

4.1 Information Retrieval Process, Information, and Challenges

What is Biomedical and Health Informatics? - http://informatics.health/ William Hersh, MD, FACMI, FAMIA, FIAHSI Copyright 2025

Information retrieval (IR)

- Field concerned with organization and retrieval of predominantly text-based information
 - But multimedia (e.g., images, sounds, video, etc.) and more complex databases are increasingly a part
- When I began work in this area (circa 1989), few physicians or scientists and virtually no patients had done an on-line search
 - Now everyone is searching from Web browser to mobile device

IR process Metadata Retrieval Indexing Queries Content Search engine

WhatIs4.1

Intellectual tasks of IR

- Indexing
 - Assigning metadata to content items
 - Can assign
 - Subjects (terms) words, terms from controlled vocabulary
 - Attributes e.g., author, source, publication type
- Retrieval
 - Most common approaches are
 - Boolean use of AND, OR, NOT
 - Natural language words common to query and content

IR also growing part of knowledge discovery from scientific literature

Major challenges in IR

- We have gone from information paucity to information overload
- Many topics we want to search on have multiple ways to be expressed
 - e.g., diseases, genes, symptoms, etc.
- The converse is a problem too: Many words and terms used to express topics have multiple meanings
- Balancing open access vs. providing for cost of production and maintenance
- Determining quality and veracity of information

IR is now mainstream

- Internet (and likely search engine) <u>use now ubiquitous</u>
 - Not only in developed countries but across world
 - At least 71% of Internet users (59% of US adults) have searched for health information, with 35% using it for self-diagnosis (Fox, 2013)
- <u>Search engine optimization (SEO)</u> is a key function used by many companies and organizations
 - Some are lucky, e.g., last name of "Hersh"

Web has changed nature of search

- Three major uses (Broder, 2002)
 - Informational seeking information (39-48%)
 - Navigational looking for a specific page, e.g., a home page (20-24%)
 - Transactional perform transactions, e.g., on-line purchasing (30-36%)
- We are in era of "adversarial" search there is content we do not want to retrieve (Castillo, 2011; Smith, 2014)
 - Some of the content we might not want to retrieve is "fake news," which came to the fore in 2016 (Holan, 2016)
- Hard to discern sponsored vs. organic results
- Privacy concerns about tracking our searching (Huesch, 2013; Libert, 2015)

IR and online access firmly planted in biomedicine and health

- Biology should be defined as an "information science" (Insel, 2003)
- Clinicians cannot keep up average of 75 clinical trials and 11 systematic reviews published each day (Bastian, 2010)
- Search for health information by clinicians, researchers, and patients/consumers is ubiquitous (Fox, 2011; Fox, 2013; Google/Manhattan Research, 2012)

What kind of health information do consumers search for? (Fox, 2011)

Health topic	% searching
Specific disease or medical problem	66%
Certain medical treatment or procedure	56%
Doctors or other health professionals	44%
Hospitals or other medical facilities	36%
Health insurance – private or government	33%
Food safety or recalls	29%
Environmental health hazards	22%
Pregnancy and childbirth	19%
Medical test results	16%

How to find more information about IR in biomedicine and health

- From me!
- Hersh WR, <u>Information Retrieval:</u> <u>A Biomedical and Health</u> <u>Perspective, 4th Edition</u>, 2020
- Chapters in other books
 - Informatics Sanchez-Mendiola (2014), Shortliffe (2021), Hersh (2022)
 - IR Alonso (2024), White (2025)
- Plenty of other books, journals, and other sources

Why is IR pertinent to biomedicine and health?

- Growth of knowledge has long surpassed human memory capabilities
- Clinicians have frequent and unmet information needs
- Researchers must frequently update their knowledge in new areas quickly
- Primary literature on a given topic can be scattered and hard to synthesize
- Non-primary literature sources are often neither comprehensive nor systematic
- Web can be source of biomedical and health information (and misinformation)
- Growing but uncertain role for generative AI and large language models (LLMs) for managing and accessing medical knowledge

Information accessed in IR

- Knowledge-based information
- Life cycle of knowledge-based information
- Electronic publishing

Classification of knowledge-based scientific information

- Primary original research
 - Published mainly in journals but also in conference proceedings, technical reports, books, etc.
 - Can include re-analysis, e.g., systematic reviews and metaanalysis
- Secondary reviews, condensations, and/or synopses of primary literature
 - Textbooks and handbooks are staples of clinical practitioners, researchers, and others
 - Guidelines are important for normalizing care and measuring quality

Historical life-cycle of knowledge-based information

Changes to life-cycle: data publishing

- Internet makes feasible long history in some fields, e.g., genomics
- Growing advocacy for clinical data
 - A "public good" (Rodwin, 2012) for new era of "open science" (Ross, 2013; National Academies, 2018)
 - One-third of re-analyses led to different conclusions (Ebrahim, 2014)
 - Calls by journal editors (Taichman, 2017)
 - All research funded by National Institutes of Health (NIH) must have data-sharing policy (Kozlov, 2022; Ross, 2023)
- Concerns
 - Allowing primary publication (Merson, 2016)
 - Worth the cost (Strom, 2016)?
 - In prominent medical journals, JAMA, Lancet, and New England Journal of Medicine, gap between papers that purport availability and have actual availability (Danchev, 2020)
 - NIH policy difficult for resource-strapped researchers (Bauchner, 2023)?

Changes to life-cycle: preprints

- Long-standing use in physics, computer science, and other fields (Chiarelli, 2019; Puebla, 2021)
 - <u>arXiv</u> (Garisto, 2022)
- Biomedicine mostly historically bound by "Inglefinger Rule" (1969) of no prior publication
- But now growing use in
 - <u>Biology</u>
 - <u>Medicine</u>
- Concerns about subverting scientific process (Maslove, 2018)
 - Most final publication results congruent with preprint findings (Janda, 2022)
 - Most COVID-related submissions published, although with higher rate of retraction (Kodvanj, 2022)
 - Some retraction designations do not propagate back to preprints (Avissar-Whiting, 2022)
- Alternative: registered reports with peer review of methods before results (Chambers, 2019; Brock, 2020)?

Changes to life-cycle: electronic publishing

- Virtually all scientific publishing now electronic
- Challenges to access mostly economic and not technical (Hersh 2000; Sox, 2009)
 - Prestigious journals have monopolies due to academic promotion and tenure concerns
 - Unlike paper-based content, digital content usually owned by publisher and licensed to user
 - Who will pay cost of value journals add via peer review, editing, etc.?
- Is scientific paper obsolete?
 - Use computational notebooks with access to data instead (Ritchie, 2022)?

