} behaved clocure \mathcal{L}_{R} . $\mathcal{K}_{L}(S)$ is saturated \mathcal{L}_{R} . $\mathcal{K}_{L}(S)$ is saturated \mathcal{K}_{L} . \mathcal{K}_{L} form \mathcal{K}_{L} is indicated clocure. \mathcal{K}_{L} is form \mathcal{K}_{L} . \mathcal{K}_{L} is indicated clocure. \mathcal{K}_{L} is indicated clocure. \mathcal{K}_{L} is indicated clocure.	
Right $O^{-}j \leq n$. Given $J \leq ArsSet denote by$ $K_{1}(S) = \{j \in 0, LeP, wrt. sells\}$ $K_{R}(S) = \{j \in 0, ReP, wrt. sells\}$ $K_{R}(S) = \{j \in 0, ReP, wrt. sells\}$ $K_{R}(S) = \{j \in 0, ReP, wrt. sells\}$ $K(S) = \mathcal{K}_{R}(K_{R}(S))$ Def. So Mar(SSet) is subtrated if it is closed order i) provides (ii) arbitrary, corrected, if working is not feel M riddeed calling this will blow from it. (iii) Retrad iv) N-indexed collisite $X = \frac{1}{2} \frac{1}{16} \frac{1}$	
$\begin{aligned} \mathcal{K}_{L}(S) = \{g \ w. LLP \ wrt. sell \\ \mathcal{K}_{R}(S) = \{g \ w. RLP \ wrt. sell \\ \mathcal{K}_{R}(S) = \mathcal{K}_{L}(R_{R}(S)) \\ \mathcal{K}(S) &= \mathcal{K}_{L}(R_{R}(S)) \\ \end{aligned}$ $\begin{aligned} & \mathcal{K}(S) &= \mathcal{K}_{L}(R_{R}(S)) \\ & \mathcal{K}(S) &= \mathcal{K}_{L}(R_{R}(S)) \\ \end{aligned}$ $\begin{aligned} & \mathcal{K}(S) &= \mathcal{K}_{L}(R_{R}(S)) \\ & \mathcal{K}(S) &= \mathcal{K}_{L}(R_{R}(S)) \\ \end{aligned}$ $\begin{aligned} & \mathcal{K}(S) &= \mathcal{K}_{L}(R_{R}(S)) \\ & \mathcal{K}(S) &= \mathcal{K}_{L}(R_{R}(S)) \\ \end{aligned}$ $\begin{aligned} & \mathcal{K}(S) &= \mathcal{K}_{L}(S) \\ & \mathcal{K}(S) &= \mathcal{K}_{L}(S) \\ & \mathcal{K}(S) &= \mathcal{K}_{L}(S) \\ \end{aligned}$ $\begin{aligned} & \mathcal{K}(S) &= \mathcal{K}_{L}(S) \\ & \mathcal{K}(S) &= \mathcal{K}(S) \\ & \mathcal{K}(S) $	
$\begin{aligned} \mathcal{K}_{L}(S) = \{g \ w. LLP \ wrt. sell \\ \mathcal{K}_{R}(S) = \{g \ w. RLP \ wrt. sell \\ \mathcal{K}_{R}(S) = \mathcal{K}_{L}(R_{R}(S)) \\ \mathcal{K}(S) &= \mathcal{K}_{L}(R_{R}(S)) \\ \end{aligned}$ $\begin{aligned} & \mathcal{K}(S) &= \mathcal{K}_{L}(R_{R}(S)) \\ & \mathcal{K}(S) &= \mathcal{K}_{L}(R_{R}(S)) \\ \end{aligned}$ $\begin{aligned} & \mathcal{K}(S) &= \mathcal{K}_{L}(R_{R}(S)) \\ & \mathcal{K}(S) &= \mathcal{K}_{L}(R_{R}(S)) \\ \end{aligned}$ $\begin{aligned} & \mathcal{K}(S) &= \mathcal{K}_{L}(R_{R}(S)) \\ & \mathcal{K}(S) &= \mathcal{K}_{L}(R_{R}(S)) \\ \end{aligned}$ $\begin{aligned} & \mathcal{K}(S) &= \mathcal{K}_{L}(S) \\ & \mathcal{K}(S) &= \mathcal{K}_{L}(S) \\ & \mathcal{K}(S) &= \mathcal{K}_{L}(S) \\ \end{aligned}$ $\begin{aligned} & \mathcal{K}(S) &= \mathcal{K}_{L}(S) \\ & \mathcal{K}(S) &= \mathcal{K}(S) \\ & \mathcal{K}(S) $	Criven J = ArsSet denote by
$\begin{array}{llllllllllllllllllllllllllllllllllll$	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\mathcal{X}_{\mathcal{R}}(\mathcal{S}) = \{g, w. RLP wrt. se S\}$
Def. SS Martisset) is saturated if it is closed under i) pishouts (ii) arbitrary coproducts) It working would first introduced collins, this iii) Retract iv) N-indexed collinits x and collinx x 2x: All maps · Coffbrations · Manamarphisms Def 3 saturated closure Lem: V 8: V ₂ (3) is saturated Rum: 5 = 22(3) Prop Qvillen Given S = [A: b; B; 3 s.t. X A; Funce sa non-degenerate simplexes	
 i) Prehouts (ii) arbitrary coproducts.) It working work just 1N indexed calinas, two will blow from in the indexed calinas, two will blow from in the indexed calinas, two indexed calinasts iv) N-indexed calinaits x is colinax. <u>Sx:</u> All maps Coffbrations Coffbrations Monomorphisms Menomorphisms <u>Def</u> 3 saturated clocure <u>Lem:</u> V.S.: N_L(S) is saturated <u>Retract</u> <u>Frop</u> [Quillen] Given S=JA: <u>-></u> <u>B</u>; <u>S</u>, <u>s</u>. <u>X</u> A.; have, say non-degenerate simplexes 	
 (ii) Arbitrary correcteds.) It working work just Mrindered colines, two with Blow Brown in Mrindered colines, two in the Brown in the States of the Brown in the Brown is the Brown in the Brown in the Brown is the Brown in the Brown is the Brown in the Brown is the	
ins iv) N-indexed colimits 2x: All maps Colibrations Colibrations Monomorphisms <u>Def</u> 3 saturated clocure <u>Lem:</u> V.S.: V _L (S) is saturated <u>Rem:</u> 3 = X(S) <u>Prop</u> [Quillen Given S = SA; ^B ; B.3 s.t. X A; Rave Kas non degenerate simplexes	
iv) N -indexed addinates $\sum_{z = 1}^{\infty} \frac{1}{100} 1$	
$\frac{S_{X}}{Tin} := 2$ $\frac{S_{X}}{Tin} := 3$ $\frac{S_{X}$	iii) Retrad
• Coffbrations • Monoursephisms \underline{Def} \overline{S} saturated closure \underline{Lem} : $\forall S : \mathcal{V}_{L}(S)$ is saturated \underline{Rem} : $\overline{S} = \mathcal{X}(S)$. Prop Quillen Given $S = \{A; \stackrel{f_{i}}{\longrightarrow} B_{i}\}$ s.t. $\xrightarrow{\times}$ A_{i} have say non-degenerate simplexes	ins ins
• Coffbrations • Monoursephisms \underline{Def} \overline{S} saturated closure \underline{Lem} : $\forall S : \mathcal{V}_{L}(S)$ is saturated \underline{Rem} : $\overline{S} = \mathcal{X}(S)$. Prop Quillen Given $S = \{A; \stackrel{f_{i}}{\longrightarrow} B_{i}\}$ s.t. $\xrightarrow{\times}$ A_{i} have say non-degenerate simplexes	ins ins
 Menomorphisms Def 3 seturated clocure Lem: VS: V_L(S) is saturated Rem: 3 = X(S) Prop Quillen Given S = SA: 4: > B; 3 s.t. X A: have say non-degenerate simplexes 	iv) N-indexed colimits X - colimity =2 This in 5
$\frac{\text{De}P}{\text{Lem:}} = \frac{S}{S} = \frac{1}{S} + \frac{1}{S} = \frac{1}{S} + \frac{1}{S} + \frac{1}{S} = \frac{1}{S} + 1$	(v) N-indexed colinits X colin Xy =? This in S <u>Ex:</u> • All maps
Lem: $\forall S : \mathcal{V}_{L}(S)$ is saturated Rem: $\overline{S} = \mathcal{X}(S)$ Prop Quillen Given $S = \{A: \stackrel{f}{\longrightarrow} B; \overline{S} : s. t.$ $\neq A;$ have as non-degenerate simplexes	iv) N-indexed colimits Xoris ins iv) N-indexed colimits Xoris ins => This ins Colimits • Colibrations
$\frac{Rem:}{F} = \mathcal{K}(g)$ $\frac{Rem:}{F} = \{A: \xrightarrow{k} B; 3 \in \mathcal{K}, f: A: \xrightarrow{k} B; 3 \in \mathcal{K}, f: A: France < as non-degenerate. simplexes$	iv) N-indexed colimits Xoris ins iv) N-indexed colimits Xoris ins => This ins Colimits • Colibrations
$\frac{Prop}{Qvillen} Given S = \{A; \xrightarrow{k} B; 3 \in I.$ $\times A; have $	iv) N-indexed colimits Ex: • All maps • Cofibrations • Monomorphisms
× A; have <a> non-degenerate simplexes	 in is iv) N-indexed columits X <l< td=""></l<>
× A; have <a> non-degenerate simplexes	iv) N-indexed colimits iv) N-indexed colimits SX: • All maps • Colibrations • Monomorphisms <u>Def</u> 3 saturated closure <u>Lem:</u> V.S.: V _L (S), is saturated
· · · · · · · · · · · · · · · · · · ·	influence V_{s} : iv) N-indexed columits $\sum x : \cdot All maps$ $\cdot Cof; brahons$ $\cdot Monomorphisms$ $\frac{DeP}{S}$ saturated closure <u>Lem:</u> $V_{s}: V_{l}(s)$ is saturated $\frac{Rem:}{S} = \mathcal{N}(s)$
then for any map of esets f: x -> X. 3	iii) Kettage iv) N -indexed colimits $X = 1$ for X_{k} $Z_{X}: \cdot All maps$ $\cdot Colibrations$ $\cdot Colibrations$ $\cdot Menomorphisms$ $DeP = \overline{S}$ saturated closure $\underline{Lem:} \forall S : N_{L}(S)$ is seturated $\underline{Rem:} \overline{S} = X(S)$ $\overline{Rep} = [Qvillen Given S = [A;] > B;] s.t.$
	iii) Kettage iv) N -indexed colimits $X = 1$ for X_{k} $Z_{X}: \cdot All maps$ $\cdot Colibrations$ $\cdot Colibrations$ $\cdot Menomorphisms$ $DeP = \overline{S}$ saturated closure $\underline{Lem:} \forall S : N_{L}(S)$ is seturated $\underline{Rem:} \overline{S} = X(S)$ $\overline{Rep} = [Qvillen Given S = [A;] > B;] s.t.$

$\chi \xrightarrow{s_{\epsilon} \xi} 2$		
$P_{x} \gamma (P_{x})$		
$f = \begin{cases} 1 & P \in \mathcal{X} : \mathcal{L} : P \in \mathcal{X} : \mathcal{L} : L$		
<u>Pf:</u> consider the family $\Theta_s = \begin{cases} A_i \rightarrow X \\ J_{sies} \downarrow f \\ B_i \rightarrow Y \end{cases}$. Look at		
$\frac{1}{8}, \rightarrow 3$		
$\underset{Q_i}{\coprod} A_i \longrightarrow X$		
$ S_{R}, \rangle \rangle s_{1} \in \overline{S} \setminus \mathcal{F}$		
$ \begin{array}{c} 11 \\ \Theta_{s} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$		
$\Pi_{\mathcal{R}}^{!} \longrightarrow \mathbb{E}_{\mathcal{S}}^{(\xi)}$		
θ_{s}		
Iterate E'(I) -> y,, produce a sequence		
$\times \xrightarrow{\sim} E^{2}(\mathcal{X}) \xrightarrow{\rightarrow} \cdots \xrightarrow{\rightarrow} \mathcal{Y}$		
seg Ew(p) P		
· · · · · Consider		
$A ; \longrightarrow E^{\infty}(\ell)$ $\downarrow_{\mathcal{F}} \qquad $		
$B_{i} \longrightarrow \lambda$	0 0 0	
0 $Hom(A; E^{\infty}(2))$		
=> 3N s.t. me get a factorization		
$A; \longrightarrow \mathcal{E}^{\mathcal{W}}(\mathcal{Z}) \xrightarrow{\mathcal{C}} \mathcal{E}^{\mathcal{W}}(\mathcal{Z})$		
$\int \epsilon_{1} \int c_{m} r = 2 P < \mathcal{V}_{R}(8)$		
$\mathcal{B}_{i} \longrightarrow \mathcal{E}^{n}(\ell) \longrightarrow \mathcal{Y}$		<i>L</i>
Cor: For S sochistying (*): B=x(8)		
$\underline{PP}: \overline{\mathcal{J}} = \mathcal{V}(\mathcal{J}) \checkmark$		
To see $\mathcal{U}(3) = \mathcal{S}$: Let $f \in \mathcal{X}(S)$ =		
$x \frac{s \in \widehat{S}}{2} \ge x = x = x$ $y = y$ $y = y$ $y = y$		
y = y $y = z = y$		
\cdot		Щ.,

