| \$7: The known hig blievenus & the belescope conjecture                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Where are we?                                                                                                                                                                                                                        |
| • Elements $U_n$ : $V_n \in MU_{(p^n_i)}$ is the coefficient of $x^p_{in}$ .                                                                                                                                                         |
| $\left[P\right]_{F_{\mu\mu}}(x) = P \times t - t \cup_{1} \times P + \cdots + \bigcup_{n} \chi^{n} + \cdots$                                                                                                                         |
| • Height: A FGL classified by $\varphi: MU_{L} \rightarrow R_{*}$ has height $\leq n$ if $\varphi(v_{n})$ is                                                                                                                         |
| a unit and $\mathcal{Y}(v_i)$ tor $O \leq i \leq n_i$                                                                                                                                                                                |
| Landweber Exact functor theorem ~> Morana E-theory                                                                                                                                                                                   |
| $E(N)_* \simeq \mathbb{Z}_{(p)} \left[ \mathbb{U}_{4, -1} \mathbb{U}_{n}, \mathbb{V}_{n}^{*} \right] \qquad $ |
| $- K(n)_* \cong \mathbb{E}_p[v_n^*] \qquad \text{height } n$                                                                                                                                                                         |
| $= K(n) * K(m) = 0  if m \neq n$                                                                                                                                                                                                     |
| - X Rivite & K(M)*X=0 => K(N·1) X=0                                                                                                                                                                                                  |
| Want to understand localizations with these things.                                                                                                                                                                                  |
| <u> </u>                                                                                                                                                                                                                             |
| Need wedge of spectric spectric color $\omega_n^{\text{EVW}}$<br>$E_VF = \mathbb{L}(E_n \vee F_n) = v \vee F_n \rightarrow \Omega(E_{n+1} \vee F_{n+1})$                                                                             |
| 5 Both product and corproduct in SH                                                                                                                                                                                                  |
| Chromatic Bracture square                                                                                                                                                                                                            |
| Write LnX:= LKONV-VKMX                                                                                                                                                                                                               |
| Intuition:                                                                                                                                                                                                                           |
| - Ln = inverting Un                                                                                                                                                                                                                  |
| - LK(n) = inverting un and completing at (p, U1)-1Un-1)                                                                                                                                                                              |
| Thus: $L_{E(N)} \cong L_{N} \cong L_{v_{n}} \stackrel{\text{NU}}{} M_{U_{(p)}}$<br>There are clearly natural transformations $L_{N} \stackrel{\text{d}}{} L_{N-1}$ so we get                                                         |
|                                                                                                                                                                                                                                      |
| There are clearly natural transformations Ln- Ln so we get                                                                                                                                                                           |
|                                                                                                                                                                                                                                      |
| $\cdots = L_{E(n)} \longrightarrow L_{E(n-1)} \longrightarrow \cdots$                                                                                                                                                                |
|                                                                                                                                                                                                                                      |

| The natural transformation $\mathcal{C}_{x}: x \rightarrow \mathcal{L}_{\mathcal{E}(n)} \times gives a mep$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $X \rightarrow holim_{n}(L_{E(n)}, X)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| If this is an equivalence, we say chromically complete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Thm: (Chromatic convergence - Barthel) X annective spectrum in finite projective                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| dimension is chromatically complete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| In particular                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| - S° p-locally is chromatically complete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| - P-local finite spectra are chromatically complete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Thm: Smash product theorem LNX > LE(n) X > LE(n) (S) NX = (Ln S) NX smashing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Thun:   Localization theorem   BPALErn, X Y X & LECN, BP Can compute BP* (LnX) in<br>terms of BP*X.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| => If Un' BP(X)=0 then BPALX = XAU, BP => BP, LAX = U, BP, X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Want to understand these maps LECN, -> |
