33 The Frey's envelope & perfect presheaves 81 The Freyd Envelope We want to introduce the Freyd envelope, which is a certain abelian category ALC) associated to an additive (00-) category & which admits finite limits Def: let & be an additive category. Discrete additive prescreat: X: Cop - the which preserves timite suns -> Funz (0°°, AL) = Fun (0°°, AL) a 1-category For cel, the associated representable discrete additive presheaf y(c): Cop - Ah d -> y(c)(d) = [d, c] = To Mape(d.c) XEFUng (B°P, Alu) is finitely presented if there exides a cohernel sequence of additive prestiences. y(c) -> y(d) -> x ->0 s.t. yco, y(d) are representable. Freyd envelope. A(e) = Fung (eop Ah) spanned by Einitely presented presheaves. Rem. We get a discrete Youda functor. y: G -> A(C) > y(c) te Since Ab forms an ordinary category, we get that any XE Funz (Cor, Ab) canonically factors

The natural map Cop × db 6°P→ Rcop induces an equivalence ALC) ~ ALCE) ms Ales only depends on the and we have a factorization C AC fully faithful by de Alke Rem By definition, A(e) is the smallest subcategory of Funz (600 Ab) which contains all representables and is closed order. isomorphisms and finite colimits. my Universal property of ALB): Il D is an (ordinary) additive category which admits finite columits, any addition functor G->D uniquely extends to a right exact additive functor A(C) - 03 So we can characterize ALCI as the ordinary category. obtained from he by freely adjoining abernels, but in the case where G is stable, ALC) has another universal property, related to homology theories. For this to even make sense, we need to consider local gredings on this Thum: Freyd Let G be a stable 00 - category. Then y: G->A(C) is additive & (cofficer seq) -> Exact

For any homological functor H:G->d, there is an
essentially unique exact functor L: ALC) > d of abelian
categories s.t.
$G \xrightarrow{\mu} A$
4 6 /31
want to extend this A(e)
Def Let 6 ve locally graded additive as - category. The
induced local grading on ALC):
(XCI) ():= X (cc-1) local grading in c
A(C) Bow (1) con that this mobes with A(C) a formation
2.48 28 Low last the first of the second of the second sec
of tocking gracies are gracing
(y(cEiJ))(d) := [d, c[1]] = To Mapeld, CEI)
∠ EdEIJ, c] = To Mape(dEIJ, c)
= (((c))(d))
Ex: If G is stable then it has a local grading induced
2.50 by suspension, hence A(C) has a local grading
$(x_{\overline{i}})(c) = x(\underline{c}'c)$
Rem Universal property & homology theories Assuming & stable!
2.52 As mentioned above we have that the discrete Younda
$y \mathcal{C} \longrightarrow \mathcal{A}(\mathcal{C})$
is a functor of locally graded as-categories, so by the above
theorem we get it is a Romology theory:
Claim. It is the museul such find for it.

For any cromology theory H: 6 -> A there exists a unique locally graded, exact functor. A(e) - A st. C H de JIL Proof: We need to promote the map L'A(C) - A from 2.51 to a honomorphism of boally graded 00-categories, which is equivalent to choosing a natural isomorphism * $[1]_{A} \circ L \simeq L \circ [1]_{A(c)}$ By the above theorem these two expression are the unique exact functors satisfying. EJAOLOY CJAOH Lo[1] oy ~ Loyo[1] e ~ Loy. Z v Ho 2 des 0 j When Hisa hourology theory we exactly get JoH & HOR so the universal property of ALCD in 2.36 implies the existence of *. A stable 00-category 6 is dempotent complete if he is Det Lo A 1-category is idempotent-complete if every idempotent <u>Splits</u> Can write e:x-x cs Y -> x -> Y is eq. to by. X ~ Y ~ X SH

6->A
n the
• • • • • •
Hiful
- A is
and
is, any
fer(L)
(6)
uys start
Proven 2.55
the image
s it is
s it is
) it is
be scown