Now, given $\Lambda = \int \Lambda^{m} c \rightarrow \Lambda^{m} c^{m}$
We write $\chi_{R}(\Lambda_{i}) = \{inner fibrations\}$
$\Lambda_{l} = \{k_{l} \neq k_{l} \in \mathcal{N}\}$
NR = {Right fibration} cor 1.3.16
<u>Def</u> : Avodyne = $\mathcal{K}_{\mathcal{R}}(\Lambda_{\mathcal{K}_{\mathcal{K}}})$
<u>nem</u> : I monomorphism ~> fis anadyne iff it induces a weak eq. °
realization.
<u>Def</u> : { Trivial fibration } = $\chi_R(\{\partial \Delta^n \rightarrow \Delta' \mid n \ge o\})$
$\mathcal{X}_{\mathcal{R}}(\vartheta \Delta) = \mathcal{X}_{\mathcal{R}}(\overline{\partial \Delta}).$
\$2: Inner hours
So α -categories = $\mathcal{R}_{\mathcal{D}}(\Lambda_{i}^{\prime})$
Recalli Cecat. is cartasian closed if bacc: (-)za: C > C admits a right adjoint, which we denote my brob ^{G1}
<u>Recalli</u> C c Cat, is cartisian closed if $\forall a \in C$: (-) $x a : C \rightarrow C$ admits a right adjoint, which we denote by $b \mapsto b^{C_1}$ For esets; $(\gamma^{\chi})_n = Hom_{sset}(\chi_{\chi} \Delta^n, \chi)$ $a : x c \rightarrow 1$ (-)
Recall: CECat, is cartasian closed if HerGC : (-) $\pi a: C \rightarrow C$ admits a right adjoint, which we denote by $b = b^{G_1}$ For ssets; $(\gamma \times)_n = \text{Hom}_{sset}(X \times \Delta^n, X)$ arc- $\gamma + C \cdot \gamma^n$ consider:
<u>Recalli</u> C c Cat, is cartisian closed if $\forall a \in C$: (-) $x a : C \rightarrow C$ admits a right adjoint, which we denote by $b \mapsto b^{C_1}$ For esets; $(\gamma^{\chi})_n = Hom_{sset}(\chi_{\chi} \Delta^n, \chi)$ $a : x c \rightarrow 1$ (-)
Recall: C c Cat, is cartasian closed if $\forall a.GC : (-) x a: C \rightarrow C admits a right adjoint, which we denote by b \mapsto b^{G_1}For estets; (\gamma^x)_n = Hom_{ssel}(X \times \Delta^n, x) arc \rightarrow t \to b^{G_1}consider:A \xrightarrow{i} B, S \xrightarrow{t} \tau, x \xrightarrow{t} \gamma$
Recall: C = Cat, is contasian closed if $\forall \alpha \in C$: (-) $\pi \alpha: C \rightarrow C$ admits α right adjoint, which we denote by $b \rightarrow b^{c_1}$ For esets; (γ^{x}) $_{n} = Hom_{seed}$ ($\chi_{x} \Delta^{n}, \chi$) $\alpha \times c \rightarrow 1$ (.5) consider: $A \stackrel{i}{\hookrightarrow} B, g \stackrel{g}{\longrightarrow} \tau, \chi \stackrel{f}{\longrightarrow} \gamma$
The call C c Cat, is cartasian closed if $\forall a.GC : (-) \forall a: C \rightarrow C admits a$ right adjoint, which we denote by $b \mapsto b^{C_1}$ For estets; $(\gamma^{\chi})_{\eta} = Hom_{ssel}(\chi_{\chi} \Delta^{\eta}, \chi)$ consider: $A \stackrel{\cdot}{\hookrightarrow} B, S \stackrel{\bullet}{\longrightarrow} \tau, \chi \stackrel{P}{\longrightarrow} \gamma$
Recall: C = Cat, is contasian closed if $\forall a \in C$: (-) $\pi a : C \rightarrow C$ admits a right adjoint, which we denote by $b \mapsto b^{c_1}$ For esets; $(\gamma^{\chi})_{\eta} = Hom_{ssid} (\chi_{\chi} \Delta^{\eta}, \chi)$ $a : r_{c-2} \rightarrow C : S^{q_1}$ consider: $A := B, g = T, \chi \xrightarrow{f} g \gamma$
Recall: C = Cat, is contasian closed if $\forall \alpha \in C$: (-) $\pi \alpha: C \rightarrow C$ admits α right adjoint, which we denote by $b \rightarrow b^{c_1}$ For esets; (γ^{x}) $_{n} = Hom_{seed}$ ($\chi_{x} \Delta^{n}, \chi$) $\alpha \times c \rightarrow 1$ (.5) consider: $A \stackrel{i}{\hookrightarrow} B, g \stackrel{g}{\longrightarrow} \tau, \chi \stackrel{f}{\longrightarrow} \gamma$
Recall: C = Cat, is contasian closed if $\forall \alpha \in C$: (-) $\pi \alpha: C \rightarrow C$ admits α right adjoint, which we denote by $b \rightarrow b^{c_1}$ For esets; (γ^{x}) $_{n} = Hom_{seed}$ ($\chi_{x} \Delta^{n}, \chi$) $\alpha \times c \rightarrow 1$ (.5) consider: $A \stackrel{i}{\hookrightarrow} B, g \stackrel{g}{\longrightarrow} \tau, \chi \stackrel{f}{\longrightarrow} \gamma$
Recall: C = Cat, is contasian closed if $\forall \alpha \in C$: (-) $\pi \alpha: C \rightarrow C$ admits α right adjoint, which we denote by $b \rightarrow b^{c_1}$ For esets; (γ^{x}) $_{n} = Hom_{seed}$ ($\chi_{x} \Delta^{n}, \chi$) $\alpha \times c \rightarrow 1$ (.5) consider: $A \stackrel{i}{\hookrightarrow} B, g \stackrel{g}{\longrightarrow} \tau, \chi \stackrel{f}{\longrightarrow} \gamma$
Recall: C = Cat, is contasian closed if $\forall \alpha \in C$: (-) $\pi \alpha: C \rightarrow C$ admits α right adjoint, which we denote by $b \rightarrow b^{c_1}$ For esets; (γ^{x}) $_{n} = Hom_{seed}$ ($\chi_{x} \Delta^{n}, \chi$) $\alpha \times c \rightarrow 1$ (.5) consider: $A \stackrel{i}{\hookrightarrow} B, g \stackrel{g}{\longrightarrow} \tau, \chi \stackrel{f}{\longrightarrow} \gamma$

$\sim $ $i \square (-) - i \langle -, \hat{c} \rangle$
\cdots
ArsSet AsSet
$\cdots \cdots $
Now, assume we are given the following diagram:
$S \longrightarrow \chi^{B}$
g j / T ~ X ^A × Y ^B T ~ X ^A × Y ^B X ^A ~ Y ^A these liking problems are with it
T XA THESE litting prochlemes
T
$(4\lambda 1)_1, (B_{\lambda}) \rightarrow \lambda$
$A \times T \xrightarrow{\sim} B_{X} T \xrightarrow{\sim} Y \qquad $
$P \times T \to B_X T \to Y \qquad \qquad B_X T \to Y$
Lem: For is manualized I in the is respectively interes) P charling
Lem: For i, g monomorphisms, Then i Bg is respectively inner, L, R anodyne 1.3.31
if either of i, or gresp., is
Lem: $\Lambda = \{\Lambda_{j}^{n} \hookrightarrow \Lambda_{j} n \ge i, o < j < n\}$
T = avodyne meps =T.
$\mathbf{V}_{3} = \left(\left(\mathbf{K} \hookrightarrow \mathbf{\Gamma} \right) \boxtimes \left(\mathbf{V}_{2}^{2} \longrightarrow \mathbf{V}_{n} \right) \middle \mathbf{K} \longrightarrow \mathbf{\Gamma} \text{ where } \right\}$
Proper X -> y is an . fib. of sSets, i mononiorphisms, then (f, i) is resp.
inner 12 /R is & respectively is.
Moreover, if i is respectively inverIL/R anodyne, then < +, is a trivial
f. borchion.
$\frac{\mathcal{R}}{\mathcal{L}} \qquad $
$ \begin{array}{c} \left(\begin{array}{c} \left(\begin{array}{c} x \\ x \end{array}\right) \end{array}\right) \\ \left(\begin{array}{c} \left(\begin{array}{c} x \\ y \end{array}\right) \end{array}\right) \\ \left(\begin{array}{c} \left(\begin{array}{c} x \\ y \end{array}\right) \end{array}\right) \\ \left(\begin{array}{c} \left(\begin{array}{c} x \\ y \end{array}\right) \end{array}\right) \\ \left(\begin{array}{c} \left(\begin{array}{c} x \\ y \end{array}\right) \end{array}\right) \\ \left(\begin{array}{c} \left(\begin{array}{c} x \\ y \end{array}\right) \end{array}\right) \\ \left(\begin{array}{c} \left(\begin{array}{c} x \\ y \end{array}\right) \end{array}\right) \\ \left(\begin{array}{c} \left(\begin{array}{c} x \\ y \end{array}\right) \end{array}\right) \\ \left(\begin{array}{c} \left(\begin{array}{c} x \\ y \end{array}\right) \end{array}\right) \\ \left(\begin{array}{c} x \\ y \end{array}\right) \\ \left(\begin{array}{c} x $
$T \longrightarrow X^{4}_{\chi^{A}} Y^{B} \qquad \qquad B_{X}T \longrightarrow Y$
·····································
Ex: X - Y=D, & B - X & inner X Again J (1,1)
w-act s

Det: Given G, DeCato, cet Fun (G, D) == 0 ⁶ = Hom (G, D) & Cato	
Prop. Cesset is an a-category iff end -> end is a trivial fibration	· · · ·
Proof: Uses that	
$\overline{\Lambda} = \left\{ (K \hookrightarrow L) \boxtimes (\Lambda^2 \hookrightarrow \Lambda^2) \right\}$	
$K \longrightarrow C \qquad K \times \Lambda^{c} \sqcup L \times \Delta^{c} \longrightarrow C$	

Jonny Yang: Localization & cocardestan fibrations
<u>Def</u> : Zet Che an ao-category. A functor f: C-> ELJ-'] is a
localization if
1) f takes & to equivalences
1) f takes & to equivalences 2) Fon(GC5'1, D) ~(Fon)(G, D).
Uniqueness almost follows by definition, so we'll only focus on exsistence.
Lem: $\Delta \rightarrow J = N(0 \ge 1)$ is a localization
<u>Pf:</u> Note that elements in Iq are of the form
$j_{\sigma} \rightarrow \cdots \rightarrow j_{r_2} \qquad \qquad$
and non-degenerates of the form
$0 \rightarrow 1 \rightarrow 0 \rightarrow 1 \rightarrow \cdots$
$F_{\ell'}(\mathcal{F}, \mathfrak{D}) \xrightarrow{\sim} F_{\mathcal{D}}(\Delta', \mathfrak{D}) \subset F_{\mathcal{U}}(\Delta', \mathfrak{D}).$
Construct a filtration on J: Fr smellest sun-simplex that
contains 0-1-20-1 Consider the diagram
· · · · · · · · · · · · · · · · · · ·
$\bigvee_{\kappa}^{0} \longrightarrow_{\kappa}^{\beta} (3)$
$\nabla_{\mathbf{k}} \longrightarrow \mathcal{G}^{\mathbf{k}}(\mathcal{G})$
$V_{\mathcal{P}}: \mathbb{Q}_{\mathcal{P}} \longrightarrow \mathbb{P}^{\mathcal{P}}(\mathcal{F})$
$\nabla_{\mathcal{S}}[\mathcal{M}] \longrightarrow \mathcal{A}^{\mathcal{D}}(\mathcal{F})[\mathcal{M}]$
$f:[n] \rightarrow (e] \rightarrow f(mod 2)$
In particular: $f(j) = j+1 \mapsto (1-2) \rightarrow \cdots$
$\frac{1}{2}$
$F_{\mathcal{B}_{-1}}(\mathcal{J}) \longrightarrow F_{\mathcal{B}_{-1}}(\mathcal{J})$ is anodyne

$\sim \mathcal{F}_1(\mathcal{J}) = \Delta' \longrightarrow \lim_{\mathcal{H}} \mathcal{F}_{\mathcal{H}}(\mathcal{J}) = \mathcal{F}$ is anodyne.
We wish to show that
$F_{Un}(\mathcal{F},\mathcal{D}) \rightarrow F_{Un}(\Delta,\mathcal{D})$
is an equivalance for all D. We firts note that this factors
. Hurough
$\operatorname{For}(\widehat{\mathcal{F}}^{\mathcal{D}}) \to \operatorname{For}^{\mathcal{A}}(\widehat{\mathcal{F}}^{\mathcal{B}}(\widehat{\mathcal{F}}), \mathbb{O}) \to \operatorname{For}^{\mathcal{A}}(\widehat{\mathcal{F}}^{\mathcal{B}}, \mathbb{O}) \to \operatorname{For}^{\mathcal{A}}(\mathbb{O}, \mathbb{O})$
Will show this is a trivial fibration
$F_{vv}(\mathcal{F},\mathfrak{G}) \stackrel{\simeq}{=} \lim_{\mathcal{F}_{vv}} F_{vv}^{v}(\mathcal{F}_{v}(\mathcal{F},\mathfrak{G}) \to F_{vv}^{v}(\mathcal{L},\mathfrak{G}) \stackrel{\simeq}{\times} F_{vv}(\mathcal{F},\mathcal{G},\mathfrak{G})$
is a trivial fibration
$\partial \mathcal{O} \longrightarrow \overline{F}_{UV} \mathcal{O}'(F_{e}(\underline{f}), D) \longrightarrow F_{UV} \mathcal{O}'(\Delta^{e}, D)$
$\Delta^{\circ} \xrightarrow{\chi} \Delta^{\circ} \rightarrow F_{un}^{\circ} (\mathcal{F}_{R-1}(3), \mathbb{D}) \rightarrow F_{un}(\Lambda^{k}, \mathbb{D})$
wanna show -> lift exists, enough to show ->. By adj:
$\Delta' \rightarrow \Lambda_{e}^{e} \longrightarrow F_{un}(\Delta^{n}, \Omega) \xrightarrow{e_{v}} \mathcal{D}$ En equivalence
$\Delta^{e} \xrightarrow{\gamma} F_{un}(\partial \Delta^{r}, D)$ inner fibration
exists
ly Joyels
Lem: VEECato I localisation along E1.
Lem: VEECato I localization along E1.
Lem. $\forall GeCat_{\omega} \exists localisation along G_1.$ <u>Pf:</u> $ \underbrace{\prod \Delta} \longrightarrow G $ Take an inner anadyne map $g: Y \xrightarrow{2} X$ $ \xrightarrow{ob}(C) $ $\downarrow p$
Lem: VEECato I localization along E1.
Lem: $\forall GeCat_{ab} \equiv localisation along G_1$. <u>Pf:</u> $\frac{ \Delta}{ \Delta} \rightarrow G$ Take an inner anadyne map $g: Y \xrightarrow{2} X$ $\frac{1}{ \Delta } \rightarrow G$ Take an inner anadyne map $g: Y \xrightarrow{2} X$ $\frac{1}{ \Delta } \rightarrow G$ $= g \cdot f : s anodyne.$ $\int_{ab} f \cdot Y = g \cdot f : s anodyne.$
Lem: $\forall GeCat_{w} \exists localization along G_1.Pf:\downarrow \Delta' \longrightarrow G Take an inner anadyne map g: Y \xrightarrow{\sim} X\downarrow D \xrightarrow{\circ} f => g:f is anodyne.\downarrow J \xrightarrow{\circ} f => f => g:f is anodyne.\downarrow J \xrightarrow{\circ} f => f =$

