\$0 Crash course in sheaves
Let C be a small as-category
Def. A Groethandieck topology on & assigns to each VEB a collection
of families of maps { \$P_i : U_i -> U}_{iEI, known as coverings, st
· For any 'somorphism p, {p}e J
• If $\{u_i \rightarrow u\} \in J$ and $\{v_{ij} \rightarrow u_i\} \in J$ for all z , then
$\{V_{i,j} \rightarrow \mathcal{U}\} \in \mathcal{J}.$
• $I = \{u_i \rightarrow u\} \in J$ and $V \rightarrow u$ is a morphism, then $u_i \times u^v$ exists
and $\{u; x_u^v \rightarrow v\} \in \mathcal{F}$.
A category equipped with a Groethendiek topology is called a co-site
Ex: G=O(x) = Eopen subsets of topological space x]. A covering family of
UEX is a collection of open subsets Vic U which covers U in
the ordinary sense
Det: A presheat is a contravariant functor
$F: \mathcal{G}^{op} \longrightarrow \mathcal{D}$
Let (G, 3) be a site A presheaf F: G ^P) is called a sheaf
with respect to J if
· For every covering family { \$\$; U; -U} in J
· and for every compatible family of elements given by tuples
(sie F(U;))ie I st. V; REI and all U, & K & Uk in G
with $p_j \circ f = p_{2} \circ g$ we have $F(f)(s_j) = F(g)(s_k) \in F(K)$
Then there is a unique element sEF(U) st. F(p)(s)=s; ViEI
Construction: There is a canonical way to obtain a sheaf from
a prescheaf: Let (GJ) be an ∞ -site, then the inclusion

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	CD	b)	2 D	(C) (L J inc			. .					>)	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	.a	di	m	ts	A	.	lef	+		9.0	jų.		Ca	lle	J.	+\			Sh	La	P ; P	ice	ho	Ņ,	•	•	•	•	•	•
•	•	٠	•	٠	٠	•	٠	·h	•	•	•	C	<u>م.</u>).		•	J	•	· 0		.0	`~``	٠	•	A	. 7	Ë.		700	P x	.)	•	•	•	•	•	•
•	•	•	•	•	•	•			بعه	\Ce	•••		•3)	. *	.	<u>с</u>		.00	ole.		NO C	<u>}</u>		•	.0	, vi (;0	<u>(</u> כו	•	•	•	•	•	•
•	N	Jat	21		Sh	يد	,t	;f	ècc	zh	QV	L Ì	S	k	} I	(٩	xet	ł.	٠	٠	٠	٠	٠	•	•	٠	•	٠	•	•	•	٠	۰	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	٠	٠	۰	٠	•	•	•	•	۰	•	•	٠	٠	٠	٠	٠	٠	•	٠	٠	۰	۰	•	•	٠	٠	•	۰	٠	•	٠	٠	٠	٠	•	٠	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	٠	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	٠	٠	٠	٠	٠	•	۰	۰	٠	٠	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	۰	٠	٠	٠	٠	٠	•	•	•	•	•	•	٠	٠	۰	٠	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	٠	٠	۰	٠	•	•	٠	•	۰	٠	•	•	٠	٠	٠	۰	٠	•	•	٠	٠	٠	•	٠	•	٠	٠	٠	٠	•	•	•	٠	٠	٠	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	٠	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•
•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	٠	٠	۰	٠	۰	•	۰	•	۰	٠	•	٠	٠	٠	۰	٠	٠	٠	٠	٠	•	۰	۰	٠	٠	•	•	٠	٠	•	•	٠	٠	٠	۰	٠	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	٠	٠	٠	•	•	•	•	٠	•	•	•	•	٠	٠	٠	٠	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	٠	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	٠	0	٠	•	•	•	•	٠	٠	•	•	•	•	٠	•	٠	•	•	•	۰	•	•	•	•	٠	٠	•	•	•	•	٠	•	٠	•	•	•
•	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	۰	٠	٠	٠	٠	٠	٠	•	٠	•	•	•	٠	٠	•	٠	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	٠	•	٠	•	•	•	٠	٠	•	•	•	٠	•	٠	٠	٠	•	٠	•	٠	•	٠	٠	•	•	•	٠	•	•	•	•	•	٠	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•		•	•	•		•		•			•	•	•		•	•			•	•		•	•	•		•	•	•				•	•	•		