| The Hasse square $ $ , notwork map $(E(n), -L_{k(n)})$<br>Chromatic $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Consider the following diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $L_{n} \times \cdots L_{k \in N} \times \cdots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $L_{n-1}X \stackrel{\sim}{\longleftarrow} L_{n-1}L_{K(n)}X$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $ \vdots \vdots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Torms out that there exists such an an making the top triangle commutes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| exactly; & there exists a map & splitting Ln.1 X -> Ln-1 LKinjX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Weak CSC: X p-completion of a finite spectrum => In exists for all n.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| This would imply that taking the limit of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $L_{K(n-1)}X_{\rho} \xrightarrow{\propto \omega_{1}} L_{n}X_{\rho} \xrightarrow{\rightarrow} L_{K(n)}X_{\rho}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| gives an equivalence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| X P > lim LKCN, X From clinomatic convergences<br>theorem by cotinality                                                                                                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| tivite spectrum X can be recovered                                                                                                                                                                                    |
| from its monocluomatic pieces LKCM, X "?                                                                                                                                                                              |
| Another consequence: P. X -> Y map between (finite) spectra and LKCMPF: LKCMY -> LKCMY                                                                                                                                |
| is well => $\mathcal{P}$ is well                                                                                                                                                                                      |
| General version is known for                                                                                                                                                                                          |
| n=1, P22: Adams-Bousfield-Bard-Rowend<br>n=2, P>5: Hopkins based on Shimomora-Yabe<br>n=2, P=3: Goerss-Henn-Malno badd<br>n=2, P=2: Beaudry-Goers-Henn<br>n>2, P=2: Wide open                                         |
| There are two different approaches to consider a "filtration" of the                                                                                                                                                  |
| chromatic tower. The first one:                                                                                                                                                                                       |
| Algebraic chromatic filtration of a p-local spectrum X is for M21                                                                                                                                                     |
| $\zeta_{\mathcal{A}}^{\alpha}(X) := \ker(\pi_{\#} X \to \pi_{\#} \sqcup_{N-1} X) \qquad \zeta_{\mathcal{A}}^{\alpha}(X) := \pi_{\#} X$                                                                                |
| The other filtration will be a bit thander to construct, and relies on another                                                                                                                                        |
| localization.                                                                                                                                                                                                         |
| Geometric chromatic feltration                                                                                                                                                                                        |
| Det A full subcategory T of the (homotopy) calegory of placed spectra is thick                                                                                                                                        |
| (\$                                                                                                                                                                                                                   |
| • OET                                                                                                                                                                                                                 |
| · Closed under fibers and cofibers                                                                                                                                                                                    |
| <ul> <li>Closed under retracts</li> </ul>                                                                                                                                                                             |
| Def: A p-local finite spectrum X is of type in 'if Ex So type a since                                                                                                                                                 |
| $K(i)_{*} X \stackrel{\text{\tiny }}{=} \begin{cases} \neq 0 & i = n \\ = 0 & i < n \end{cases} \qquad (K(0)_{*} (S_{(p)}^{\circ}) \neq 0 \\ = 0 & i < n \end{cases}$ $(V_{i})_{*} S_{i} = 0$ $(V_{i})_{*} S_{i} = 0$ |
| Dn = { finite p-local spectra all type ≥n} K(1), 52/p ≠0                                                                                                                                                              |
| ive. those sit. K(m)*X ≥0, m <n< td=""></n<>                                                                                                                                                                          |
| Lo since finite, K(m)=> K(m:1)=x=0, so enough to consider in                                                                                                                                                          |

| Note: Every such finite p-local spectrum is of type n for some n, and it                                                                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| can be shown that for all n 20 there exists one of typen so all these<br>Rep: Pn is a thick subcategoing Actually "thick prime tensor ideals of stipp"<br>The LES of K(m)- framelogy gives as that a co Riber sequence |
| Rep: Pn is a thick subcategory Actually "thick prime tensor ideals of stipp"                                                                                                                                           |
| The LES of KIM)- framalogy gives is that a co Riber sequence                                                                                                                                                           |
| X'-> X -> X" satisfies 2-out-of-3 w.r.t. \$20                                                                                                                                                                          |