$\underline{11} \{ o \rightarrow 1 \} \longrightarrow \text{RC}$
<u>Claim</u> : For $(X, D) \rightarrow Fun(C, D)$ is an equivalence.
$\begin{array}{c} P_{F_{1}}^{*} & Fon(Y, \mathcal{D}) \rightarrow Fon^{*}(\mathcal{C}, \mathcal{D}) \rightarrow Fon(\mathcal{C}, \mathcal{D}) \\ \downarrow & \downarrow \\ TT Fon(Y, \mathcal{C}) \rightarrow TT Fon(\mathcal{D}, \mathcal{D}) \rightarrow TT Fon(\mathcal{D}, \mathcal{D}) \\ C_{1} & C_{1} & C_{1} \\ \end{array}$ $\begin{array}{c} TT Fon(Y, \mathcal{C}) \rightarrow TT Fon(\mathcal{D}, \mathcal{D}) \rightarrow TT Fon(\mathcal{D}, \mathcal{D}) \\ C_{1} & C_{1} & C_{1} \\ \end{array}$ $\begin{array}{c} TT Fon(Y, \mathcal{C}) \rightarrow TT Fon(\mathcal{D}, \mathcal{D}) \rightarrow TT Fon(\mathcal{D}, \mathcal{D}) \\ C_{1} & C_{1} & C_{1} \\ \end{array}$ $\begin{array}{c} TT Fon(Y, \mathcal{C}) \rightarrow TT Fon(\mathcal{D}, \mathcal{D}) \rightarrow TT Fon(\mathcal{D}, \mathcal{D}) \\ C_{1} & C_{1} & C_{1} \\ \end{array}$ $\begin{array}{c} TT Fon(Y, \mathcal{C}) \rightarrow TT Fon(\mathcal{D}, \mathcal{D}) \rightarrow TT Fon(\mathcal{D}, \mathcal{D}) \\ C_{1} & C_{1} & C_{1} \\ \end{array}$ $\begin{array}{c} TT Fon(Y, \mathcal{C}) \rightarrow TT Fon(\mathcal{D}, \mathcal{D}) \rightarrow TT Fon(\mathcal{D}, \mathcal{D}) \\ \end{array}$ $\begin{array}{c} TT Fon(Y, \mathcal{C}) \rightarrow TT Fon(\mathcal{D}, \mathcal{D}) \rightarrow TT Fon(\mathcal{D}, \mathcal{D}) \\ \end{array}$ $\begin{array}{c} TT Fon(Y, \mathcal{C}) \rightarrow TT Fon(\mathcal{D}, \mathcal{D}) \rightarrow TT Fon(\mathcal{D}, \mathcal{D}) \\ \end{array}$ $\begin{array}{c} TT Fon(Y, \mathcal{C}) \rightarrow TT Fon(\mathcal{D}, \mathcal{D}) \rightarrow TT Fon(\mathcal{D}, \mathcal{D}) \\ \end{array}$ $\begin{array}{c} TT Fon(Y, \mathcal{C}) \rightarrow TT Fon(\mathcal{D}, \mathcal{D}) \rightarrow TT Fon(\mathcal{D}, \mathcal{D}) \\ \end{array}$ $\begin{array}{c} TT Fon(Y, \mathcal{C}) \rightarrow TT Fon(\mathcal{D}, \mathcal{D}) \rightarrow TT Fon(\mathcal{D}, \mathcal{D}) \\ \end{array}$ $\begin{array}{c} TT Fon(Y, \mathcal{C}) \rightarrow TT Fon(\mathcal{D}, \mathcal{D}) \rightarrow TT Fon(\mathcal{D}, \mathcal{D}) \end{array}$ $\begin{array}{c} TT Fon(Y, \mathcal{D}) \rightarrow TT Fon(\mathcal{D}, \mathcal{D}) \rightarrow TT Fon(\mathcal{D}, \mathcal{D}) \end{array}$ $\begin{array}{c} TT Fon(Y, \mathcal{D}) \rightarrow TT Fon(\mathcal{D}, \mathcal{D}) \rightarrow TT Fon(\mathcal{D}, \mathcal{D}) \end{array}$ $\begin{array}{c} TT Fon(Y, \mathcal{D}) \rightarrow TT Fon(\mathcal{D}, \mathcal{D}) \rightarrow TT Fon(\mathcal{D}, \mathcal{D}) \end{array}$ $\begin{array}{c} TT Fon(Y, \mathcal{D}) \rightarrow TT Fon(\mathcal{D}, \mathcal{D}) \rightarrow TT Fon(\mathcal{D}, \mathcal{D}) \end{array}$ $\begin{array}{c} TT Fon(Y, \mathcal{D}) \rightarrow TT Fon(\mathcal{D}, \mathcal{D}) \rightarrow TT Fon(\mathcal{D}, \mathcal{D}) \end{array}$
by above lemma
=> Same holds for upper horizontal map
Hence we have showed that localization exists when considered along
all morphisms, so now we wish to show existence w.r.t. any collection
all morphisms, so now we wish to show existence w.r.t. any collection of morphisms.
et morphisms. <u>Rop:</u> For eveny Sc C, J a localization along J.
ef morphisms. Rop: For eveny Sc & J a localization along J. Pf: VSeCr Ja smallest sub a category G, containing S: GJ -> B Localization of J - F L Again, we don't brow whether to consider Localization of J - F L Again, we don't brow a consider Localization of J - F L Again, we don't brow a consider Some a cat
of morphisms. <u>Rop</u> : For eveny Sc Er J a localization along J. <u>PF:</u> VSCZIJA smallest sub so-category Gy containing S:

scolatterian fibrations
Motivation: For X a "nice" topological space, we have
Cov(X) ≥ Fur(TIc. (X), Set) ~ covering spices
Let $GeCat_1$, $f: C \rightarrow Cat_1$, then we have the so called Groothendieck
Construction $\int_{\mathcal{B}} F^{2} = \begin{cases} obs: (A, X), A \in \mathcal{B}, X \in F(A) \\ morp: (f, \psi), f: A \rightarrow B \in Mor(\mathcal{B}) \\ \psi: f_{1}(X) \rightarrow Y \in Mor(F(B)) \end{cases}$
$ \begin{pmatrix} f_{1}:F(A) \rightarrow F(B) & < J. F(f) = f_{1} \\ \end{pmatrix} $
Observation: $\int_{e}^{f} \rightarrow C$, $(A, X) \rightarrow A$, can be charaterized by functo
that has enough cocartesian morphisms.
\underline{Def} . Criven $\mathcal{R}: \mathcal{D} \rightarrow \mathcal{C}$, $\mathcal{A} \xrightarrow{m \in \mathcal{P}} \mathcal{P}: X \rightarrow Y$ is \mathcal{R} -coCartesians if
there exists the following (unique) lift: $\begin{cases} x \xrightarrow{Y} \\ 0 \\ y \\ y \\ \hline \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$
R: D→C: s for ther called co Cartesian if Vf: A→B in C and XED
such that R(x) -> A there exists a re-coCartesian morphism
$\phi: X \rightarrow Y s.t. \Re \phi = f,$
Groethendieck correspondence: Je: LFon(Ce, Cat) = coCart (G)
Time to generalise this to a-categories: First idea is to take the nerve of
the diagram used to define it in the t-casegorical case, which gives us

$\wedge^2 \to \mathcal{N}(\mathbb{D})$
$\Delta^2 \longrightarrow \mathcal{N}(\mathcal{C})$
<u>Def:</u> let $p: X \rightarrow S$ be a functor of sSets. Then $f: \Delta \rightarrow X$ a morphism is
said to be procentesian if UNZZ:
$\Lambda^{[o_1]}$
$\nabla_{to^{1}}^{2} \rightarrow \sqrt{a} \rightarrow \chi$
We forther say p: X-> 3 is colortesion if p is an inner fibriction, and
there exists a lift
$\{o\} \rightarrow X$ $\int \sigma / \int \rho $ s.t. σ is p-coCastesian in X.
<u>Ex</u> . Right fibrations are Carlesian,
Next your is to compare Cartesian fibrations with right fibrations
Lem: A Cartesian fibration p: E -> C ; a right fibration <> Every morphism
mce is p-Cartasian,
Prop: A Cartesian fibration p: E-E is a right fibration a forall xe G, the
fibres Ex are a groupoids.
$\underline{\mathcal{P}}_{:} = \underline{\mathcal{P}}_{:} \underline{\mathcal{P}}_{:} \underline{\mathcal{P}}_{:} = \underline{\mathcal{P}}_{:} \underline{\mathcal{P}}_{:} \underline{\mathcal{P}}_{:} = \underline{\mathcal{P}}_{:} \underline{\mathcal{P}}_{:} \underline{\mathcal{P}}_{:} \underline{\mathcal{P}}_{:} = \underline{\mathcal{P}}_{:} $
=: We will show that every morphism in E is p-Cartesian. Take any
f. A' → E, which takes Z to y. We can then choose P
to be a p-Cartesian lift of p(f) which has target y.
Consider the following diagram:
$\Delta' \stackrel{\sim}{\hookrightarrow} \Lambda^2 \stackrel{\sim}{\longrightarrow} \stackrel{\sim}{\hookrightarrow} \stackrel{\sim}{\to} \stackrel{\sim}{$

				he		ļ;	₽Į	τ	· · ·	2	· ſ.	چ	•••	رئى	gi	ve	N	l	ų								
									÷	•					Ů				Õ								
							. 7	2.	•	•	ں م (
						4) .	٠		/	•	•															
							، _		/	q										•							
							. 4									/0	0-	Yn	205	مريم	Ŷ						
									°					°	Ŕ			ů									
			ŝ		Ŷ	.0.	V	va	ubt	منه	\$W	່ຳ	Ŝ	٦. م	P(:	2 •)											
				•	٠ ا	°		•	•																		
				•	- <u>`</u>	ŶΨ		ς.	ůι	۸.	eg	r~															
			2-	out	- <mark>○</mark> -○ ->	-3	Ď,	•	° C	°_(•															
					=)	. 7	F.	ŝ	Ĵ.	حأده	حېم	رثره	ر:													Ē	
																										0	٠

Thomas Read: (Un)- Straightening 22.11.22
$\{coCart fib over C\} \iff \{functors C -> Cat_{\infty}\}$
Intuitively, how does this work? Let p. E-> C be a cocertesian fibration.
Given x c 6 ~? Ex c Cata Given P x -> y we want f: Ex -> Ey
Let $2 \in \mathcal{E}_{x}$, take coCart lift of f $z \rightarrow f_{1} z$ Given $\alpha: 2 \rightarrow 2' \sim f_{1} \alpha$ $z \rightarrow f_{1} \alpha$ $z \rightarrow f_{1} \alpha$ $z \rightarrow f_{1} \alpha$ $z \rightarrow f_{1} z$ $z \rightarrow f_{1} z$
In 1- Cartecyong land we would be done (the choice)
would be unique), but in an category land this is more involved ?
Def: Kesset, $f: K \rightarrow C$, $p: E \rightarrow C$ cocart. Define $\operatorname{Fun}_{\varphi}^{c}(K, E)$ as the full
subcategory spanned by those functors $K \rightarrow E$ which lifts f and sends all morphisms of K to cocartasian morphisms. T-simplices <u>Cor:</u> Let $i:K \rightarrow L$ be left anodyne, $f:L \rightarrow C$. Then 3.2.18
$ton f(L, \mathcal{E}) \longrightarrow ton_{f_i}(K, \mathcal{E})$
is a trivial fibration. Recall that $\{0\} \longrightarrow \Delta^n$ is left anodyne, so we get:
$\operatorname{Fun}_{\mathfrak{f}}^{c\mathfrak{i}}(\Delta, \mathcal{E}) \xrightarrow{\mathfrak{f}} \operatorname{Fun}_{\mathfrak{L}}^{c\mathfrak{i}}(\{\mathfrak{o}^{c}_{\mathfrak{f}}, \mathfrak{E}\}) \simeq \mathcal{E}_{\mathfrak{f}}$
is a trivial fibration, so it admits a section -
$f_1: \mathcal{E}_X Fun_f(\Lambda, \mathcal{E}) \longrightarrow \mathcal{E}_Y$. An actual functor!
What does G-> Catoo de on 2-simplices then?

k E E E E E E E E E E E E E E E E E E E	
$\varepsilon_{1} = \varepsilon_{2} = \varepsilon_{1} = \varepsilon_{2}$	
$= \left\{ \begin{array}{c} F_{un} c_{\mathcal{L}} (\Delta^{[0,1]}, \mathbf{E}) \\ F_{un} c_{\mathcal{L}} (\Delta^{[0,1]}, \mathbf{E}) \end{array} \right\} = \left\{ \begin{array}{c} F_{un} c_{\mathcal{L}} (\Delta^{[0,1]}, \mathbf{E}) \\ F_{un} c_{\mathcal{L}} (\Delta^{[0,1]}, \mathbf{E}) \end{array} \right\}$	
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $ } \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ \bigg } \\ \end{array} \\ \bigg } \\	
$\simeq F_{un}(\Delta^{[02]}, \varepsilon) $	
· · · · · · · · · · · · · · · · · · ·	
h,	
This might get uply, but defining functors between a - categories are hard!	
IFA is a 1 category, then we have a functor A -> cation 1-cat of as-acts	
~ N(A)→ N(Cat1) → N(Cat1) [11] > (at	
$\sim N(A) \rightarrow N(Cat_{\omega}^{1}) \rightarrow N(Cat_{\omega}^{1})[\exists cy^{-1}] \sim Cat_{\omega}$	
Given WEA ~~? N(A) [w ⁻¹] -> Cat _{as} .	
By choosing a dever choice of W, A we can get $N(A)[W^{-1}] \cong C$.	
By choosing a dever choice of W, A we can get $N(A)[W^{-1}] \cong G$. Clever choice of $A: A = \mathbb{Z}^{p}/e$ category of simplices, defined by	
Clever choice of A: A= DP/e category of simplices, defined by	
Clever choice of A: $A = \mathbb{Z}^{n}/e$ category of simplices, defined by = Objects = $(n, \sigma: \Delta^{n} \rightarrow e)$	
Clever choice of A: $A = \mathbb{C}^{n}/\mathbb{C}$ category of simplices, defined by = Objects = $(n, \sigma: \Delta^{n} \rightarrow \mathbb{C})$ - Morpenism $(n, \sigma) \rightarrow (m, \varepsilon) = \alpha: [m] \longrightarrow [n]$ s.t. $\Delta^{n} \xrightarrow{\alpha} \Delta^{n}$ $T \searrow \mathbb{C}^{n}/\mathbb{C}$	
Clever choice of A: $A = \mathbb{C}^{n}/\mathbb{C}$ category of simplices, defined by = Objects = $(n, \sigma: \Delta^{n} \rightarrow \mathbb{C})$ - Morphism $(n, \sigma) \rightarrow (m, \varepsilon) = \alpha: [m] \rightarrow [n]$ s.t. $\Delta^{n} \xrightarrow{\alpha} \Delta^{n}$ We see that $N(\Delta^{n}/\mathbb{C})$ is "baycentric subdivision":	
Clever choice of A: $A = \frac{D^{n}}{c}$ category of simplices, defined by = objects = $(n, \sigma: \Delta^{n} \rightarrow C)$ - morphism $(n, \sigma) \rightarrow (m, c) = \alpha$: [m] $\rightarrow [n]$ s.t. $\Delta^{m} \xrightarrow{\alpha_{+}} \Delta^{n}$ We see that $N(\Delta^{n}/C)$ is "baycentric subdivision": $\sigma: D^{2} \rightarrow C$	
Clever choice of A: $A = O^{n}/c$ category of simplices, defined by - Objects = $(n, \sigma: \Delta^{n} \rightarrow c)$ - Morpenism $(n, \sigma) \rightarrow (m, c) = \alpha: [m] \rightarrow [n]$ s.t. $\Delta^{n} \stackrel{\alpha_{++}}{\longrightarrow} \Delta^{n}$ $Clever choice of A: A = O^{n}/c- Morpenism (n, \sigma) \rightarrow (m, c) = \alpha: [m] \rightarrow [n] s.t. \Delta^{n} \stackrel{\alpha_{++}}{\longrightarrow} \Delta^{n}Clever choice of A: A = O^{n}/cClever choice of A = O^{n}/cClever choice $	
Clever choice of A: $A = \mathbb{C}^{9}/\mathbb{C}$ category of simplices, defined by - Objects = $(n, \sigma: \Delta^{n} \rightarrow C)$ - Morphism $(n, \sigma) \rightarrow (m, c) = \alpha: [m] \rightarrow [n]$ s.t. $\Delta^{n} \stackrel{\alpha =}{\longrightarrow} \Delta^{n}$ $(Me see that N(\Delta^{0}/C) is "baycentric subdivision"\sigma: \mathbb{C}^{2} \rightarrow Cz = \frac{1}{C} \stackrel{\alpha}{\longrightarrow} 2Define W_{C} be the set of maps of the form(n, \sigma) \rightarrow (m, c), with \alpha: [m] \rightarrow [n],$	
Clever choice of A: $A = O^{n}/c$ category of simplices, defined by - Objects = $(n, \sigma: \Delta^{n} \rightarrow c)$ - Morpenism $(n, \sigma) \rightarrow (m, c) = \alpha: [m] \rightarrow [n]$ s.t. $\Delta^{n} \stackrel{\alpha_{++}}{\longrightarrow} \Delta^{n}$ $Clever choice of A: A = O^{n}/c- Morpenism (n, \sigma) \rightarrow (m, c) = \alpha: [m] \rightarrow [n] s.t. \Delta^{n} \stackrel{\alpha_{++}}{\longrightarrow} \Delta^{n}Clever choice of A: A = O^{n}/cClever choice of A = O^{n}/cClever choice $	