\$1 Bounded Derived Categories
Throughout
· G (small) stable as-category
· A (small) abelian category with enough injectives.
We will write $P_{\mathcal{E}}(\mathcal{E}) \coloneqq \operatorname{Fun}_{\mathcal{E}}(\mathcal{G}^{op}, \mathcal{S})$
Recall:
- Freyd envelope: A(c) = Fung(G°P, AL) cohernels of representables
- Almost perfect presheaves: $A_{\infty}(c) \subseteq P_{\Xi}(c)$ full subcat of objects which are
- Perfect presheaves A~(e) = Pz(e) ful subcat of objects which are
which has the following correspondences:
$-A_{\infty}^{\omega}(e) \subseteq A_{\infty}(e)$
- $A_{\infty}^{\omega}(e)^{\omega} \cong A_{\infty}(e)^{\omega} \cong A(e)$
Goal: Any reasonable abelian category A has an associated
connective derived 00 - category, which is prestable with hearth
equivalent to A, and is initial w.r.t. this property.
Ly We want to construct to such things, one for A and one
associated to a stable on-category equipped with a class of epimorphisms
Def: The epimorphism topology on an abelian category A is the
Groethendieck (pre)topology where covering families Sa, -> b}
consists of a single epimorphism.
It can be shown that there exists a sheafification functor
(w.r.l. this topology)
$L:\mathcal{P}_{\mathcal{E}}(\mathcal{A}) \longrightarrow \mathcal{P}_{\mathcal{E}}(\mathcal{A})$

and we wish to understand how this gives a sheaf-fication of perfect
presheaves. First we see that the needed sheatification exists on the
heart:
Lem: The yoneda embedding y: A -> A(A) identifies the source
with the subcategory of those finitely presented presheaves
which are also sheaves wr + the epimorphism topology.
"Pf" It can be shown that younda factors through the subcategory
of sheaves
G Sh(d) where G is exact.
A A(A) A(A) A(A)
We know that the image y (A) generates A(A) inder finite
colimits the same is true for the subcategory of sheaves.
Therefor the map into the subcategory of finitely presented
sheaves has to be an equivalence.
To extend this to perfect presheaves we need the following
technical result.
Prop: Let a & A and consider the suspension Englace A. (A). Then
5.11 1) LZ"y(a) is almost perfect
2) π_{k} (LS"y(a))(b) = Ext _A ^{N-k} (b, a)
$\underline{Cor:} X \in A_{\infty}^{\infty}(A) \Rightarrow L X \in A_{\infty}^{\infty}(A)$
5.13
PP: Since L is left exact (preserves limits) and being almost perfect.
is a property which is closed under limits, we get that the
class of those almost perfect X & Aa(A) which satisfies
that LX & A (A), is also closed under limits. By prop. 5.11 we

get that this subcategory of A. (c) contains all those presheaves
which has homotopy concentrated in a single degree, which
can be shown to hold for any perfect presheaf, i.e. it contains
A. (A). It then follows by 4.37 that LX is perfect WHY?!
so we have a sheaffication functor on perfect presheaves A. (A)
Dep The bounded (connective) denued as callegory of A, denoted by
(A) is the co-category of bounded almost perfect sheaves on
A w.r.t. the epimorphism topology. Q: Our localization is
Prop We have that Awle) which is only
1) L'AW(A) - D'(A) is an exact localization a subcat-of
2) D°(A) is prestable and admits finite limits
$\mathcal{S} \otimes \mathcal{O} \otimes (\mathcal{A}) \otimes \mathcal{O}$
1) TTOMAPOULA) (a.E"b) = Ext (a, b) for all a, bed
This Universal property of 20°(A) Let A be an abelian category
with enough injectives and D a prestable a category with finite
limits. Then left Kan extension gives an equivalence
between the following two kinds of data:
(1) exact functors A -> De of abelian categories
(2) exact fundors 00°(A) → 00 of prestable as-actegories with
Enite limits
Pf: Sketch
(2)=>(1) follows by restricting a given functor to the hearts
$\mathcal{D}_{\mathcal{S}}(\mathcal{A})_{\mathcal{S}} \cong \mathcal{A} \longrightarrow \mathcal{D}_{\mathcal{S}}$
· · · · · · · · · · · · · · · · · · ·

