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2 Colles semaine 8

du 24 au 28 novembre 2025

Le programme de colle de cette semaine est constitué du programme de la semaine 7 et d’icelui.

Chapitre 8 : Espaces vectoriels euclidiens et préhilbertiens réels

I: Généralités

1) Définitions :

a) Produit scalaire.
b) Espaces vectoriels euclidiens et préhilbertiens réels.
c) Norme euclidienne : ||x|| =

√
(x|x).

2) Exemples

3) ▶ Inégalité de Louis-Augustin Cauchy et Hermann Amandus Schwarz :
| (x|y) | ⩽ ∥x∥ . ∥y∥ avec égalité si et seulement si x et y sont colinéaires.

4) Propriétés de la norme euclidienne :

a) ||x|| ⩾ 0 et ||x|| = 0 ⇐⇒ x = OE

b) ||λx|| = |λ| × ||x||
c) Inégalité triangulaire : ||x + y|| ⩽ ||x|| + ||y|| avec égalité si et seulement si x et y sont

colinéaires et de même sens.

5) Identités

a) de polarisation : (x|y) = 1
4
(||x+ y||2 − ||x− y||2) ,

b) du parallélogramme : ||x+ y||2 + ||x− y||2 = 2(||x||2 + ||y||2)
6) Orthogonalité :

a) définitions : vecteurs orthogonaux, s.e.v. orthogonaux, orthogonal d’un s.e.v.
b) Théorème de Pythagore :

i) x⊥y ⇐⇒ ||x+ y||2 = ||x||2 + ||y||2

ii) (x1, ..., xp) famille orthogonale =⇒ ||
∑

xi||2 =
∑

||xi||2.
iii) Corollaire : une famille orthogonale de vecteurs non nuls est libre.

c) Proposition : F ⊂ (F⊥)⊥, exemple d’inclusion stricte.

d) ▶ Proposition : une somme directe de s.e.v. 2 à 2 orthogonaux est directe.

II: Bases orthonormées

1) Définition : familles et bases O.N. Calculs dans une B.O.N.

2) Proposition : soit B une B.O.N. et A = ((ai,j)) = matB(u), alors ai,j = (ei|u(ej)).

3) ▶ Théorème d’existence : soit E euclidien, il existe des B.O.N. de E .



4) Proposition : Soit E euclidien, soit F s.e.v. de E, alors F et F⊥ sont supplémentaires.

On note E = F
⊥
⊕ F⊥ .

5) Théorème de la B.O.N. incomplète : soit (e1, ..., ep) une famille orthonormale dans un e.v.
euclidien, on peut la compléter en une B.O.N.

6) Proposition : dans E euclidien : (F⊥)⊥ = F .

III: ▶ Représentation des formes linéaires dans un e.v. euclidien :

1) Théorème (HP) :
Formes linéaires dans un e.v. euclidien :
Soit φ une forme linéaire de E euclidien, alors ∃ ! a ∈ E tel que ∀x ∈ E, φ(x) = (a|x).

2) Corollaire : équation cartésienne d’un hyperplan. Vecteur normal à un hyperplan.

IV: Projecteurs orthogonaux

1) Définition : Soit E euclidien, soit F un sev de E, le projecteur sur F parallèlement à F⊥ est
appelé projecteur orthogonal sur F et est noté pF .
Par conséquent, un projecteur p est orthogonal si et seulement si Im p⊥Ker p.

2) Proposition : soit p un projecteur, il est orthogonal ⇐⇒ ∀(x, y) ∈ E2, (p(x)|y) = (x|p(y)).
3) ▶ Proposition : soit p un projecteur, il est orthogonal ⇐⇒ ∀x ∈ E, ||p(x)|| ⩽ ||x||.
4) Expression analytique dans une B.O.N. : soit (e1, . . . , ep) une B.O.N. de F , le projeté

orthogonal de x sur F , noté pF (x), vérifie : pF (x) =
p∑

i=1

(x|ei) ei.

Ecriture matricielle dans une B.O.N. : soit B une B.O.N., on note Ei le vecteur colonne

des coordonnées de ei dans la base B, alors matB(pF ) =

p∑
i=1

EiE
T
i .

5) Théorème : distance à un s.e.v. Soit F s.e.v. de E euclidien. On définit : d(x, F ) = inf
y∈F

∥x− y∥.

a) ▶ d(x, F ) = ∥x− pF (x)∥.

b) d(x, F )2 = ∥x∥2 − ∥pF (x)∥2 = (x|x− pF (x)).

6) Projection orthogonale sur une droite, sur un hyperplan.

7) Symétrie orthonale : définition. Proposition : sF = 2pF − IdE.

8) Définition : une réflexion est une symétrie orthogonale par rapport à un hyperplan.

9) Proposition : soient a et b deux vecteurs distincts tels que ∥a∥ = ∥b∥, alors il existe une unique
réflexion s telle que s(a) = b.

10) Extension de ces notions pour E préhilbertien réel et F sev de E de dimension finie.