So the red maps
are in We:
[a] a + b + c + c + c + c + c + c + c + c + c
Want: $\mathbb{N}(\mathbb{A}^{e}/\mathbb{C})[\mathbb{W}_{g}^{e}] \rightarrow \mathbb{C}$ Joyal equivalence
Have canonical map
initial vertex map $\pm V : N(\mathbb{A}^{p}/\mathbb{C}) \to \mathbb{C}$
$ \begin{array}{ccc} & & & & & & & \\ & & & & & \\ & & & & & $
$Q_{i} \nabla_{i} F \rightarrow C$
We We => IU(W) dequerate, so IV induces N(12°P/C)[WE']→C.
First generalize to XESSET, WSX1
Define L(X, W) as the pushout
$\square \square \square \longrightarrow X$
$\begin{array}{c} \cdot \\ \cdot $
LL(J) -> L(x, W) lew, founder of localization
~> This satisfies that for X=0) an a- category:
$L(0, w) \simeq \mathcal{D}[w^{-1}]$ so it is indeed a generalization
. So want to show that
$L(\wp(\mathbb{D}^{cp}/X), \mathbb{W}_{X}) \xrightarrow{\sim} X$
to le a weak entegorical equivalence.
<u>Fact</u> : $X \mapsto L(N(N^{p}/X), \omega_{x})$ preserves monomorphisms and colimits.
\Rightarrow Suffices to consider the case $x = \Delta^n$:
$\exists v: N(\mathbb{A}^{e_{p}}/\mathbb{A}^{n}) \longrightarrow \mathbb{D}^{n} = N([n])$
induced by

$\widetilde{\pm v}: \Delta^{cp}/\Delta^{m} \longrightarrow [m]$
$(m, \sigma: \Delta^{-1}\Delta^{-}) \mapsto label of \sigma(\sigma)$
Have
$i; [n] \longrightarrow \bigotimes^{i}$
$i; [n] \longrightarrow \Delta^{i}$ $k \longmapsto \Delta^{(i_{1},,n)} \hookrightarrow \Delta^{n}$ $(i_{1},,n) \hookrightarrow \Delta^{n}$ $(i_{2},,n) \mapsto \Delta^{n}$ $(i_{2},,n) \mapsto \Delta^{n}$
Ivivid, i Iv=>id
So when taking the nerve we get a Joyal equivalence ?
~> p: € > C coCartesian. Have
$\mathbb{D}^{\mathbb{P}}/\mathbb{C} \longrightarrow \mathbb{C}^{\mathbb{C}}/\mathbb{C}^{\mathbb{P}}$
$(n, \sigma: \Delta^{\sim} \rightarrow \mathbb{C}) \mapsto \mathcal{F}_{ov} \overset{cc}{} (\Delta^{\sim}, \mathcal{E})$
Given $(n, \sigma) \rightarrow (m, \tau)$ in \Box_{σ}
Funge (D ^m , E) -> Fung (D ^m , E) By 2.00t-of-3 this is.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\operatorname{Fun}_{\{\partial_{i}\}}^{\mathcal{C}}(\Delta^{\circ}, \mathcal{E})$
So we get the straightening of p: E - C
$\mathcal{C} \xrightarrow{\mathcal{V}} \mathcal{N}(\mathcal{M}^{p}/\mathcal{C})[\mathcal{W}^{*}_{\mathcal{C}}] \xrightarrow{\mathcal{C}} \mathcal{C}_{\mathcal{A}}^{+}_{\mathcal{A}}$
· · · · · · · · · · · · · · · · · · ·
Thum Equivalence Unstraightning
$coCart(C) \simeq Fun(C, Cat_{or})$
Stronghtming
Speciel case:
$LF:b(C) \approx For(C, S)$
• X a Kan complex: $S/X \approx Fun(X, S)$

•	Ą	S	ŵ	Ŵ	ew	Г. с	zЬ	av	۲.	ýn	st	ŝ	نوز	μł	Ŵ		1																		
																			. /		•	(°	. [.] L	•			٠	. /	° C a	Ţ	<u>ر</u>	Jun .	ver	sal	
									•	ر •	- ~ 1	00				م			>		P.:	رد	آبه.	้จง),	£1/	•	•	ٻم	Ta) _.	_С Ф.,	Cer	+.	
																00j C, x	ects	• 0=	Lirs	ie.	x	(م:	Ì									-t., J.			
													M	5	(1	e v) -	ז י) פ	സ	ر ۲ ۲	;	د. د	Ŧ	: 7;	-	Ď.	ંભ	-		· F×					
																0,				5				. •				• 0							
								}.	X	•																									
	•	\sim	` ⁾					+	ູ (رمہ ا	÷.00),	×//			, C	فها.	¥//	۰ ر																
									Ŧ	₽.∫		•	•				. f																		
										<i>و</i> ا	•	•	T	•	•	څ	ب م) •																	
													• `																						

Mannah MacDermott: Adjoint functor theorem.
Cobinal functors
Def: K, R, Xesset, F: K-L, p: X-L inner fibration. We define the
$F_{UN_X}(K,L) \longrightarrow F_{UN}(K,X)$
$\Delta^{o} \xrightarrow{\varphi} \mathcal{F}_{v_{\mathcal{N}}}(K, \mathcal{L})$
$F_{un_{L}}(L,X) = F_{un_{d_{L}}}(L,X)$
$f: K \rightarrow Z$ is cofinal if for all right fibrations $P: X \rightarrow L$, the map
$F_{un_{L}}(L, X) \rightarrow F_{un_{f}}(K, X)$
is a Joyal equivalence.
Thus: f is cofinal iff for any ∞ -category C and $P:L \rightarrow C$, the induced 4.4.8
$e^{\rho} \rightarrow e^{\rho}$
is a Joyal equivalence
<u>Cor</u> : Joyal equivalences are artinal 4.4.9
<u>Cor:</u> p admits a calimit iff pf does, and f preserves this calimit. 4.4.10
Thun: $f: \mathcal{C} \to \mathcal{D}$ map of simplicial sets, \mathcal{D} an ∞ -category. Then 4.4.20
f is cofinal \Leftrightarrow G_{d} is weakly contractible for every object in D
Prop: C,D as-categories, F:C-D. Fadmits a right adjoint if C/d admits a terminal
5.2.6 Object for cach dem.
Pf: Choose d ~ (Gd, f: FGd - d) terminal object in Cd. By 5.110, sufficient to
prove that

mapg(c, G,d) -> map (F,FGd) -> mapp(F,d)
is an equivalence Consider the following diagram
$map_{\mathcal{G}_{\mathcal{A}}}((c, \kappa), (Gd, f)) \rightarrow map_{\mathcal{D}_{\mathcal{A}}}(c, f) \longrightarrow \Delta^{6}$ $\int \int \int \int \mathcal{A}^{3,3,18} \int dx$ $map_{\mathcal{G}}(c, G, d) \longrightarrow map_{\mathcal{D}}(F, FGd) \xrightarrow{f_{\mathcal{B}}} map_{\mathcal{D}}(F, d)$
· · · · · · · · · · · · · · · · · · ·
True for all a: Fc ->d. Joyal equivalent to a small as -cat.
Thun: C locally small coComplete as-adegony. If there exists & & & & & & & & & & & & & & & & & &
<u>acclimit dense</u> , then For any cet, Rase a diagram s.1. Cz colim(K, C, oc) F: C -> D admits a right adjoint <=>
I preserves colimits
Def: let S be a small set of objects in G. Then S is weakly terminal if for every
object ce G, there exists an object SES s.t. mapp(cis) is not empty.
An diject L is said to be weakly terminal if the set {t} is weakly termines.
Lem: C cocomplete, and there exists C_CC essentially small 5.2.10
colimit dense tul subcategory. Then I has a weakly terminal object.
PP: Consider C'≥G, t=coling(c'→e)= coling(Co→C). Write c in C as
coling (K→ Go→ G). Obtain a map c→6.
Prop: C locally small cocomplete, SE G weakly terminal and assume there exists
a ful subcategory GSC spanned by S. Thun Bo->C is confined
$Pf:$ Sufficient to show that $(C_o)_{\chi_1}$ is weakly contractive for all x in C
~> Sufficient to show that any functor
$ \begin{array}{c} \vdots \\ \vdots $
factors through K * & which is weakly cont
E accomplete => Cx/ co complete 4.3.35

Take colinit cone
$K \to (C_{c})_{x} \to C_{x}$
· · · · · · · · · · · · · · · · · · ·
$\mathcal{K} * \Delta^{\mathbf{e}} - \mathcal{K}$
M(00): x -> y, pick ses y -> Choosing a composite x->y -> gives a
2-simplex $\Delta^2 \rightarrow C_3$ adjoint to a map $\sigma: \Delta^2 \rightarrow C^{2}$
$ \begin{array}{c} \swarrow \times \Delta^{\circ} \ \sqcup_{\Delta^{\circ}} \ \Delta^{\circ} \xrightarrow{\mu, \sigma} \ \mathcal{C}_{\times} \end{array} $
· · · · · · · · · · · · · · · · · · ·
····································
Lift exists hecause the vertical map is inver avodyne and ex, in an
∞-category. Restricting pr to K* 2 ^{f13} gives a map p": 1<* 1 → Gz/.
(C.) z, is full in Cz, so sufficiend to show that we can find
$K * \Delta^{\circ} \longrightarrow C_{X/}$ which sends objects to $(C_{0})_{X/}$.
$\mu'' = \mu(4) = \mu(4) = \sigma(4) = 5$ } Both in G.
<u>Cor:</u> C locally small cocomplete, SEC weakly terminal. Then C admits a S.2.12. terminal object.
. P.P. Again take G. to be the full subcategory spanned by S. Z is small
so C> E has a colimit. C> C ; colinal
$ \sim \operatorname{colim}(\mathcal{E}_{o} \rightarrow \mathcal{C} \xrightarrow{\mathcal{S}} \mathcal{C}) = \operatorname{colim}(\mathcal{C}_{i} \xrightarrow{\mathcal{S}} \mathcal{C}) $ $ \operatorname{lemma}(\mathcal{C}_{o} \rightarrow \mathcal{C} \xrightarrow{\mathcal{S}} \mathcal{C}) = \operatorname{colim}(\mathcal{C}_{i} \xrightarrow{\mathcal{S}} \mathcal{C}) $
A colimit of the identity contains a terminal object.
Proof of adjoint functor theorem. Enough to show that every Grd has a
terninal object
> Eucliphe to show that $(G_0)_{d} \subseteq G_{d}$ essentially small, column to dense
Foll subcategoing and C/d is locally small and cocompute 3.3.18, 5.1.30

	1) ea	ď	וּאַ אַנ	equi	ίνα	Jen	٩	cl	o.ss	es	,•₩	· \	<u>ر</u> بح	_),	; ۲	f	ه م	در. در	ŵ	Ϋ	د	- k	iot.	{ cq	ູບ່າວ	لمفه	ඥ	clo	SSE		G	<u>}</u>
	مبر	y j	mar	ې (: `	Fc,	٩̈́)	O	,r	ملا	ຸ	, YMC	الله																				
	Suf	Aci	ent	- 1	0, 1	Peo,	بو	₩	iat	(ેદ	。),	יג ג	G		ໍ່າເ	s a	chi	ų. Viri	r-q	فبرمح	e.	Ta	Ke	Ċc	(K	. Fc		¢λ	is		
	C.	ł.,	م	nd	w	×4	• •							•	•	•	•	•	•													
											C=			m(.K.	^ .	ر م	, , ,	6 ; •).												
	.Gef	.a.	. co	ne					К*	ک	· T ·	, C																				
	Wa	t	łe	فر د	2; f	4	, his							27	چ	e.	iog	, 19-10														
						ĸ				_																						
								•	•														Ľ	{. %	. ઝ્વ							
											3		\					_ د	.ټل	~~~	∿.(∦		، ک	IC)) . ie	نے (ر	с, <i>к</i>	-`)				
								ן כר	į	» د 1	G。)	1d	J D																			
								•		, ,	•	-7																				