•	•	•	•	(1)=	2	2)	ì	Ś	ما	lot	R	arc	لعا	۲.	7	th	ڢ	ide	à	25	-	the	st.	Ċ	i,	y	ac	lol.'	hiur	5
•	•	•	•	•	₽,	مەر	0	Ċ	P:	Å	~	3	e	x	rn	ds	•	in	ìqv	e	1.4		a	ng	ht	و	xa	- 12	fir	ich	>
•	•	•	•	•	Έ.	Ä	w (5		. d	•)	•	•				•	مر)') D	•		T	-	•	•
•	•	•	•	•	. Г.: 	•)	•		, а		••••			Ņ			ę,		· .)		0 ·		5. N			•	•	• •
•	٠	•	•	•	.UY	vđ	vel	4	4	ŅЦ	ove	h.	air	L. 1	ex	ad	ŀ	-Yu	nd	101	.0	ų t		¥.	Ð	<u>(</u> م	5)	•	٠	•	• •
•	•	•	•	•	••••	•	•	•	•	•	•	• •	•	•	,0	D'o	(A))	• •	•	•	•	••••	•	•	•	• •	• •	•	•	• •
٠	•	٠	٠	٠	• •	٠	٠	•	•	٠	•	• •	Ļ	/	•	٠	•		<u>ו</u> ב ש	٠	٠	•	• •	۰	٠	•	• •	•	٠	٠	• •
•	•	•	•	•	••••	•	•	•	•	•	•	A	∞ (c	A)		L	•		0	•	•	•	• •	•	•	•	• •	•	•	•	• •
•	•	٠	٠	٠	• •	٠	٠	•	•	٠	•	•••	٠	٠	٠	•	•	•	• •	٠	٠	•	• •	٠	٠	•	• •	•	•	٠	• •
•	•	•	•	•	•••	•	•	•	•	•	•	•••	•	•	•	•	•	•	• •	•	•	•	• •	•	•	•	• •	• •	•	•	• •
•	•	•	٠	٠	•••	٠	•	۰	•	•	•	• •	۰	0	٠	•	•	•	• •	٠	٠	•	• •	۰	٠	•	• •	•	٠	٠	• •
•	•	•	•	•	•••	•	•	•	•	•	•	•••	•	•	•	•	•	•	•••	•	•	•	• •	•	•	•	• •	• •	•	•	• •
٠	٠	•	٠	•	•••	•	•	٠	٠	•	•	•••	•	٠	•	•	•	•	• •	٠	•	•	• •	٠	•	٠	• •	•	٠	•	• •
•	•	•	•	•	•••	•	•	•	•	•	•	• •	•	•	•	•	•	•	• •	•	•	•	•••	•	•	•	• •	•	•	•	• •
•	•	•	•	•	•••	•	•	•	•	•	•	•••	•	•	•	•	•	•	•••	•	•	•	• •	•	•	•	•	•	•	•	• •
•	•	•	•	•	• •	•	•	•	•	•	•	• •	•	•	•	•	•	•	• •	•	•	•	• •	•	•	•	•	•	•	•	•
•	•	•	•	•	•••	•	•	•	•	•	•	•••	•	•	•	•	•	•	•••	•	•	•	•••	•	•	•	•	•	•	•	• •
•	•	•	•	•	• •	•	•	•	•	•	•	• •	•	•	•	•	•	•	• •	•	•	•	• •	•	•	•	•	•	•	•	•
•	•	•	•	•	• •	•	•	•	•	•	•	• •	•	•	•	•	•	•	• •	•	•	•	• •	•	•	•	• •	• •	•	•	• •
•	٠	•	٠	٠	• •	٠	•	٠	٠	•	•	• •	٠	٠	•	•	•	•	• •	•	•	•	• •	•	•	•	•	•	٠	•	• •
•	•	•	•	•	•••	•	•	•	•	•	•	•••	•	•	•	•	•	•	• •	•	•	•	• •	•	•	•	• •	•	•	•	• •
•	٠	•	٠	•	•••	•	•	٠	٠	•	•	• •	٠	٠	٠	•	•	•	• •	٠	•	•	• •	٠	٠	•	• •	•	٠	•	• •
•	•	•	•	•	••••	•	•	•	•	•	•	• •	•	•	•	•	•	•	• •	•	•	•	••••	•	•	•	•	• •	•	•	• •
٠	٠	٠	٠	٠	• •	٠	۰	٠	•	٠	•	• •	۰	•	٠	٠	•	•	• •	٠	٠	•	• •	٠	٠	•	• •	•	٠	٠	• •
•	•	•	•	•	••••	•	•	•	•	•	•	•••	•	•	•	•	•	•	• •	•	•	•	• •	•	•	•	• •	•	•	•	• •
٠	٠	۰	٠	٠	•••	٠	٠	۰	٠	•	•	•••	٠	•	٠	•	•	٠	• •	٠	•	•	• •	٠	٠	٠	•	• •	۰	٠	• •
•	•	•	•	•	•••	•	•	•	•	•	•	•••	•	•	•	•	•	•	• •	•	•	•	• •	•	•	•	•	• •	•	•	• •
•	•	٠	•	•	• •	٠	۰	•	•	•	•	• •	۰	•	٠	•	•	•	• •	٠	٠	•	• •	٠	٠	•	• •	•	٠	٠	• •
•	•	•	•	•	•••	•	•	•	•	•	•	•••	•	•	•	•	•	•	••••	•	•	•	•••	•	•	•	•	•	•	•	• •
•	•	٠	٠	•	• •	٠	۰	٠	•	•	•	•••	۰	٠	٠	•	•	٠	• •	۰	٠	•	• •	٠	٠	•	• •	•	•	٠	• •
•	•	•	•	0	• •	•	•	•	•	•	•	• •	•	•	•	•	•	•	• •	•	•	•	• •	•	•	•	• •	• •	•	•	• •
•	•	•	•	•	•••	٠	•	•	•	•	•	•••	٠	•	•	•	•	•	• •	•	•	•	• •	٠	•	•	•	•	٠	•	• •
				-	•	•	-		*	~	-	•			-		-	-	- •		-	-	- •			*	- (-	