How (H(-),); 6P= Ab
Then [c, 2e] = Homales (yces, y(2e))
Adapted (H(c), i)
which implies R(i) 24(i) a well defined on innectives.
de la company
A thas enough injectives (by assumption), so any
act can be written as a kernel
$0 \rightarrow \alpha \rightarrow \gamma \rightarrow j$
of a map between injectives. Then
Ranker(ycie) -y (je)
in finite presented additive prestraves, and hence Ra exists
To see fully faithfulness we first note that by the adjunction
Homa(e) (Ra, Rb) ~ Homa (LRa, b) <- (A, b)
$(LRa \xrightarrow{\alpha} a \rightarrow b) 1 a \rightarrow b$
so need to show the counit is an isomorphism. In the
case ier injective we use the above identification Rizylie) to
see that the counit map corresponds to the structure map
Lei $\simeq L(y(i_e)) \simeq H(i_e) \longrightarrow_{i_1}$
which is an isomorphism exactly when It is adapted.
Since LR is left exact we deduce that this is always
an isomorphism - not just for ierd injective
(2) => (3) As just shown we have LR Lidy, so we get that
A(e) -0 for any ac of, the unit map
$a \longrightarrow PLa$
that kernel and cokernel contained in ker(L) Sker(G) since
> O -> ker (u) -> a -> Pla -> coker (u) -> O exact
¿ L'exact

G

•	•	•	•	•	•	. (5 -	_; L	-C.K	كغع	-(1)	1)	->	LC	x -		2	22	2		> 1	. (cob	ėr	(u	2)	-	-	>	e	xa	ict	-	•	•	•	•
•	•	•	•	·S	0		1.1	100	<u>i</u>		1-	1.1	(.)	0.0	-	17	\·-			He			•			•	•	•		•		•	•	•	•	•	•
•	•	•	•	•	•	•		·ce			1-				····	~	J -	-0	•			e.	•	•		•	•	0	•	•	•	•	•	0	•	•	•
•	•	•	•	•	•	•	•	•	•	•		•	•	G	(a)) -	9	G	21	ici)		•	•		•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	15	<u>></u> .	civ	1.	isc		no	pti	n's u	n	S	nic	e	of	pl	yi	rig	• (א.	to	•	(x)) .d	ron	es	ex	act		•	•	•	•	•	•
							.0	-	G	ck	est	u)-	->(5a	-	->(SIR	La		->	6	(ste		es.)	_	0				•	•			
	•	•	•	•				•	•	-0		•	•	•	0	•	•	•	•	•	•			0		•	•	•	•	•	•	•	0	•	•	•	•
•	•	•	•	S	D [.]	in	e	get	١.	à	• •	Pa	etc	è.	20	tic	Ń		•	5	ית	8	20	R	•	•	•	•	•		• *		•	•	•	•	
•	•	•	•	•	•	•	•	0	•	•	•	•	•	•	•	0	•	C	AG	e)	•	G	. 2	3	;	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
			•					•		•			•		•	•					•		•							•							
		•	•	•				•	•	•	•				•	•				•	•	•	•				•		•				•	•	•	•	•
•	•	•	•	0	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	0	•	•	•	•	•	0	•	•
•	•	•	•	۰	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•		•	•	•	•			•	•	•	•		•	•	•	•	•		•	•	•	•	•	•			•	•	•	•	•	•	•	•	•	•	
		•	•	•	•				•	•		•	•	•	•	•	•		•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	
•	•	•	0	•	•	•	•		•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	0	•	•	•	•	۰	0	•	•	•	•	•	0	•	•	•	•	0	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•			•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•
			•	•				•	•	•						•	•					•					•										
	•	•	•	•			•	•	•	۰	•		•	•	•	0	•		•		•	•	•				•	•	•			•	•	•	•	•	
•	•	۰	•	•	•	•	•	۰	0	•	•	•	•	•	•	•	•	•	•	•	•	0	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	۰	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•	•		•					•			•			•						•			•					•					•		•	
	•		•	•	•			•	•	•		•	•	•	•	0	•		•	•	•	•	•	•		•	•	•	•	•		•	•	•		•	•
•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	0	•		•	•	•	0	•	•	•	•	0	•	•	•	•	•	•	•	•		
•	•	0	•	•	•	•	•	•	•	•	•	•	•	•	0	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	0	•	•
•	•	•		•				•	•	•		•	•	•	•	•			•	•	•	•	•	•		•	•	•	•	•		•	•	•	•	•	
									•			•								•	•					•			•	•						•	
	•	•	•	•				•	•	•	•		•	•	•	•	•		•	•	•	•	•				•	•	•	•		•	•	0	•	•	
•	•	•	•	0	•	•	•	•	0	۰	•	•	•	•	•	0	•		•	•	•	0	•		•		•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	۰	•	۰	•	•	•	•	0	•	•	•	•	•	•	0	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•			•	•												•							•														
•	•	•	•	•				•	•	•	•			•	•	0	•				•	•	•			•	•	•	•	•			•	•	•		
	•	•	•	•	•	•	•	•	0	0	•	•	•	•	•	۰	•	•	•	•	•	0	٠	•		•	•	•	•		•	•	•	•	•	•	
•	•	۰	•	•	•	•	•	۰	0	۰	•	•	•	۰	٥	0	٠	•	•	•	•	0	•	•	•	•	•	•	•	•	•	•	۰	•	۰	•	•
•	•	•	۰	•	•	•	•	۰	•	•	•	•	•	•	۰	۰	٠	•	•	•	•	۰	۰	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•		•	0	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