MOTIVATION COTAVITON
There is useful analoges between homotopy theory and chain complexes with values
in an abelian category
- "homotopies" between chain maps
- "contractible" chain complexes
The analoge of the homotopy category of topological spaces is the 'derived category'
of an abelian category, and analouge of stable fromotopy theory is the homotopy category of spectra - Both which are triangulated categories, which
ques a good setting for doing homological algebra. Working with triangulated categories
can be very useful in practice but their theory can be very lacking, e.g.
- The category of functors between two triangulated categories doesn't inherit
a triangulated structure
- Being thangulated is extra structure instead of a property
- Often court use 'descent' ("gluering arguments)
Many of these problems can be traced back to the fact that we identify things
without remembering why they're identified. Using as categories let's is keep
track of all this extra information,
We will therefor introduce the two oc-categorical analouges of these, see which
properties these admit and use this as motivation for our definition. Hume left/right modules over a ring R Ex: Let A be a Groethendieck adelian category, i.e. locally presentable adelian category
in which the small filtered colimit of a collection of SES's is again a SES.
Let $Ch(A) = 1-Cat.$ of chain complexes in A
Model structure on Ch(A) = { colibis = levelurise monomorphisms Weak eq.s = quasi-isomorphism
We then define the <u>(unbounded)</u> derived a -category of A to be

• • •	$\mathcal{D}(A) \coloneqq N_{dy}(Ch(A)^{\circ}),$
• • •	the differential graded nerve of the sifibrant objects w.r.t. this model
• • •	Structure
• • •	() The localization of the category of Chain complexes + the
0 0 0 0 0 0	class of quasi-iso morphisms
w K	First recall the co-category of spaces N ^{ch} (Kan) = S. We wish to consider
	the "pointed" spaces:
• • •	$s_* \in Fon(\Delta, S)$
• • •	spanned by those functors which takes 0 to a "terminal" object of S.
• • •	We define the a-category of spectra as
• • •	$Sp = lim (\dots^2 \mathcal{S}_* \xrightarrow{\mathcal{G}} \mathcal{S}_* \xrightarrow{\mathcal{G}} \mathcal{S}_*)$
• • •	- I is the loop functor which we will define later
• • •	-> Think of it as a collection of spaces {Xn}nez + Xn 2 2Xn+1.
PROPE	RTIES THEY SHARE:
1) F	Solveted = Admits a zero-object
• • •	= An object which is both mitial & terminal
• • •	In Sp: spectrom which is a point at each level
• • •	- Those whose homotopy groups all varish
•	In D(A); Acyclic complexes
• • •	= Those whose Comology all vourish
Rem:	Initial and terminal object is only unique up to contractible space of choices. We
• • •	see this already at P-categorical level: E.g. any one-point set is terminal in
	ive company of cers, on 100 and 11 are two arterant cyri more theory
• • •	the cotegory of Sets, but (0) and {1} are two different (yet isomorphic) terminal objects

Ren:	In a pointed 00-category, we get a 'zero morphism' between any two
• • • •	objects by composing the initial/terninal map
• • • •	$x \rightarrow 0 \rightarrow y$
2)	Concept of (co)fibres or (co)kernels
• • • •	• In D(A); Given a chain map f: c→D between chain complexes
• • • •	~ Associated SES
• • • •	$0 \to \subset \to \operatorname{cyl}(\mathcal{F}) \to \operatorname{cone}(\mathcal{F}) \to O$
• • • •	where cyll(f) is a chain complex quasi-isomorphic to D.
• • • •	We can often say interesting things about \$ by studying cove (\$), e.g.
• • • •	there is a LES relating H*(C), H(D) and H(cone(f)), so cone(f) is
• • • •	acyclic iff f is a quasi-isomorphism.
• • • •	\hookrightarrow We can view cone(f) as a 'cokernel' or 'cofibre' of f.
• • • •	 In Sp: If we have a map f: X→Y between spectra, we get a
• • • •	fibre sequence
• • • •	$f(p(t) \to \chi \xrightarrow{t} h)$
• • • •	which comes with an associated LES on homotopy groups. There is also
• • • •	a notion of cofibre sequences, and it turns out that fibre sequences
• • • •	are exactly the same as cofibre sequences, i.e.
• • • •	$cofb(f;b(f) \rightarrow X) \cong Y$
Let's	make this notion more precise:
Def:	A triangle in a pointed ∞ -category is a diagram $\Delta \times \Delta \longrightarrow C$ of the form
••••	$X \to Y$
• • • •	$ \begin{array}{c} 4 & 4 \\ 0 & \rightarrow 2 \end{array} $
Remi	More explicitly: A triangle consists of
• • • •	

i) Two 1-simplices X => Y ==> 2
ii) A 2-simplex
er july Z
withnessing a concresite to of f and g
iii) A 2-simplex
× ¢
witnessing a null-homotopy of h
Remi A D', D' -> E diagram 1 1 determines à triangle by precomposing with
Y -> 2
the map $\Delta' \times \Delta' \rightarrow \Delta' \times \Delta'$ that flips the two factors.
<u>Def:</u> Let 6 be pointed and $p: \Delta \times \Delta \rightarrow 6$ the triangle
€ €3 X –>A
We say p is a fibre sequence if p is a pullback diagram (we say that
p is a fibre of g). Dually, we say that p is a cofibre sequence if p is
a pushout diagram (p is a colibre of f).
Now, lets finally define stable:
Def: An 00- cutegory & is stable if
i) It is pointed
ii) Every morphism admits a fibre and a cofibre sequence
iii) A triangle is a fibre sequence iff it is a cofibre sequence.
Rem: So being stable is a property, not extra structure.
L> Think of given a set X, then it doesn't make sense to ask if it is a

group without also specifying m: X × X → X group multiplication. On the other
hand, it does make sense to ask if a group G is abelian.
>> Why does this difference matter? Often easier to formulate deaner abstrad
arguments when working w. properties.
Prop: (HA. 1.4.2.27) Let G be pointed. Then the following is equivalent;
i) E is stable
ic) C has finite colinits and the suspension functor E: C -> C, cletermined
by the existence of the pushout square
$\begin{array}{c} \chi \to 0 \\ \downarrow & r \downarrow \\ 0 \to \xi \chi, \end{array}$
is an equivalence
iii) Ghas finite limits, and the bop functor 52:5→6, determined by the
pullback square
$\begin{array}{c} 0 \rightarrow \chi \\ 1 \rightarrow 1 \\ \neg \gamma \rightarrow 0 \end{array}$
6 an equivalence.
The we will show i)<=>(ii), the ase of (ii) is dual. It is clear that (i)=>(ii), so
assume Gadmits finite colimits, and that I is an equivalence.
<u>Claim 1</u> : Every cofiber sequence is a fiber sequence
<u>Pf</u> : Let $p: \Omega'_{X}\Omega' \rightarrow C$ denote the cofficer sequence determined by the square
$A \xrightarrow{f} B$ $\downarrow \Gamma \downarrow^{P}$ $O \rightarrow C,$ $(*)$
and $\mathcal{S}^{\bullet} \colon \nabla, \mathcal{T}^{\nabla \mathcal{U}} \to \mathcal{G}$
the restriction of P to the lower and right edges. To show the square is
Cartesian, we need to show that the induced map

•	•	• •	•	•	$G_{IP} \longrightarrow G_{IP_0}$
•	•	• •	•	•	is an equivalence (trivial Kan Libration). Sufficient to show that for each
•	•	• •	•	•	XeG
•	•	• •	•	•	$\mathcal{C}_{P} \times_{\mathcal{C}} \{x\} \longrightarrow \mathcal{C}_{P} \times_{\mathcal{C}} \{x\}$
•	•	• •	•	•	is a weak equivalence of Kan complexes. We see that Greak (X?
•	•	• •	•	•	classifies diagrams of the form
•	•	• •	•	•	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
•	•	• •	•	•	Pushout
•	•	• •	•	•	(Note that the cofiber of p is EA by (*)).
•	•	• •	•	•	
•	•	• •	•	•	~> The outer diagram
•	•	• •	•	•	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
•	•	• •	٠	•	$C \longrightarrow C \longrightarrow \Sigma A_{3!}$
•	•	• •	•	•	ΣΧ
•	•	• •	•	•	$\sum \Sigma X$
•	•	• •		•	$\sum_{X \\ ZA \\ A \\ $
•	•			•	$\sum \Sigma X$
•	•			•	$\sum_{X \\ ZA \\ A \\ $
•	•			· · · ·	$\sum_{\substack{X \to 0 \\ \downarrow P & \downarrow \\ \Rightarrow \Sigma B \to \Sigma C}} \sum_{\substack{X \to 0 \\ \downarrow P & \downarrow \\ \Rightarrow \Sigma B \to \Sigma C}} (essentially uniquelly extended!)$
• • • • • • • • • •	•			· · · ·	$\sum_{\substack{X \to 0 \\ \downarrow P & \downarrow \\ \Rightarrow \Sigma B \to \Sigma C}} \sum_{\substack{X \to 0 \\ \downarrow P & \downarrow \\ \Rightarrow \Sigma B \to \Sigma C}} (essentially uniquelly extended!)$
					$\sum \sum \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} (essentially uniquely extended!)$ $\sum_{i=1}^{N} \sum_{i=1}^{N} \sum$
					$\sum \sum \sum_{i=1}^{n-1} \sum_{i=1}^{n-1} (essentially uniquely extended!)$ $\sum \sum_{i=1}^{n-1} \sum$
					$\sum_{X} \sum_{X \to 0} (essentially uniquely extended!)$ $\sum_{X \to 0} \sum_{X \to 0} (essentially uniquely extended!)$ $\sum_{X \to 0} \sum_{X \to 0$
					$\sum_{\substack{X \\ Y \\ ZA \rightarrow 0}} \sum_{\substack{ZX \\ ZB \rightarrow ZC}} (essentially uniquely extended!)$ $\sum_{\substack{ZB \\ ZB \rightarrow ZC}} \sum_{\substack{ZC \\ ZB \rightarrow ZC}} (essentially uniquely extended!)$ $\sum_{\substack{ZB \\ ZB \rightarrow ZC}} \sum_{\substack{ZB \\ ZB \rightarrow ZC}} \sum_{ZB \\ ZC$
					$\sum_{X} \sum_{X \to 0} (essentially uniquely extended!)$ $\sum_{X \to 0} \sum_{X \to 0} (essentially uniquely extended!)$ $\sum_{X \to 0} \sum_{X \to 0$

$\mathcal{C}_{/P} \times_{\mathcal{C}} \{X\} \rightarrow \mathcal{C}_{/P} \times_{\mathcal{C}} \{X\} \rightarrow \mathcal{C}_{/Q} \times_{\mathcal{C}} \{\Sigma X\} \rightarrow \mathcal{C}_{/Q} \times_{\mathcal{C}} \{\Sigma X\}$
These two compositions can be shown to agree with the maps
induced by E ~> weak equivalences!
2-out-of-6 => Each map is a weak equivalence!
<u>Claim 2</u> : Every map in 6 has a fiber
Pf: Let p: B-C be a map and AEG st. p admits a coliber seq.
of the form $B \rightarrow 0$ Exists since ΞA is an eq. $P \downarrow = J$ $C \rightarrow \Xi A$
From claim I we know this is also a fiber sequence:
A 3 B 0 J [p] r J ~> Left hand square is again a O C 2 EA pullback V
<u>Claim 3</u> : Every fiber sequence is a cofiber sequence <u>Pf</u> : Consider G ^{op} . By claim II it has all cofibers. Since Ze is an
equivalence, so is Egop. Applying claim I to B°? we get that all
liber sequences in G is a coliber sequence.
Gr: C stable => C ^{op} stable
Cor: If G is a stable, then E, D are inverse equivalences
Pf: Let XeG, then we have a cofiber sequence
$\begin{array}{cccc} X \rightarrow 0 & \text{Also Roseq} & X \stackrel{\vee}{=} \Omega(\Sigma X) \rightarrow 0 \\ \downarrow & \downarrow & \downarrow \\ 0 \rightarrow \Sigma X & & \downarrow & \downarrow \\ & 0 & \longrightarrow \Sigma X & & \Box \end{array}$
$Cor: \Omega^{\sim} = unique map : Sp = colim(S_* \rightarrow S_*) \rightarrow S_*$
$\Sigma^{\infty}: \mathcal{S}_{*} \longrightarrow Sp$
~> Adjunction SP 1/2 S

Def: A functor 7:6-30 between stable - categories are exact if it	•
preserves the zero object (i.e. recluced) and (co)fiber sequences	•
Construction of mapping spectrum. We first note that	•
<u>Caretraction of mapping spectrum</u> : We first note that Funder (E,Sp) ~ Funder (E,S.)	•
Using that Map (X-): (-) & preserves all 0: its up out that it corresponds to	•
Using that Mape (X,-): 6- & preserves all limits, we get that it corresponds to	•
$map_{\mathcal{C}}(X, -): \mathcal{C} \rightarrow Sp \qquad n^{+n} space of map_{\mathcal{C}}(X, Y) is$	•
s.t. $Map_{\mathcal{C}}(X, Z^{\gamma}Y)$ $\Omega^{\gamma}map_{\mathcal{C}}(Y, -) \cong Map_{\mathcal{C}}(X, -).$	•
	•
All of this is natural in XEG, So an build the mapping spectrum	•
$\operatorname{Map}_{\mathcal{C}}(-,-): \mathcal{C}^{\circ \mathcal{P}_{x}}\mathcal{C} \to \mathcal{S}_{\mathcal{P}}.$	•
Any stable co-category is spectrally enriched.	•
· · · · · · · · · · · · · · · · · · ·	•
· · · · · · · · · · · · · · · · · · ·	•
	•
	•
	•
· · · · · · · · · · · · · · · · · · ·	
	•
· · · · · · · · · · · · · · · · · · ·	
	•
· · · · · · · · · · · · · · · · · · ·	