\$3 Derbect derived ~- eategory
Now we want to construct a similar derived so-category in
the case where we have a stable 00-category equipped with
a fixed adapted homology theory
$H: \mathcal{C} \longrightarrow \mathcal{A}.$
The reason why we need to fix a homology is because we need a
good notion of epinnorphisms to define derived categories, which we have
in the abelian case but not in the stable case.
As when we defined D°(A) we first need a topology:
Def The H-epimorphism topology is a Groethendiech (prestopology
on 6 in which a family of maps {ci -d} is a covering if it
consists of a single map which is an H-epimorphism
We have a sheaf fication w.r.t. this H-epinnorphism topology
$L_{\mathcal{C}}: \mathcal{P}_{\mathcal{S}}(\mathcal{C}) \to \mathcal{P}_{\mathcal{C}}(\mathcal{C})$
We wish to show this restricts to perfect presheaves. We first
consider the case of Kinitely presented discrete presheaves:
<u>Prop</u> : A tinitely presented discrete prescheaf x ∈ A(e) is a sheat w.r.A. 5.24
the H-epinnorphism topology it it is in the image of the
right adjoint Na A(B). my running a and
To be able to say more we need a connection between presheaves
on B and on A - since the abelian case is easier to work in.
Det: Using tondonality of Left Kan extension along our fixed
11* DIPL - P(A)

• • • •	This preserves almost perfect presheaves and therefore induces
• • • •	an adjunction
• • • •	$A_{\infty}(e) = A_{\infty}(A)$
• • • •	$\mathbb{C}^{\mathbb{C}}_{\mathbb{C}^{\mathbb{C}}} \xrightarrow{\mathbb{C}^{\mathbb{C}}} \mathbb{S} \xrightarrow{\mathbb{C}^{\mathbb{C}}} \mathbb{S} \xrightarrow{\mathbb{C}^{\mathbb{C}}} \mathbb{S}$
• • • •	which we call the homology adjunction,
Fact	$H_*: A_{\infty}(A) \longrightarrow A_{\infty}(C)$ commutes with sheaf-fication
• • • •	we can calculate the open in
Lem: 529	The restriction of H, to the hearts in Aw(A)
	$H_*: A(A) \rightarrow A(C)$
• • • •	induces an adjoint equivalence between the categories of
• • • •	finitely presented sheaves. In particular, any discrete sheaf
• • • •	XeA(e) can uniquely lie written as H.Y for some
• • • •	NEA(A)
Pf:	By 5.24 we know the subcodegory of finitely presented
• • • •	sheaves of A(G) can be identified with A, and by 5.6
• • • •	we have the same result for A(A). One then chase
• • • •	through the constructions to show that Hy is compatible
• • • •	with these equivalences
<u>Cor:</u>	Let XCAW(C) be a presheaf with homotopy groups concentrated in
	a single degree n. Then,
• • • •	$L_{CX} \simeq H_{*}(L_{C}Y)$
• • • •	for some YEA (A) with homotopy groups concentrated in a
• • • •	single degree n.
PP:	since XEAw(e) has only non-zero homotopy group in
· · · · ·	degree n, and $A^{w}_{\infty}(e)^{\infty} \cong A(e)$, we can write $X \cong \mathbb{Z}^{n}_{\infty} \times \mathbb{P}^{n}_{\infty}$