.....

82 Epinorphisms
Def. Let B be a stable as-category. We say that a class of arrows
E = Fun(D', C) is an Epimorphism class it
1) All equivalences are in E
2) For any pair of composable arrows:
fige E=> foge E
· gofeE=>geE
3) É is stable under pullbacks along arbitrary maps in E
4) $(f: c \rightarrow d) \in \mathcal{E} \iff \mathcal{L} $ $(\mathfrak{L} f: \mathfrak{L} c \rightarrow \mathfrak{L} d) \in \mathcal{E}$
Rem: 2) implies that if f and g are homotopic, then feter=>get
s.L hence epimorphism classes can alternatively be defined as
classes of maps in the
Def Let & be an epimorphism class on G. We will say that an 3.8 Q: IN C or as do in E? arrow L-sel is E-morie if the canonical map
· · · · · · · · · · · · · · · · · · ·
c d
$\neq \neg cofib(c \neg d)$
Def: Let E be an epimorphism class on G we say that ieG is
5.12 &-injective if it has the right lifting property w.r.t. E-moniks:
For any E-monie c->d, the induced map
[d,i] -> [c,i] is an opimorp. of ab-grps
Det let & be an epimorphism dass. We say to that enough. 3.13
G-injectures if for every cet there exists an 'E-mon'
map c-22 into an E-injective.

Def:	let & be an epimorphism dass. We say & has enough.
5.15.	E-injectures if for every cet there exists an E-mon
	map c-2 into an E-injective.
Ex.	Let H: G -> A be a homology theory and 18 the corresponding
.3.9	class of H-epimarphisms The
• • • •	c->d is a H-monomorphism
• • • •	C = 0 $C = 0$ $C = 0$ $P = 0$
· · · ·	as a consequence of the US of thomology
<u>Prop</u> : 3.19	Let G be an idempotent complete stable as-category, H:G->x
	an adapted homology theory and E the class of
• • • •	H-epimorphisms, Then, an object cet is &-injective iff
• • • •	it is equivalent to an injective lift is for some injective ierd.
Pf.	"E" Let is be an injective lift of some zed since
	c-> d is E-monic [1, 2e] -> [c, 2e] surjection
	H(c) > H(d) is nonomorphism "year surgedion
• • • •	it follows that is is Einjective
• • • •	"> Let ceb be E-injective, then since & has enough
	injectives, there exists a monomorphism in of
	μ(c)
	with ich cross injective By adoptes we know that i admite
• • • •	ond real some ingention en alle some and
• • • •	an associated injecture 2006 s.t. H(2)=2, mence we have
	a monomorphism
	$H(c) \rightarrow H(ce)$
• • • •	Using adaptess we know this corresponds to a map
	$C \rightarrow ie$
	which is then a H-monomorphism. By E-injectivity

of c, we get that this map splits]]] due to injectivity o *د-بن*ح • · e heinig a monourospe hance BREG st. copzie & By functoriallity and exactness we get $H(corrective) \cong H(c) \oplus H(c) \cong H(ce) \cong i$ \longrightarrow H(c) is injective, so we conclude that c is the injective lift associated to H(c).