TRIANGULATED STRUCTURE

As martianed in the beginning, another approach to carptoning the "stable" properties
of the derived category and the category of spectra, is using triangulated categories.
As it turns out, the homotopy category of any stable ro-category can be equipped
with a triangulated structure (actually 2).
First recall the following definitions.
Def: A 1- Category is additive if
1) It is AL-enviched (Each Rom-set carries the structure of an abelian
grap, and composition is bilinear)
2) Admits finite coproducts
Def: A triangulated category is an additive I-category C with an equivalence
E: C > C together with a class of <u>distinguished triangles</u> , each which is
a diagram of the form
$X \rightarrow \forall \rightarrow \Xi \rightarrow \Xi X$
satisfying the following:
$\overline{\mathrm{IR}}$ i) $\forall X \in \mathbb{C}$, $X \xrightarrow{\mathrm{id}} X \to O \to E X$ is a distinguished triangle
ii) $\forall u: x \rightarrow \forall \exists z \in C + X \stackrel{t}{\rightarrow} \forall \rightarrow z \rightarrow z \land distinguished$
iii) Class of distinguished triangles are closed under isc.
$\frac{\pi 2}{2} \times \frac{4}{3} = \frac{9}{2} \xrightarrow{h} 2 \times \text{distinguished iff}$
$\gamma^{3} Z \xrightarrow{h} \Sigma X \xrightarrow{-2} \Sigma Y$ distinguished
$\frac{\text{TR3:}}{x} \xrightarrow{\times} \begin{array}{c} Y \longrightarrow Z \xrightarrow{\longrightarrow} \Sigma \\ a \downarrow 2 \downarrow \\ \chi' \longrightarrow Y' \xrightarrow{\longrightarrow} Z' \xrightarrow{\longrightarrow} \Sigma \\ \chi' \xrightarrow{\longrightarrow} Y' \xrightarrow{\longrightarrow} Z' \xrightarrow{\longrightarrow} \Sigma \\ \end{array} $
TR4: "Octahedral axiom"
The main point of writing out this definition is to apprechiate how compact

the definition of stable as-category is!
Thus & stable => RE admits a triangulated structure
We won't go into to many details, but we will describe why fill is additive and
the distinguished triangles.
<u>he is additive:</u> We define translation functor
[n]: G -> G
as nth-fold suspension (for n=0, (-n)th-fold for n=0). Using that limits
commutes w. $Map_{\mathcal{B}}(X, -)$ (and Ω is a limit), we get
Mapp(X,Y) ~ Mapp(X, 2" E"Y) ~ 2" Mapp(X, 40) of ssets
\sim Map _c (X,Y) is an oo-loop space, so To Map _c (X,Y) > Homen (X,Y)
is an abelian group under loop sun
To see that he admits finite coproducts, we see that 6 admits such.
Note flic-1
1) $X \ge corrive(XEI] \xrightarrow{a} 0)$
2) $\gamma^{2} collo(0 \xrightarrow{\vee} \gamma)$
3) $\mu \amalg \nu = (X[-1] \xrightarrow{\circ} \psi)$ in $Fon(\Delta', C)$
4) cofibers preserves colimits
$\Rightarrow X \amalg Y = ccfib(X \sub I] \xrightarrow{O} Y)$
Def: Let G be a stable so-catigery. We say that a diagram
$\chi \xrightarrow{f} \gamma \xrightarrow{f} \xi \xrightarrow{k} \xi \chi$
in hG is a distinguished triangle, il there exists a diagram
$D' \times D^2 \rightarrow C$ of the form
$\chi \xrightarrow{\sharp} \gamma 0 \qquad z \xrightarrow{\ell} w$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\varphi \rightarrow 2 \frac{1}{R} \omega$ Σx

Re		1)	Di	0.g.m	Ŵ	1	ÌM	plie	es 1	rha	£ (ہ جن	ک نے	х,	(L)(2 Licl	λ Ìs	5 4V	دو ا	ربعد	Hice	1 n	noip	ົາທ	the	· · ·
• •	• •	• •	tvi	ang	le	• •	•	•	• •	•	•	•	•	• •	• •	•	•	•••	•	•	• •	•	•	•	• •	• •
• •	• •	2)	We	. M	رمطو	. a	ċ	010	 e	£ e	, iqu	Św	, 4	na	ng	les	J	' the	z fe	, m	\\	×Ď	<u>-</u>	5	• •	• •
• •	• •	• •																							• •	
• •	• •	• •																choù							R.	• •
• •	• •	• •	two	ch	oice	s y	reld	لې	tw	o di	ifk	nen	Ļγ	nav	gulc	rtec	. 5	md		SON	i Ķ	G.,	•	•	• •	• •
• •	• •	• •	• •	•••	•	• •	•	•	• •	•	•	•	•	• •	•	•	•	•••	•	•	• •	•	•	•	• •	• •
• •	• •	• •	• •	•	٠	•••	٠	•	• •	٠	•	•	•	• •	•	٠	•	•••	•	٠	•••	•	٠	•	• •	• •
• •	• •	• •	• •	• •	•	• •	•	•	• •	•	•	•	•	• •	• •	•	•	• •	•	•	• •	•	•	0	• •	• •
• •	• •	• •	• •	• •	•	• •	٠	•	• •	٠	۰	•	•	• •	•	۰	•	•••	•	•	• •	٠	•	•	• •	• •
• •	• •	• •	• •	• •	•	• •	•	•	•••	•	•	•	•	• •	• •	•	•	•••	•	•	• •	•	•	•	• •	
• •	• •	• •	• •	•	•	•••	•	•	• •	•	•	•	•	• •	•	•	•	•••	•	•	•••	•	•	•	•••	• •
• •	• •	• •	•			• •	•	•	• •	•	•	•	•	• •	•	•	•	• •	•	•	• •	•	•	0	• •	• •
• •	• •	• •	• •	• •	•	• •	•	•	• •	•	•	•	•	• •	• •	•	•	• •	•	•	• •	•	•	•	• •	• •
• •	• •	• •	• •	• •	•	• •	•	•	• •	٠	٠	•	•	• •	•	•	•	•••	٠	٠	• •	٠	•	٠	• •	• •
• •	• •	• •	• •	•	•	•••	•	•	••••	•	•	•	•	• •	•	•	•	•••	•	•	•••	•	•	•	•••	• •
• •	• •	• •	• •	•	•	• •	•	•	• •	٠	٠	•	•	• •	•	٠	•	•••	٠	٠	• •	•	•	•	• •	• •
• •	• •	• •	• •	• •	•	•••	•	•	• •	•	•	•	•	• •	•	•	•	•••	•	•	••••	•	•	•	• •	• •
• •																										
• •																										
• •																										
• •																										
• •																										
• •																										
• •																										
• •																										
• •																										
• •																										
• •																										
• •																										
• •																										
• •																										

T-STRUCTURES
As mentioned in the beginning, a reason to consider stable a-categories is
that it is a form of analouge of chain complexes and gives us a framework
te do (homological) algebra. An example of this is that given a filtered
Chain complex $\dots \subseteq F_{p-1} \subseteq F_p \subseteq \dots \subseteq C$
we get a spectral sequence
$E_{P,q}^{\prime} = H_{P+q} (F_P/F_{P-1}) = H_{P+q} (C)$
Whose convergence is conditional on finituress properties of the filtration. This spectral
sequence arises from the SES of chain complexes
$0 \to F_{p-1} \to F_p \to F_p / F_{p-1} \to 0.$
This can be generalised to stable a categories by adding a so called "t-structure"
which in particular associates an abelian category.
Notation: $G[n] = \Sigma^n G$, $G[-n] = \Sigma^n G$
Def: Let 6 be a stable co-category. A <u>E-structure</u> on 6 consists of a pair
$(G_{20}, G_{\leq 0})$ of full subcategories of $C s.t.$
1) $G_{\geq 0}[1] \subseteq G_{\geq 0}$ (closed under suspension) ($G_{\geq 0}$ = connective objects
GEOFIJE GEO (closed under loop) GEO= coconnective objects)
2) ∀X,YEC: Mapg(X,YE1]) =×
3) YXEC] fiber sequence
$T_{20}X \rightarrow X$ w. $T_{20}X \in G_{20}$
$\begin{array}{c} \downarrow \\ \downarrow $
Write
$G_{\geq n} := G_{\geq 0}[n], G_{\leq n} := G_{\leq 0}[n]$
· · · · · · · · · · · · · · · · · · ·

<u> ٤x:</u>	(1) G=CR(R-Mod) (DLR))
• • • •	$G_{\geq 0} = \{x \mid H, x = 0, u < 0\}$
• • • •	$\mathcal{G}_{\leq O} = \left\{ X \mid H_{n} X = 0, \ n > 0 \right\}$
• • • •	2 G=Sp
• • • •	$G_{20} = \{X \mid \pi_n X = 0, n < 0\}$
• • • •	$G_{\leq 0} = \{ X \pi_{y} X = 0, y > 0 \}$
Def:	The inclusions of $G_{\geq n}$, $G_{\leq n} \sim G$ admits adjoints: include $T_{\leq n}$ coonnective cover
• • • •	incl True coconnective cover
• • • •	$C_{\geq n}$ L $C_{\leq n}$ $C_{\geq n}$ L $C_{\leq n}$
• • • •	
• • • •	~> Fits into a commutative diagram (in ssets)
••••	Gzn Tinel G [T _s m 2 [T _{sm} ~ θ: T _{sm} T _{2n} T _{2n} T _{sm}]
• • • •	Tim 2 (Tim Di Limo Lin) Lin Lim
• • • •	
· · · · ·	$G_{\geq n}^{-1} G_{\leq m}$ $G_{\leq n}^{-1} G_{\leq m}$ of functors $G \rightarrow G_{\geq n}^{-1} G_{\leq m}$.
Def:	
	$\begin{array}{cccc} & & & & & \\ & & & \\ & & & \\ \hline G_{\geq n} \cap G_{\leq m} & & \\ \hline \hline & & \\ \hline \\ \hline$
	$G_{\geq n} \cap G_{\leq m} \xrightarrow{ind} C_{\leq m}$ of functors $G \to G_{\geq n} \cap G_{\leq m}$.
	$G_{\geq n} \cap G_{\leq m} \xrightarrow{ind} G_{\leq m} \qquad of functors G \to G_{\geq n} \cap G_{\leq m}.$ The freart of G is $G^{\varphi} := G_{\geq n} \cap G_{\leq 0} \subseteq G$ $The Map_{g^{\varphi}}(X, Y) \cong Th Map_{g}(X, Y) \cong Th Map_{g}(X, Y) \cong Th Map_{g}(X, \Omega^{\gamma}Y) = 0 \text{for } n \gg 0$ Since $\Sigma^{\gamma}Y \in G_{\leq m}$
Reni:	$\begin{aligned} & \mathcal{G}_{\geq n}^{n} \mathcal{G}_{\leq m} \xrightarrow{ind} \mathcal{C}_{\leq m} & of \text{ functors } \mathcal{G} \to \mathcal{C}_{\geq n} \wedge \mathcal{G}_{\leq m}, \\ & \mathcal{T}_{\leq m} & \mathcal{T}_{in} \mathcal{M}_{in} \mathcal{G}_{\leq in} & \mathcal{G}_{\leq in}^{n} \mathcal{G}_{\leq in} & $
Reni:	$G_{\geq n} \cap G_{\leq m} \xrightarrow{ind} C_{\leq m} \qquad \text{of functors } G \to G_{\geq n} \cap G_{\leq m}.$ The heart of G is $G^{\circ} = G_{\geq 0} \cap G_{\leq 0} \subseteq G$ $TT_{n} \operatorname{Map}_{\mathcal{G}^{\circ}}(X, Y) \cong TT_{n} \operatorname{Map}_{\mathcal{G}}(X, Y) \cong T_{0} \operatorname{Map}_{\mathcal{G}}(X, \Omega^{n}Y) = 0 \qquad \text{for } n \gg$ $\sim S^{\circ} Y \in G_{\leq n} $ Can be used to show it is abelian!
<u>Reni</u>	$G_{2n} \cap G_{\leq m} \xrightarrow{ind} C_{\leq m} \qquad of functors G \to G_{\geq n} \cap G_{\leq m}.$ The frech of G is $G'' = G_{\geq n} \cap G_{\leq 0} \leq G$ $The Map_{g''}(X,Y) \cong The Map_{G}(X,Y) \cong The Map_{G}(X,\Omega^{n}Y) = 0 for \; n \geq 0$ $The Map_{g''}(X,Y) \cong The Map_{G}(X,Y) \cong The Map_{G}(X,\Omega^{n}Y) = 0 for \; n \geq 0$ $Since Since Since$
<u>Reni</u>	$G_{2n} \cap G_{\leq m} \xrightarrow{\operatorname{ind}} C_{\leq m} \qquad \text{of functors } G \to G_{2n} \cap G_{\leq m},$ $The \underbrace{\operatorname{heart}}_{C_{\leq m}} \circ f \in \mathbb{C} \text{ is } G^{\varphi} \coloneqq G_{\geq 0} \cap G_{\leq 0} \subseteq G$ $The \operatorname{heart}}_{T_{n}} \operatorname{Map}_{\mathcal{G}^{\varphi}}(X, Y) \cong \operatorname{The} \operatorname{Map}_{\mathcal{G}}(X, Y) \cong \operatorname{The} \operatorname{Map}_{\mathcal{G}}(X, \Omega^{n}Y) = 0 \text{for } n \gg \infty$ $\longrightarrow G^{\varphi} \cong \operatorname{N}(\operatorname{l_{n}}(C^{\varphi})) \cong \operatorname{NS}((\operatorname{h} C)^{\varphi})$ $\operatorname{Can} be used to show it is abelian!$ $1) \mathfrak{O}(R)^{\varphi} = R \operatorname{-Mod}$ $2) \operatorname{Sp}^{\varphi} = \operatorname{Ah}$
<u>Reni</u> <u>Ex:</u> <u>Def</u> :	$G_{2n} \cap G_{\leq m} \xrightarrow{ind} C_{\leq m} \qquad of functors G \to G_{\geq n} \cap G_{\leq m},$ $The fleant of G is G^{\varphi} = G_{\geq 0} \cap G_{\leq 0} \subseteq G$ $The Map_{g^{\varphi}}(X, Y) \cong \pi_{m} Map_{g}(X, Y) \cong \pi_{0} Map_{g}(X, \Omega, Y) = 0 for \ n \ge 0$ $Since S^{m} Y \in G_{\epsilon, n}$ $Since S^{m} Y \in G_{\epsilon, n}$ $Can be used to show it is abelian!$ $1) \mathcal{O}(R)^{\varphi} = R \cdot Mod$ $2) \delta p^{\varphi} = Ah.$ $T_{0} = T_{\leq 0} \circ T_{\geq 0} Y T_{\geq 0} \circ T_{\leq 0} : G \to G^{\varphi}$
<u>Reni</u> <u>Ex:</u> <u>Def</u> :	$G_{\geq n} \cap G_{\leq m} \xrightarrow{ind} G_{\leq m} \qquad of fonctors G \to G_{\geq n} \cap G_{\leq m}.$ The free of G is $G^{\varphi} = G_{\geq n} \cap G_{\leq 0} \subseteq G$ $The Map_{g^{\varphi}}(X, Y) \cong The Map_{g}(X, Y) \cong The Map_{g}(X, \Omega^{n}Y) = 0 \qquad for n \approx 0$ $\longrightarrow G^{\varphi} \cong N(f_{h}(E^{\varphi})) \cong N(f_{h}(f_{h}E)^{\varphi}) \qquad \text{Since} \mathcal{R}^{n}Y \in G_{\epsilon,n}$ $f_{h} = f_{\epsilon,0} \circ T_{\geq 0} \cong T_{\epsilon,0} \circ T_{\epsilon,0} : G \longrightarrow G^{\varphi}$ $The : G \xrightarrow{\Omega^{n}} G^{T_{\epsilon,0}} : G^{\varphi}$