| A retract of a type n spectrom is again type n                                                                                                                                                                         |
| Thum:   Thick subcategory theorem - Ravenel/Mitchell/Hopking-Smith                                                                                                                                                     |
| Ret Po=Category of p-local finite spectra SH(p). Then                                                                                                                                                                  |
| ₿₽₿₽₩₽₩₽₩₽ <u>₩</u> ₽₩₽                                                                                                                                                                                                |
| $If G$ is a thick subcategory, then $G \ge p_{1}$ for some $n \ge 0$ .                                                                                                                                                 |
| So Pn are all of the thick subcategoing . The thick subcategoines are<br>for: let X be of type no thus / X x/ X                                                                                                        |
| $_{(k(n))}$                                                                                                                                                                                                            |
| <u>P</u> # Follows by the chresnatic Fracture square                                                                                                                                                                   |
| Being of 'type n' can equivalently be described as existence of some specific maps.                                                                                                                                    |
| First we consider how to construct spectra of a specific type:                                                                                                                                                         |
| <u><math>n=0</math></u> : $H_{x}(X; (L) \neq 0$ — take e.g. $S_{(p)}$<br>n=1: Define X to be the used of wave spectrum which che is defined by the optime                                                              |
| <u><math>n=1</math></u> . Define X to be the mod p more spear which is defined by the orbits $S \xrightarrow{-P} S \longrightarrow X$                                                                                  |
| This has no rational homelogy. Furthermore, since multiplication by                                                                                                                                                    |
| p annihilates $K(1)_{x} S \cong IF_{p}[v^{\pm}']$ , the map $K(1)_{x} S \rightarrow K(1)_{x} X$ is injective<br>so in particular $V(1)_{x} X \neq 0$ and $X$ have $I$                                                  |
| so in particular k(n, x ≠0 ~> × type I                                                                                                                                                                                 |
| n>1 is much harder! We wigh to proceed inductively.                                                                                                                                                                    |
| Assume X is of typen. Then we wish to construct a self-map                                                                                                                                                             |
| $F: \Sigma^{k} X \to X$                                                                                                                                                                                                |
| So we can form the costiber sequence                                                                                                                                                                                   |
| $\Sigma^{k} X \rightarrow X/f$<br>$T_{M} Y_{LES} $ such that X/f is of type n+1.                                                                                                                                       |
| Whites such that XIP is or type n+1.                                                                                                                                                                                   |
| Turns out this is exactly the case when                                                                                                                                                                                |

| - f induces an isomorphism K(n)*X -> K(n)*X K(n)-homology of X/f vanish                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------|
| - I closes not induce an isomorphism $(x(n-1), x \rightarrow K(n-1), x (n-1), -homology)$<br>This metidates the following definition: |
| This matuates the following definition:                                                                                               |
| Def. A $u_n$ -self map on a plocal finite spectrum X, is a map $f: \Sigma^{le} X \to X s H$                                           |
| · finduces an isomorphism K(n), X -> K(n), X                                                                                          |
| · For m≠n, the induced map Kcm)*X → K(m)*X is ulpotent.                                                                               |
| This is equivalent to saying                                                                                                          |
| Can, be doine miche                                                                                                                   |
| K(m)* f = {0 n=m (Nilpolence II, llopkins-Smith)<br>For a suitable pomer                                                              |
| Ex: If X has type >1, then K(n)* X vanishes, so the zero map O:X -> x is                                                              |
|                                                                                                                                       |
| <ul> <li>a. Un-self map</li> <li>Thus: Periodicity theorem  </li></ul>                                                                |
| <ul> <li>A spectrum X has type n iff it admits a un-self map</li> </ul>                                                               |
| <ul> <li>Furthermore, if fig both are Un-self maps, then I: j2 c s.t.</li> </ul>                                                      |
| ?'= g' Essentially onique!                                                                                                            |
| Want to think of these as periodic operators induces is on K(n), - how and iterating will give us the same bade                       |
| So, if we have a type in spectrum and a Un-self map we can construct a                                                                |
|                                                                                                                                       |