Thue Classification of Adams spectral sequence let & be an
iden potent complete stable as - category. Then the following
three sets of data is equivalent:
(1) An epimorphism class E s.t. E has enough E-injectives.
(2) Localizing subcategories K of A(C) such that the Gabriel
quoetient ALE)/K has enough injedives.
(3) Adapted homology theories H: G -> A
Pt: Since we will always start with an adapted homology theory
we will only sketch the proof of (3)=>(1), (3)=>(2)
$(3) \Rightarrow (2)$ Follows by 2.56 $(1) = > (3)$
(3)=>(1): Let H: G -> & denote an adapted homology theory
and recall this means that
A has enough injectives, any injective ic A lifts
to an associated injective ze eB st. Hhe) =i
~ when the prive we get
leize Je Homa (H(c), H(ie))
Let E= {H-epinorplusms 5, then
E-monies = H-monomorplisms
cel É-injective <=> cre injective lift for reisin particular é d
So let cet be some object, then we can choose a
monie map Her ->; beause d'has evough injections.
in of, with icd injective. Using It is adapted, we
have igé & s.t. H(ie) ~ i, so we have

•	H(c) -> H(ie)														•																						
•	•	•	•	•	•	.`i	5	a	•	w	Nor	٨٥	n.		rp	ei	isi	n		e	ie	n	ce	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			•	ə. 1	•	•	•	USÌ	ng	1		ie] 2	4 [.] ¹	ion	r (H	4(c	2,	HC	ier)	•	•
		•	•	•	•		•		9	•		•		•					C			•					.0	:	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	. \	N .	0	6	•	15	•	H	re.	•	ch.	251	æ(L	•	H -	-N	101	101	Ma	24	pe	15		••	•	•	•	•	•	•	•
	•	•	0	•	•			•	0	•	•	•		•	•	•					•	•	•				•	•	•	•	•			•	•	•	•
•	•	•	۰	•	•	•	•	۰	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	۰	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
		•	•					•	•	•	•	•	•	•		•	•	•					•	•			•		•					•	•		
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
		•	۰					•	•	•	•				•	0	•	•			•	•	•				•	•	•			•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
		•		•		•			•	•			•	•		•	•			•	•	•	•	•		•	•	•	•	•	•		•		•		
•	•	۰	•	•	•	•	•	•	•	•	۰	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	0	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
		•							•	•				•		•								•										•	•		
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•	•	۰		•		•	۰	۰	0	۰		•	•	•	•			•		•	•	•	•			•	•	•	•			•	0	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•
	•		•	•	•	•			•	•					•	•	•			•	•	•	•	•			•	•		•			•	•	•		
•	•	•	•	•	•	•	•	•	۰	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	0	•	•	•	•	•	•	•	•	•	•	•	•	0	•	•	•	•	•	•	•	•
•		•	•				•	•	•	•				•		•		•	•	•	•	•		•		•	•	•	•				•	•		•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•	۰	۰		•	•	•	۰	•	•	٠		•	•	•	•				•	•	•	•	•			•	•	•	•	•		•	•	•		
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•	•		•	•	•	•	•	•		•		•	•	•	•		•		•	•	•	•	•		•	•	•		•	•	•	•	•	•		•
			•						•	•				•		•		•					•					•	•					•	•		
•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	0	•	•	•	•	•	•	0	•	•	•	•	•	•	•	•
•	•	•	0	•	•	•	•	•	0	0	•	•	•	•	•	•	•	•	•	•	0	0	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•	•	•	•	•	•	•	•	0	•	•		•	•	•	•	•	•			•		•			•	•	•	•	•		•	•	•	•	•	
		•	•												•		•			•			•	•		•	•	•	•					•	•		