· · · ·	some x ∈ A(C). Since the natural map
Haw	E"x -> ETDx sheafification on the heart
TAIS	must he an isomorphism on homotopy groups we get that it
WORK	is an equivalence after applying L:
	$L\Sigma^{m} \propto 2L\Sigma^{m} LX,$
• • • •	hence we can assume X ~ 2" x with x already a sheaf.
• • • •	By 5.29 we can write 24 Hzy ~> Enze HzEnzy
• • • •	Using that Hy commutes with sheafification we get the
• • • •	clesired LX 2L2"x ≥ LH * 2"y ≥ H* L2"y
· · · · ·	by putting Y = 2"y.
Prop.	Let XCAw(e) be a perfect presheal. Then, the sheafification
	LX is again perfect.
Pf.	The proof is done in 3 steps.
• • • •	X has bounded presheaf homotopy groups:
• • • •	In this case, X belongs to the smallest subcategory of
• • • •	A w(e) which is closed under finite limits and contains all
	perfect prestreaves with a single non-zero homotopy group.
• • • •	For any such perfect presheaf w a single non-zero
• • • •	homotopy group, we know from 5.30 that we can
• • • •	write its sheathantion as
• • • •	$H_{*}(LY)$
• • • •	
• • • •	for some re Hoo(A), and in this abelian case we have
• • • •	already showed in J.13 that LY is perfect. Using that the
• • • •	subcategory of those perfect prestieaves for which

•	•	•	•	U	Ś	'is	a	ġĊ	iv		pe	÷\$). -ec	÷,	•	ÌS		clo	580	Ŕ	•	iv	Ņ	<u>t</u> e	Ċ	£	in.	it	Ė	li	in	it:		•	• •
•	•	٠	٠	ŝ	in	ie	Ľ		ÌŚ	le	P4	- (ėx	ġ	7	•	H	ė	ď	les	sin	ėd		PJ	Üc	ŵ	Ś	٠	•	•	•	•	• •	٠	• •
•	•	•			•	•	ie.		•	•	•	•	•			0					P	•		•		Ċ	e	0		A d				•	• •
•	•	•	•		·	•	Ţ.V.	~5	61		•••			<u>د</u> ۲		F 01	s. /			(ç)						•	•	•		, or	· · ·	, ce	· · ·	•	• •
•			. (λ, 0 . (jer	~e	rel	l. }	Κ.	•	•	•	•	•	•	•	•	•		7.	•	•	•	•	•		•	•	•		•	•	• •	•	• •
•		کو	<u>K</u>	Ŀ	21	. H	} ∶⊽	- -)	Ċ	b	e . (av	. (<i>b</i> r	ap	⊳ 1€	ed		ino	·	5/0	oey ·	3	•	R.	ec	"J	•	• •	e	·	+1	مع	• •
•	•	•	•	P	er	fea	¥	.9	lev	iv.	ech			Ċ	Je	ġ	iy	j. c	} ₹	C	. 6	فكره	ż	ive	•	fo		,	1	Ś	gi	ve	'n	by	• •
•	•	•	•	•	•	•	•	•	•	•	•	7	. , , , , , , , , , , , , , , , , , , ,	°(e) ::	=	Au	∕יג ¢	hl	C))	•	•	•	•	•	•	•	•	•	•	••••	•	• •
•	٠	٠	٠	·†	h	Ľ	Ċ	o [.] –	ĊO	te	ġç	niy	. 0	R	T	jer	fe	ect		se.	ea	ic	Ś	OM	ið	0	iu.	h.i.	•	ł	ie	•	• •	٠	• •
•	•	•	0	·H	•	• •				Pa	0	• () \\	ر ب ر ار		ic			•	•	•	•	•	•	•	•	•	•	0	•	•	•	•	• •	•	• •
•	•	•	•	•	•		•	•	•		•		•	•	ς-	. (]]	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	••••	•	• •
•	٠	•	٠	٠	٠	•	٠	٠	٠	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	• •	٠	• •
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	• •
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	••••	•	• •
•	•	•	٠	٠	•	•	•	٠	٠	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	• •	٠	• •
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	• •
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	• •
•	•	٠	٠	٠	•	•	•	٠	٠	٠	٠	•	•	٠	•	٠	•	•	•	٠	٠	•	٠	•	•	•	•	•	•	•	•	•	• •	٠	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	• •
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	• •
•	٠	•	۰	۰	۰	٠	٠	۰	0	•	٠	٠	•	•	•	•	۰	٠	٠	٠	•	•	•	٠	•	٠	•	•	٠	٠	٠	٠	• •	٠	• •
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	• •
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	• •
•	•	•	٠	٠	•	•	•	٠	٠	0	•	•	•	•	•	•	•	•	•	٠	٠	•	٠	•	•	•	•	•	•	•	•	•	• •	٠	• •
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	• •
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	• •
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	••••	•	• •
•	•	0	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	٠	• •
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	• •