Now, lets turn our focus to the spectral sequence promised as motivation for
t-structures.
Def: A filtered object of GECator is a functor F: (Z, E) -> E. We define the
pth cyraded piece of F as
$gr_{p}(F) := cofib(F(p-i) \rightarrow F(p))$
From this we obtain an exact couple
$ T_{P_{\star q}}(F(p)) \xrightarrow{(1,-1)} T_{P_{\star q}}(F(p)) $
(-1,0) $(0,0)(-1,0)$ $(0,0)$
$= (\mathcal{L}_{\mathcal{P}_{\mathcal{Q}_{\mathcal{P}}_{\mathcal{P}}_{\mathcal{P}_{\mathcal{P}}_{\mathcal{P}}}}}}}}}}$
Recall that TT; lands in the abelian 1-category 6, where we can do all our
normal homological algebra. So the exact couple gives us a spectral sequence
$E_{P,q}^{i} = \tau T_{P+q} \left(g_{P}(F) \right)$
in 6° with Serre differentials, i.e.
$d^{r}: E_{p,q}^{r} \longrightarrow E_{p-r,q+r-t}^{r}$
Under nice circonstances, this converges to TTP, q (colim f) - e.g. if & has
sequential columits (i.e. colimits for any diagram $(2\ell_{20}, \leq) \rightarrow C)$, $C_{\leq 0}$ is
closed under sequential colimits and F(p) 20 Up 20
Ex: C=D(R) ~> This SS corresponds to the classical spectral sequence
on filtered colimits.
· · · · · · · · · · · · · · · · · · ·

INTRODUCTION TO HIGHER ALGEBRA §1: SYMMETRIC MONOIDAL - OPERADS - 09-LAND
The basic algebraic structure we want to generalise is
commutative monoid: Set $M + $ multiplication $M \star M \rightarrow M$, unit 1CM st.
1X=X, Xy=yX, X(y2)=(Xy)Z UX, yzeM
>> For categories this is a symmetric monoidal category: Category C + 1CC unit
when working with categories its unnatural to ask for $+ \otimes : C \times C \rightarrow C$
X@(Y@Z)=(X@Y)@Z, instead we want this structure to be given by extra data in form isomorphisms
\propto_{χ} : $(\otimes \chi \simeq \chi)$ $B_{\chi, \chi}$: $\chi \otimes \chi \simeq \chi \otimes \chi $ Just called monoidal it we $\Upsilon_{\chi, \chi, 2}$: $\chi \otimes (\chi \otimes \chi) \otimes \xi$ do not assume this
+ concrete data! It is clear that this approach can not be used to generalize to 00-categories. Lets spell out flow to
et an equivalent description of symmetric monoidal. The idea is that instead of giving
the bifunctor $\mathfrak{O}: C \times C \rightarrow C$, we instead for each n-tuple $C_1, -, C_n$ and dec we specify
the collection of maps
C, b-bC, -d + composition data (and coherence)
This is done by colored operads (what I called nullicategoines in an earlier talk):
Def: <u>A Coloured operad</u> O consists of
- A set of objects 000 (sometimes called the colours)
- $\forall x_{0}, -, x_n, Y$ in Θ : A set of multimorphisms $Mul_{\Theta}(x_{0}, -, x_n; Y)$
- Composition: Given
$(X_{i_1}, X_{i_1}) \rightarrow Y_{i_1}, \dots, (X_{i_{nu}}, \dots, X_{i_n}) \rightarrow Y_{i_n}$
can compose this with $(Y_1, -, Y_n) \rightarrow 2$ to obtain
$(X_{1}, \underline{\ }, X_{1}, \underline{\ }) \xrightarrow{\sim} 2$
$- \text{Unit}: \text{id}_{X}: (X) \to X$
S.t. the composition law is unital and associative
en: Every colored operad O has an underlying category by setting:
- objects = 000
- $How(X, Y) = Mulo({x}, Y).$

• •	~ So can view a coloured operad as a category + extra data in form of the collection
• •	of multimorphisms.
<u>Rem:</u>	Given a (symmetric) monoidal category (C, e) we can obtain a coloured operad C [®] w.
•••	underlying category G, by assigning
• •	$Mul_{c}(X_{0},-,X_{n};Y) = Hom_{c}(X_{0} \otimes - \otimes X_{n};Y)$
• •	We can recover the symmetric monoidal structure of C [®] (up to canonical isomorphism)
•••	by Yoneda's Lemma E.g. the tensor product X&Y is characterized by the fact that it
• •	corepresents the functor Z > Mulc(X,Y;Z).
• •	> Can consider symmetric monoidal categories as a special case of coloured operads.
To ide	entify which assumptions it is on a coloured operad that makes it into a symmetric monoridal.
• •	recoll;
Def:	Fin = { <n>} pointed sets</n>
• •	$P(x) \rightarrow \langle m \rangle$ is inert if it takes some point to the basepoint and injective (isomorphic)
• •	on the rest.
0 0 0 0	$p_i: (n) \rightarrow \langle 1 \rangle$ takes $j \mapsto 0$ if $j \neq i$, p is active if $f^{-1}(0) = 0$
Const	muction: Let O be a colored operad ~> O ^{ce} category:
2.1.1	• Objects = sequences of objects of $O X_{0},, X_{n}$
• •	• $\{X_i\}_{1 \leq i \leq m} \longrightarrow \{Y_j\}_{1 \leq j \leq n}$ is given by a map $\alpha : \langle m \rangle \longrightarrow \langle n \rangle$ in Fin. together with
• •	a collection of nultimorphisms
• •	$\{\varphi_{j} \in M \cup \{X_{\ell}\}_{i \in \mathcal{R}^{-1}} \}_{j \in \mathcal{R}^{-1}} \}_{\sigma \in j \in \mathcal{N}}$
• •	in O.
• •	· Composition of morphisms in O" is determined by composition laws on Ting and
• •	\cdots on \mathcal{D}_{\cdots}
By co	onstruction, 0° comes equipped with a forgetful functor
· ·	$\pi: \mathcal{O}^{\otimes} \longrightarrow F_{i_{N,*}}$ $(x_{o_{1},-,},x_{o_{n}}) \mapsto \langle v \rangle.$
• •	
	TT we can reconstruct the operad structure:
• •	Write $O_{(n)}^{\infty} = \pi^{-1} \{(n)\}$

- $p': \langle n \rangle \longrightarrow \langle 1 \rangle \longrightarrow p'_{1}: O_{\langle n \rangle}^{\otimes} \longrightarrow O_{\langle n \rangle}^{\otimes} \stackrel{\vee}{\to} O = underlying category of O$
which induces equivalences: $O_{\kappa_{n}}^{\kappa_{n}} \cong O_{\kappa_{n}}^{\kappa_{n}}$
$(\times_{\check{0}_1},\ldots,\chi_{\check{n}_n})\mapsto\check{\lambda}_{\check{\lambda}_n}$
- $\operatorname{Mul}_{O}(X_{0,-},X_{n};Y) \iff \left\{ f: \overline{X} \rightarrow Y : , O^{\otimes} s + \pi(f): \langle n \rangle \rightarrow \langle 1 \rangle so h s fies \pi(f)^{-1}(o) = (o) \right\}$
Lo TT: O ⁶⁰ - Finx determines Mulo(Xo, -, XniY) in the colored operad O
- Can show that composition law for morplisms in O can be recovered from the
one in 0°.
D Can think of a coloured operad as an ordinary category Oee together with
a forgetful functor $TT: O^{\circ} \rightarrow Fin_{*} s.t. O^{\circ}_{(n)} \simeq (O^{\circ}_{(1)})^{*n}$
It turns out that if T is further an "op-fibration" then this is exactly
the symmetric moncidel categories.
So this is what we generalise to ∞ -land:
<u>Def:</u> An <u>ab-operad</u> is a functor of ab-categories $p: O^{\otimes} \rightarrow N(F_{in_{*}})$ s.t.
1) coCart lift of every inert $f:\langle n \rangle \rightarrow \langle m \rangle$
$ L \rightarrow \text{ In particular it induces } f_1: O_{(n)}^{e} \longrightarrow O_{(m)}^{e}. $
2) For each n 20, the functors $\{P_1^2: O_{(n)}^0 \rightarrow O\}_{1 \le i \le n}$ detruines an equivalence
of categories $O^{*} \simeq O_{$
+ ··· · · · · · · · · · · · · · · · · ·
So we in particular get that (x, -, x,) & Oxn corresponds to an object of O(1)
Def: A symmetric monoridal co-category is an as-operad 6° -> Fin * which is
also coCartesian fibration.
Let's understand why this gives the desired structure:
Note that: $\langle n \rangle \rightarrow \langle m \rangle$ in Finx ~ 0 $\mathcal{G}_{(n)}^{\otimes} \longrightarrow \mathcal{G}_{(m)}^{\otimes}$
so the active morphisms $(0) \rightarrow (1), \langle 2 \rangle \rightarrow \langle 1 \rangle$
$\sim ; \qquad \underline{\bigtriangleup}^{\circ} \to \underline{C} , \underline{\complement}_{\times} \underline{C} \to \underline{C}$
An object Our tensor we denote by 1
The reason we went through all this work introducing as-operads is because

they are exactly what we need to get nice algebraic structures, and symmetric
monoidal categories is just one of many (monoidal'-ish categories
In general:
<u>Def</u> : We say that $p: \mathcal{C}^{\circ} \to \mathcal{O}^{\circ}$ exhibits \mathcal{C} as <u>O-monoidal</u> as-category if
1) p is coCartesian
2) $O^{\otimes} \xrightarrow{q}$ Fin, is an ∞ -operad and $C^{\otimes} \xrightarrow{?} O^{\otimes} \xrightarrow{q}$ Fin, exhibits
C ^a as an a-operid
Ex: Symmetric monoidel <> Finx-monoided
<u>Rem:</u> If \mathcal{C} is O-monoidal by $p:\mathcal{C}^{\diamond} \to \mathcal{O}^{\diamond}$, then any
$\chi \in \Theta_{(n)}^{\otimes} \longleftrightarrow \{\chi_{o,-},\chi_{n}\} \in \Theta$
Given $f \in Mul_{\mathcal{O}}(X_{0,-},X_{n};Y) \longrightarrow \Pi \mathcal{C}_{X_{i}} \cong \mathcal{C}_{X} \xrightarrow{\varphi} \mathcal{C}_{Y}$
fiber over x
It can be shown that one of the key elements is that p in particular is
a morphism of 00-0 perads:
ALGEBRA OBJECTS
Def: A morphism of a operads:
P = coCart $T = O^{26}$ q = coCart
$ Alg (O^{2}) \subseteq Fun (O^{6}, O^{2}) $
inert
Def: Assume p: C ^G ~ O ^G be a fibration of apperads. and given a: O ^G ~ O ^G
$Algo/(G) \leq Fun_{OB}(O^{2}, C^{O})$
Equivalently:
$Alg_{O'/O}(C) = fb. of Alg_{O'}(C) \rightarrow Alg_{O'}(O)$ at \ll
$O_{10} \to G_{O} \longmapsto O_{3} \longrightarrow G_{0} \longrightarrow O_{0}$
Case $O^{\otimes} = O^{\otimes}$, $\alpha = id$: Alyoro(e) =: Algro(e) $O^{\otimes} \rightarrow \mathcal{C}^{\otimes}$
· · · · · · · · · · · · · · · · · · ·

$Gase O^{2} = O^{2} = F_{in_{*}}:$
$CAlg(C) = Alg_{G/G}(C) = Alg_{G}(C)$ $Fin_x \rightarrow C^{C}$ Fin_x
It's specific cases which gives us algebras?
Base case is associative algebra
Classically: An associative algebra object in a monoidal category C is an object AEG + unit map
$e:1 \rightarrow A$ and multiplication $m:A \times A \rightarrow A$ s.t.
160 A - ewid A&A A601 - A60 A
AGAGA moid AoA Jidem Jm
$ \int dem \int m $ $ A = A = A $
We will apply the formalisme of on-operads to introduce the notion of manoidal on-category,
and to each manoidal as-category associate another so-category Alg(B) of associative algebra
objects of C.
Def: Colored operad Assoc (associative algebra)
- $obAssoc = \{a\}$
- ObAssoc = {a} - Mil (sa}, a) = set of linear orderings on T
- MulAssoc ({a}:eI, a) = set of linear orderings on I.
- Mulassoc ({a}:eI,a) = set of linear orderings on I. any Finite set
- MulAssoc ({a} _{ieI} , a) = set of linear orderings on I. any Finite set + composition
 HulAssoc ({a}_{ieI}, a) = set of linear orderings on I. any Kink set t composition Obtain a category Assoc⁶⁰ by applying construction 2.1.1.7
 HulAssoc ({a}:eI ,a) = set of linear orderings on I. any Finite set t composition Obtain a category Assoc⁶ by applying construction 2.1.1.7 Unwinding the def of Assoc⁶:
 Mul_{Assoc} ({a}_{ieI}, a) = set of linear orderings on I. any Kinik set t composition Obtain a category Assoc⁶⁵ by applying construction 2.1.1.7 Unwinding the def of Assoc⁶⁵: obAssoc⁶⁵ = obTing.
 HulAssoc ({a};eI ,a) = set of linear orderings on I. any Finite set composition Obtain a category Assoc by applying construction 2.1.1.7 Unwinding the def of Assoc? obA=soc? = obFinse. (m> - (n> - (n> in Finse)
 HulAssoc ([a]_{ieI}, a) = set of linear orderings on I. any kink set t composition Obtain a category. Assoc⁶ by applying construction 2.1.1.7 Unwinding the def of Assoc⁶: obtassoc⁶ = obting. (m) - (n) in Fing. >> (m) - (n) in Assoc⁶ consists of a pair (k, [i heisen) where k: (m) - (n) is a map in Fing. and (i is a linear ordering on
 Hulassoc ([a]_{ieI}, a) = set of Linear orderings on I. Aug Kink set. Composition Obtain a category Assoc⁶ by applying canstroction 21.1.7 Unwinding the def of Assa⁶: ooAssoc⁶ = obting. (m) - (n) in Fing. ~> (m) - (n) in Assa⁶ consists of a pair (k, [i] heren) where k: (m) - (m) is a map in Fing. and <; is a linear ordering on the inverse image f⁻¹ {i} = (m) for 1 = in
 Hulperson ([a]_{ieI} , a) = set of linear orderings on I. any Rink set composition Obtain a category. Assoc⁶ by applying construction 21.1.7 Unwinding the def of Assoc⁶: obpsac⁶ = obFinse. (m) - (n) in Finse. (m) - (n) in Finse. (m) - (n) is a map in Finse. and (; is a linear ordering on the inverse image f⁻¹ {i} = {m} for 1 = i = n
 HulAssoc ([a]_{ieI}, a) = set of Linear orderings on I. any Kink set. t composition Obtain a category Assoc⁶ by applying canstruction 2.1.7 Unwinding the def of Assa⁶: ooAssoc⁶ = obting. (m) - (n) in Fing. ~> (m) - (n) in Assa⁶ consists of a pair (k, {i heisen) where k: (m) - (m) is a map in Fing. and <; is a linear ordering on the inverse image f⁻¹ (if c (m) for 1616)