| spectrum of type 11+1:                                                                                                                |
| $\underline{\widehat{z}} \underline{x}$ :                                                                                             |
| • S -> SZ/p type 1 ~ sometimes clended M(1)                                                                                           |
| • ? edd,                                                                                                                              |
| $K: \Sigma^{2(p+1)} M(1) \longrightarrow M(1)$ Adams men                                                                              |
| satisfies $K(1)_{x}(\alpha) = V_{1}^{2}$ . The coffiber face type 2 and we write $M(1,1)$                                             |
| In general . We inductively define a type 1+1 spectrum as follows                                                                     |
| <ul> <li>cohernel of a vo-self-map for schistying K(1), (fo) = vo</li> </ul>                                                          |
| $\sim M(i_{o})$ type 1                                                                                                                |
|                                                                                                                                       |

| • covernel of a $V_1$ -self-map $f_1: \Sigma^{2(p-1)} M(i_0) \rightarrow M(i_0)$ s.t.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $K(1)_{x}(t_{1}) = v_{1}^{\prime 1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ~? M(io, ir) type 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\bullet  \bullet  \bullet  \bullet  \bullet  \bullet  \bullet  \bullet  \bullet  \bullet $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| M(i, i, _, in) is the type n+1 spectrum defined as the coliber of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| a $v_n$ -self map                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $f_{n} \colon \sum_{i=1}^{2} (p^{n} - 1)_{i_{n}} M(i_{o}, -, i_{n-1}) \longrightarrow M(i_{o}, -, i_{n-1})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Satisking                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| "Remadric families":<br>$K(n)_{\chi}(f_n) = V_n^{\prime}$<br>$M(i_{0}, -, i_n)!$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Construction: Write Mn:= M(io, -, in-, ) type n K(n) fr=Vn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Let $\omega \in \pi, X$ $S' \xrightarrow{\omega} Z' X$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| • W is Un-1-torsion if there exists a diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $z^{*} \xrightarrow{f_{*}} z^{*} \xrightarrow{f_{*}} z^{*} \xrightarrow{f_{*}} x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $V_{i-}$ setters $f_{0} = P^{0}$<br>$V_{0}$<br>$\sum_{i=1}^{i} M_{i}$ $M_{i}$ $\sum_{i=1}^{i} M_{i}$ $\sum_{i=1}^{i} H_{i}$ $\sum_{i=1}^{i} H$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| thad it extends, since                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $S^{[\frac{1}{2}m-1]} \xrightarrow{\mathbb{R}} \mathbb{R}^{n-1} \xrightarrow{\mathbb{R}} \mathbb{R}^{n-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $2^{1}P_{n} _{M_{N}} \xrightarrow{P_{n}} M_{n} \xrightarrow{P_{n}} M_{n} \xrightarrow{P_{n}} \sum_{i=1}^{n} M_{i} \xrightarrow{P_{n}} \sum_{i=1}^{n} \sum_{i=1}^{n} M_{i} \xrightarrow{P_{n}} \sum_{i=1}^{n} M_{i} \xrightarrow{P_{n}} \sum_{i=1}^{n} \sum_{i=1}^{n} M_{i} \xrightarrow{P_{n}} \sum_{i=1}^{n} \sum_{i=1}^{n} M_{i} \xrightarrow{P_{n}} \sum_{i=1}^{n} \sum_{i=$ |
| So we are assuming we can continue this process Until a type n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Spectrum Mn.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| • W is un-periodic if for any Un-self map for of Mn, who for to so we can't                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| continue the const                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Def Geometric Chromatic Riltration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $C_{\star}(x) = \pi_{\star} x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $C_n^{9}(X) = U_{n-1}$ - forsion elements $n \ge 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Decreasing filtration: $C_{2}^{9}(x) \ge C_{1}^{9}(x) \ge C_{2}^{9}(x) \ge \cdots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| We now have two filtrations - when are they the same? Telescope conjecture                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Télescope conjecture                                                                                                                                                                                                                                                                                                                                                                 |
| Recall that by the periodicity theorem tells us that a $\cup_n$ -self map $f: \Sigma^k X \to X$ ,                                                                                                                                                                                                                                                                                    |
| for X a type is spectrum, is essentially unique, so the following columit is                                                                                                                                                                                                                                                                                                         |
| independent of f.                                                                                                                                                                                                                                                                                                                                                                    |
| Telescope of $\ddagger$ X[f <sup>-1</sup> ] = colim(x $\xrightarrow{\Sigma^{-k} f} \Sigma^{-k} x \xrightarrow{\Sigma^{-2k} f} \xi^{-2k} x \longrightarrow )$                                                                                                                                                                                                                         |
| <u>Def:</u> For $M_{n=}M(i_{0}, -, i_{n-1})$ w. $V_{n}$ self map $f_{n}$ , write $Tel(n) := M_{n}[f_{n}^{-1}]$                                                                                                                                                                                                                                                                       |
| Te lescopic localization sometime people write 'f' for finde - It's a finite localisation                                                                                                                                                                                                                                                                                            |