Proof 5.13
Why does LX have vanishing homotopy groups in almost all degrees.
when x is perfect?
$\underline{Cax 1}: X = \Sigma^n y(\alpha)$
Then by 5.11 we have
The (LS."y(a)(b) = Ext (b,a)
and negative Ext-groups vanish.
Case 2: X general almost perfect presheaf with only one non-trivial
homotopy group in degree n
In this case we can write X=Z"Y where Y is finitely presented
presheaf and sits into an exact sequence using How is left exact
$0 \rightarrow y(ber(f)) \rightarrow y(a) \xrightarrow{\mathcal{Y}(f)} y(b) \rightarrow \gamma \rightarrow 0.$
Short exact sequences in A(A) gives fiber sequences in $A_{\infty}(A)$.
and this gives two fiber sequences in A _{co} (A):
$\Sigma^n \operatorname{ker}(\mathcal{F}) \to \Sigma^n y(a) \longrightarrow \Sigma^n K$
$\Sigma^{n}K \longrightarrow y(b) \longrightarrow \Sigma^{n}Y = X$
where K=ker(y(b) ->>). Now, L preserves fiber sequences, and the
LES for both fiber sequences implies that LX has vanishing
handopy groups almost everywhere.
Case 3: X = Greneral perfect preshead
By 4.37 we get that $\Pi_x X$ is finitely presented (for all $k \ge 0$),
and vanishes for almost all of them, so we get a finite Postnikov
tower my Can write X as a finite limit of things from case 2:
$\mathcal{M}: X = X_{\mathcal{M}} \longrightarrow \mathcal{N} = X_0$
st. the Ribers

	ay	LFs -> LXs			
will induction	vely imply	that LX	has varish	ing homoto	py almos
everywhere		• • • • •	• • • • •		
• • • • • •	• • • •	• • • • •	• • • • •		
• • • • • •	• • • •	• • • • •	• • • • •		• • • • •
• • • • • •	• • • •	• • • • •			• • • • •
• • • • • •	• • • •	• • • • •	• • • • •	•••••	• • • • •
• • • • • •	• • • •	• • • • •	• • • • •		• • • • •
• • • • • •	• • • •	• • • • •	• • • • •	• • • • • • •	• • • • •
• • • • • •	• • • •	• • • • •	• • • • •		• • • • •
• • • • • •	• • • •	• • • • •	• • • • •	•••••	• • • • •
• • • • • •	• • • •	• • • • •	• • • • •		• • • • •
• • • • • •	• • • •	• • • • •	• • • • •	• • • • • • •	• • • • •
• • • • • •	• • • •	• • • • •	• • • • •		• • • • •
	• • • •	• • • • •	• • • • •		
• • • • • •	• • • •	• • • • •	• • • • •	• • • • • • •	
• • • • • •	• • • •	• • • • •	• • • • •		
· · · · · ·	• • • •	• • • • •		· · · · · · · ·	• • • • • •
• • • • • •	• • • •	• • • • •	• • • • •		
· · · · · ·	• • • •	• • • • •	• • • • •	• • • • • • •	• • • • •
	• • • •	• • • • •	• • • • •		
	• • • •	• • • • •	• • • • •	• • • • • • •	• • • • •
	• • • •		• • • • •	• • • • • • •	