Note that as a simplicial set, Assoc is isomorphic to the O-simplex D'; But we use the notation
Assoc to emphasize the role of the simplicial set as the underlying a category for the acoperad Assoc ⁶
<u>Def:</u> A <u>monoidal</u> ∞ category is a coCartesian fibration of ∞ -operades $G^{\otimes} \rightarrow Acce^{\otimes}$
<u>Def:</u> $C^{\circ} \in Op^{\circ}$ equipped us. a fibration $q: C^{\circ} \longrightarrow Association$ Then the <u>as-category</u> of associative
algebra objects of E is Alg (E) = Alg (E) (as-operad sections of g)
$A_{SSGC} \xrightarrow{A} G^{\otimes}$
lid /a
Let's understand what this means: Let E > Assoc be a monoidal oo-category. Then
extrain Cons ~ Con x Associa {(n)} ~ C, and for every linear ordering on {1,,n}, the corresponding
map (n) -> (1) in Assoc [®] induces a functor G ⁿ - G. In particular
T n=0 ~ unit object 1EC
- $n=2$, standard ordering on $\{1,2\} \longrightarrow \varnothing : G \times G \rightarrow G$
· Evaluating an acAssoc [®] determines a forgotful functor
$\Theta: \operatorname{Alg}(\mathcal{C}) \longrightarrow \mathcal{C}$
By abose of notation we often identify AEAlg(6) with it's image O(A) in E. For each nzo
a choice of ordering on {1, -, n} determines an active morphism {a}_151En - a in Assoc
which induces a morphism $\Theta(A) \xrightarrow{\circ n} \Theta(A)$ in G. In particular
- $n=2$ and standard ordering of $\{1,2\}$: $m: \Theta(A) \otimes O(A) \rightarrow O(A)$
La Associative and unital up to Romotopy
~> In particular, it enclows O(A) with the structure of an associative algebra
object in hG.
LEFT & RIGHT MODULES
Classicully: Cononciclal category w. unit A, A associative algebra object of C. A left A-module
in C is an object MEG + action map a: A@M→M s.t.
· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·

A \otimes A \otimes M $\xrightarrow{\text{minich}}$ A \otimes M $1 \otimes$ M $\xrightarrow{\text{usich}}$ A \otimes M $\xrightarrow{\text{usich}}$ M $\xrightarrow{\text{usich}}$ A \otimes M $\xrightarrow{\text{usich}}$ A \otimes M $\xrightarrow{\text{usich}}$ A \otimes M $\xrightarrow{\text{usich}}$ M $\xrightarrow{\text{usich}}$ A \otimes M $\xrightarrow{\text{usich}}$ M $\xrightarrow{\text{usich}}$ M $\xrightarrow{\text{usich}}$ M $\xrightarrow{\text{usich}}$ A \otimes M $\xrightarrow{\text{usich}}$ A \otimes M $\xrightarrow{\text{usich}}$ A \otimes M $\xrightarrow{\text{usich}}$ M $\xrightarrow{\text{usich}}$ A \otimes A $\xrightarrow{\text{usich}}$ A \otimes M $\xrightarrow{\text{usich}}$ A $\xrightarrow{\text{usich}}$
~> All left A-modules = LMod _A (G)
We wish to introduce a larger as operad LM° which contains Assoc. If AEAlg(0) we want
a left A-module to be a map of as-operads M: (N° -, C° s.t. M) Assoc [®] = A.
<u>Def:</u> Define a cobred operad <u>LM</u> as:
- oblM={a,m}
- Let {X;} _{iEI} be a finite collection of objects of LM. Then > Mul LAN ({X;}, a) = { all linear orderings of I if all X;= a Empty otwo
Lo Mulin ({Xi}, m) = {All linear ordennoge {inc. cin} on I at Xin = m & Xin = a for jen
Rem: a.ELM ~> sub-colored operad of LM isomorphic to Assoc a, a, -, a, M 4212
4.2.1.2 <u>Rem:</u> We first in this (1-categorical) case see how this can be used to understand modules. 4.2.1.3
4.2.1.3 Assume C symmetric monoidal, F:11 - C map of colored operads
~? F/Assoc ~ G ~ Associative algebra object F(a)=A & G. Let M=F(m) & C.
Then the unique operation $\phi \in Mol_{LM}(\{a,m\},m)$ determines $F(\phi): A \circ M \rightarrow M$, which exhibits
M as a left A-module.
$LM \rightarrow c$ \longrightarrow So $\alpha \mapsto associative algebra M \mapsto left module over that algebra$
Mr lett module over their algebra
Notation: Apply construction 2.1.17 to LM to obtain the category LM® from LM. Unwinding this
construction we see that
1) $ob LM^{0} = \{(\langle n \rangle, \leq) \mid \leq c \langle n \rangle^{0} \}$
2) $(\langle n \rangle, S) \rightarrow (\langle n' \rangle, S') = \alpha : \langle n \rangle \rightarrow \langle n' \rangle$ in Assoc [®] s.t.
i $Su\{*\} \xrightarrow{\infty} Su\{*\}$
ii) $S^2 \in S^2 = > \alpha^{-1} \{S^2\}$ contains exactly one element of S, and that doject is
maximal w.r.t. the linear ordering of a '{s'}.
ن · · · · · · · · · · · · · · · · · · ·

$\frac{\text{Rem:}}{a \leftarrow (\langle 1 \rangle, \phi)}$ $M \leftarrow \langle \langle 1 \rangle, \langle + \rangle^{\circ} \rangle$
<u>Def:</u> $[M^{\circ} = N(LM^{\circ})$. This is an ∞ -operad via the forget-ful map $LM^{\circ} \rightarrow Fin_{F}$
Rever. The underlying a - category CH of CMP is somerphic to the discrete simplicial set &11.2'
w. two vertices, corresponding to arme LM.
Rem: Assoc -> LM ~> Assoc" -> [No", which is an isomorphism from Assoc" onto the full subcategory
of $L^m U^{e_0}$ spanned by objects of the form $((m), \phi)$.
Notation: Let C" -> LM" be a fibration of co-operads. Write
Ca = C × Ly Assoc , Underlying a - category Ga = C × Ly (a)
$C_{m}^{\omega} = C^{\omega} \times \mathcal{L}_{M,\Theta} \{m\}$
Def: Let $C^{\omega} \rightarrow Assoc^{\omega}$ be a fibration of ∞ -operads, $q: O^{\omega} \rightarrow LM$ fibration of ∞ -operads s.t
O'a & C'a Write O'm = M. ((Cato) (Normally we say q exhibits M as weaking enriched over (5)
 LMod (M) := Alg / LM (O) ∞ - category of lefs module objects of M. LM → O LM → O
· Composition w. Assoc ~ CMO determines a categorical fibration
$LMad(M_{0}) = Alg(\mathcal{O}) \xrightarrow{\circ ind} Alg(\mathcal{O}) = Alg(\mathcal{O})$
>> LModA(M) = LMod(M) × Alg(B) {A} = 00- category of left A-modules objects of Mo.
~> We think of LMod (Om) as given by parrs (A,M) where A is an associative algebra object of
Θ_{α} and M is a left A-module in Θ_{m} ,
$\frac{\xi_{X:}}{4.2.1.16} \mathcal{C}^{\bullet} \to Assoc^{\bullet} \text{fibration of } oo-operads, \mathcal{O}^{\bullet} = \mathcal{C}^{\bullet} \times LM^{\bullet} \text{Then } \mathcal{O}^{\bullet} \text{exhibits } \textbf{f. as}$
weakly enriched over 5° ~ Can consider (Mod(c)= Alg m /Assoc (G)
$\underline{\varepsilon_{X}}$: Let $\underline{c}^{\circ} \rightarrow Assoc^{\circ}$ be a monoidal as-category. Then
4.2.1.18 [Mod(e) = Alg LK/Assoc (e) = IM, F Je
"A soc" \sim Flassoc & Alg (C), which we identify with its underlying object F(a) = A e C.
M Also have F(m) = Me 6
The unique operation qE Mul ({a,m}, m) determines a map
$\alpha : A \alpha M \longrightarrow M \text{in } P$
which is well-defined up to homotopy.

•••	51	NCE	F	ış	deh	vec	0.1	v v	, III	04	المالع.	۰°)	we	get	th	Q.T	this	a	ction	iv	icih	. 13		mp	atil	le	μ'n	ith.	the
•••														rent											•	•	•	•) •
• •	•••	•	•••	•	Δα	A.		A	•••	•			•	• •	•	•	• •	•	•	•••	•	•	•	•••	•	•	•	•	•••
•••	• •	•	•••									لم م		••••	on	A	••••	•	•	•••	•	•	•	•••	•	•	•	•	•••
• •	• •	•	•••	્ય	1 -	>	A .	•	 	rit	· . • ·	iap.	•	• •	•	•	••••	•	•	• •	•	•	•	•••	•	•	•	•	• •
• •	م	•	• •	Aw	A ø	M.	w e	e'id	Aø	M	٠	 1	09 M	- U 0	, id	9A	9M	٠	•	• •	۰	٠	٠	• •	۰	٠	٠	•	• •
• •	• •	•	•••		6í	. .	•	•	Ja	•	•						•••	•	•	•••	•	•	•	•••	•	•	•	•	•••
•••	• •	•	•••	•	4@1	√.–	<u>د</u>	•	Ja M	•	•	•••	•	5	N.	•	•••	•	•	•••	•	•	•	•••	•	•	•	•	• •
•••	• •	•	•••	•	•••	٠	٠	٠	• •	٠	•	•••	•	• •	•	•	••••	•	•	•••	•	•	•	•••	•	•	•	•	•••
• •	• •	•	0	Guur	wu+	عې	ŶР	, to	. e.	onia	stot	.y.	٠	•••	of .	~~~~	∍ps.	•	•	•••	٠	٠	•	•••	٠	•	•	•	•
Rem	Ţ	ę	G°	<u>q</u>	-£	Мè	į	د	- ¢		les io	~~	fib	notic	м, ¹	+he	i H	he	ind	ncer	r 'n	, nor	2	•••	•	•	•	•	•••
• •	•••	•	<u>ر</u>	•	⇒ A e		6	is	ما	50	o.	ക	art	rsia	N.	f: br	ratio	من	ol	0	-01	jer (حط	s,	•	•	•	•	•••
• •	Ŵ													q'i											СM	۔ س	>	G	20.
• •																							•	• •	•	•	•	•	
	Ŵ	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		. ,2		и.	. ~	.'0	. • •	-O ý IL	ηu	00		0									•	•••	•	•	•	•	•••
• •	• •	•		•	• •		•	•	• •	1c	1 -	$\dot{\mathbf{x}}$	Å.	• •	[^]	1 7	1 -	1.51		10.	1	1		• •					
•••	•••	•		•	•••									згн									•	•••	•	•	•	•	• •
• •	•••	e iv	foru	ncilly	9									ng o									Ça t _o	، ک	oget	her	Not	ite	• •
· · ·	•••					ça	Ņ	fre	the	nctre	t. of	مع	وزبن	ng p		2550(ichu	e a	lajelos	Q	50	i∩ (Ç - 4		coje f	her		ife	
 . .<	Mor				Gn	, o	wer	le C	the	ncjue I v	t. of	مع	وزبن	ng p		2550(ichu	e a	lajelos	Q	50	i∩ (Ça Za		eget	her			
 . .<	Mor	e\$f	moc	whe	Gn	دم م : و	ver ~ X	lu G	the a	noche I n Cm	t of	erti	gi vi zular	ng p	det	2.550(ines	e a' an	ac	a i	Sa ma	i	•	• • • • • •	•	•	•	itter a	
 . .<	Mor a.k	e\$f	moc	whe	Gn	دم م : و	ver ~ X	lu G	the a	noche I n Cm	t of	erti	gi vi zular	*9 ¢	det	2.550(ines	e a' an	ac	a i	Sa ma	i	•	• • • • • •	•	•	•	e HEL	
 . .<	Mor a.k	e\$f	moc	whe	Gn	دم م : و	ver ~ X	lu G	the a	noche I n Cm	t of	erti	gi vi zular	*9 ¢	det	2.550(ines	e a' an	ac	a i	Sa ma	i	•	• • • • • •	•	•	•	i fter a	
 . .<	Mor a.k	e\$f	moc	whe	Gn	دم م : و	ver ~ X	lu G	the a	noche I n Cm	t of	erti	gi vi zular	*9 ¢	det	2.550(ines	e a' an	ac	a i	Sa ma	i	•	• • • • • •	•	•	•	er er	
 . .<	Mor a.k	e\$f	moc	whe	Gn	دم م : و	ver ~ X	lu G	the a	noche I n Cm	t of	erti	gi vi zular	*9 ¢	det	2.550(ines	e a' an	ac	a i	Sa ma	i	•	• • • • • •	•	•	•	en en	
 . .<	Mor a.k	e\$f	moc	whe	Gn	دم م : و	ver ~ X	lu G	the a	noche I n Cm	t of	erti	gi vi zular	*9 ¢	det	2.550(ines	e a' an	ac	a i	Sa ma	i	•	• • • • • •	•	•	•		
 . .<	Mor a.k	e\$f	moc	whe	Gn	دم م : و	ver ~ X	lu G	the a	noche I n Cm	t of	erti	gi vi zular	*9 ¢	det	2.550(ines	e a' an	ac	a i	Sa ma	i	•	• • • • • •	•	•	•	i fer	
 . .<	Mor a.k	e\$f	moc	whe	Gn	دم م : و	ver ~ X	lu G	the a	noche I n Cm	t of	erti	gi vi zular	*9 ¢	det	2.550(ines	e a' an	ac	a i	Sa ma	i	•	• • • • • •	•	•	•	e fer	
 . .<	Mor a.k	e\$f	moc	whe	Gn	دم م : و	ver ~ X	lu G	the a	noche I n Cm	t of	erti	gi vi zular	*9 ¢	det	2.550(ines	e a' an	ac	a i	Sa ma	i	•	• • • • • •	•	•	•	en e	
 . .<	Mor a.k	e\$f	moc	whe	Gn	دم م : و	ver ~ X	lu G	the a	noche I n Cm	t of	erti	gi vi zular	*9 ¢	det	2.550(ines	e a' an	ac	a i	Sa ma	i	•	• • • • • •	•	•	•		
 . .<	Mor a.k	e\$f	moc	whe	Gn	دم م : و	ver ~ X	lu G	thro a.	noche I n Cm	t of	erti	gi vi zular	*9 ¢	det	2.550(ines	e a' an	ac	a i	Sa ma	i	•	• • • • • •	•	•	•		
 . .<	Mor a.k	e\$f	moc	whe	Gn	دم م : و	ver ~ X	lu G	thro a.	noche I n Cm	t of	erti	gi vi zular	*9 ¢	det	2.550(ines	e a' an	ac	a i	Sa ma	i	•	• • • • • •	•	•	•		
 . .<	Mor a.k	e\$f	moc	whe	Gn	دم م : و	ver ~ X	lu G	thro a.	noche I n Cm	t of	erti	gi vi zular	*9 ¢	det	2.550(ines	e a' an	ac	a i	Sa ma	i	•	• • • • • •	•	•	•		