| Te le scopic localization sometime people unite 'l' for tink - Il's a finite localisation<br>L' X := L Tel(O) V-VTel(D) X (finite) (1/1)-type spectra<br>L p-local spectrum                                                                                                                                                                                                          |
| Prop. If X is of type =" and f is a un-self. map of X, then                                                                                                                                                                                                                                                                                                                          |
| $L^{\epsilon}_{\infty} \times \times \times [\mathcal{L}^{\epsilon'}].$                                                                                                                                                                                                                                                                                                              |
| Prop: L' is a hinte smashing localisation                                                                                                                                                                                                                                                                                                                                            |
| This explains the name: It is the colimit of the telescope of a map                                                                                                                                                                                                                                                                                                                  |
| Using this we can redefine the geometric Chromatic Filtration                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                      |
| $C_{\mathcal{A}}^{\mathcal{A}} \times = \begin{cases} \pi_{*} \times & n = 0 \\ e^{-locel} \text{ spectrum}^{\mathcal{A}} \end{cases}  \begin{cases} \pi_{*} \times & n = 0 \\ e^{-locel} \text{ spectrum}^{\mathcal{A}} \end{cases}  \\ \end{cases}  \qquad \qquad$ |
| This is very similar to the algebraic one now!                                                                                                                                                                                                                                                                                                                                       |
| $\sim -\int \cdot \pi_{\star} \times$                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                      |
| There exist a natural transformation:                                                                                                                                                                                                                                                                                                                                                |
| $L_{n}^{\ell} \times  L_{n} \times$                                                                                                                                                                                                                                                                                                                                                  |
| which is known to be an equivalence if                                                                                                                                                                                                                                                                                                                                               |
| X is E(m)-local for some m≥c                                                                                                                                                                                                                                                                                                                                                         |
| - X is an MU-module spectrum localization theorem                                                                                                                                                                                                                                                                                                                                    |
| Telescope conjecture: For every spectrum X, Ravanel made this conjecture                                                                                                                                                                                                                                                                                                             |
| $L_n^{\ell} X \xrightarrow{\sim} L_n X$ and the conjecture that it is false                                                                                                                                                                                                                                                                                                          |
| Known to be true for $N=0$ , $p\geq 2$ - Bousfield (tautology tel(0)= 50h = HQ = K(0))<br>$N=1$ , $p\geq 2$ >2 Miller<br>=2 Marowal                                                                                                                                                                                                                                                  |

~? completely open for nz1, P22. But a Hempts to disprove Prop: For n 21 the following is equivalent.  $L_{n}^{t}$ ,  $\Sigma L_{n-1} = > L_{n}^{t} \Sigma L_{n}$ Using the thick subcategory There exists a type in spectrum X w. XIP ] V LuX so one example or counter example is enough to settle the passage from n-1 to n. Periodic families. cu spectrum Let WETT, X be Un-periodic, and M=Mn as above w. Un-self map s.t. Ed M In M ~ E-r X non-zero M = r-skeliton of M and cofiber sequences  $M^{r-1} \rightarrow M^{r} \rightarrow M^{r}_{r}$ ,  $M^{r-1} \rightarrow M \longrightarrow M_{r} = M^{dim}_{r}$ take r-skeleton and quoetient out  $w \cdot (r-1) - skeleton$ there exists an r s.t. we can form the following diagram  $\Sigma^{d} M \xrightarrow{f_{n}} M \xrightarrow{\omega_{n}} \Sigma^{-r} X$  $S^{k} \cong S^{d}M^{r}$  incl.  $Z^{d}M^{r}$   $\exists g$  s.f. goi non-trivial. ~? i.e. Wn & fn is non-trivial on "some cell of M". - A cell that detects it Such elements goi E TT 12++ X. are part of the Un-periodic family of w. Thinking. of fn as "multiplication by Un" TI. \$(5) • 71/5 1 7/52 20/5 2/153

TT. \$ (5)  $\begin{array}{c} 20/4 \\ 20/3 \\ 20/2 \\ 20/2 \\ 20/2 \\ 2 \cdot 19 \\ 19 \end{array}$ 18 17 16 . A. .---15 15/2 • 2.14 20/5 13 1st chromatic layer ~ 12 V1-periodic =2(p-1)=8و مرج ... 1 10/5 2 • γ<sub>2</sub> 39 79 119 159 199 239 279 319 359 399 439 479 519 559 599 639 679 719 759 799 839 879 919 959 999 TT. \$ (57) 21• 2nd chromatic layer  $V_2$ -periodic = 2( $p^2$ -i)= 48 .... 1 --1-1 ... 7 . 1 8,5 - 1 -39 79 119 159 199 239 279 319 359 399 439 479 519 559 599 639 679 719 759 799 839 879 919 959 999