V: Jørgen Pedersen Gram - Erhard Schmidt

1) ▶ Théorème :

soit E euclidien, soit (a1, . . . , ap) une famille libre, alors il existe
une unique famille O.N. (e1, . . . , ep) telle que :

a) ∀k ∈ [[1, p]], Vect(e1, . . . , ek) = Vect(a1, . . . , ak).

b) ∀k ∈ [[1, p]], (ak|ek) > 0.



2) Corollaire : Soit E = R [X], muni d’un produit scalaire quelconque, il existe une B.O.N. de E
échelonnée en degré.

VI: Isométries vectorielles Soit E un e.v. euclidien.

1) Définition : u est un automorphisme orthogonal ou une isométrie vectorielle s’il conserve la
norme ou le produit scalaire (ce qui est équivalent).

2) Remarque : Une isométrie vectorielle est un automorphisme.

3) Proposition : O(E) est un groupe pour la loi ◦, appelé groupe orthogonal.

4) ▶ Proposition : on a équivalence entre :

a) u ∈ O(E)

b) u transforme toute B.O.N en B.O.N.
c) u transforme une B.O.N en B.O.N.

5) Proposition : soit u ∈ O(E), F stable par u =⇒ F⊥ stable par u.

6) Proposition : SpR(u) ⊂ {−1, 1} (mais u peut avoir des valeurs propres complexes non réelles).

7) définition : Matrice Orthogonale.
On dit que M ∈ Mn(R) est orthogonale si l’endomorphisme canoniquement associé à M appar-
tient à O(Rn).

8)

▶ Proposition : on a équivalence entre :

a) M ∈ On(R).

b) MT .M = In.

c) M.MT = In.

d) Les vecteurs colonnes de M forment une B.O.N.

e) Les vecteurs lignes de M forment une B.O.N.

9) Proposition : Soit B une B.O.N. de E et soit B′ une base de E alors B′ est une B.O.N.
⇐⇒ P = PassB,B′ ∈ On(R).

10) Proposition : Soit B une B.O.N. de E, soit u ∈ L (E) et soit A = matB(u) alors u ∈ O(E) ⇐⇒
A ∈ On(R).

11) Proposition : M ∈ On(R) =⇒ det(M) = ±1, u ∈ O(E) =⇒ det(u) = ±1 (mais la réciproque
est fausse dans les deux cas).

12) Définition : groupe spécial orthogonal.

13) Proposition : Soit B une B.O.N.D. de E et soit B′ une base de E alors B′ est une B.O.N.D.
⇐⇒ P = PassB,B′ ∈ SOn(R).

14) Proposition : Soit B une B.O.N. de E, soit u ∈ L (E) et soit A = matB(u) alors u ∈
SO(E) ⇐⇒ A ∈ SOn(R).

VII: Endomorphismes autoadjoints (ou symétriques) et antisymétriques E est ici un e.v.
euclidien.

1) Définition : endomorphisme autoadjoint ou symétrique, antisymétrique. Notation S(E).

2) Définition : (HP) : adjoint d’un endomorphisme. Traduction matricielle.

3) Soit B une B.O.N. et A = matB(u) alors

• u autoadjoint ⇐⇒ A symétrique.



• u antisymétrique ⇐⇒ A antisymétrique.

4) Proposition : u antisymétrique ⇐⇒ ∀x ∈ E, (u(x)|x) = 0.

5) Proposition : u symétrique ou antisymétrique et soit F stable par u alors F⊥ aussi.

6) Proposition : ▶ u automorphisme orthogonal symétrique ⇐⇒ u symétrie orthogonale.

7) Corollaire : une symétrie n’est donc symétrique que si (et seulement si) elle est orthogonale.

8) Proposition : ▶ soit u symétrique ou antisymétrique alors Im(u) et Ker(u) sont supplémen-
taires orthogonaux .

9) Proposition : Soit u symétrique, les sous-espaces propres de u sont orthogonaux deux à deux.

10)

▶ Théorème spectral : Réduction des matrices et endomorphismes symétriques :

a) Soit u ∈ L (E) symétrique, alors u est diagonalisable dans une B.O.N.

b) Soit A ∈ Sn(R) alors A est diagonalisable dans une B.O.N. , i.e. , ∃P ∈ On(R), ∃D ∈
Dn(R), A = PDP−1 = PDP T .

11) Remarques :

• b) est la traduction matricielle de a).
• Si A = PDP T alors A est symétrique.
• Une matrice symétrique à coefficients complexes n’est pas forcément diagonalisable.

VIII: Endomorphismes (ou matrices) symétriques positives et définies positives
E est ici un e.v. euclidien, u est un endomorphisme symétrique et A une matrice symétrique.

1) Définition :

• u ∈ S+(E) ⇐⇒ ∀x ∈ E, (u(x)|x) ⩾ 0.
• u ∈ S++(E) ⇐⇒ ∀x ∈ E\{0}, (u(x)|x) > 0.
• A ∈ S+

n (R) ⇐⇒ ∀X ∈ Mn,1(R), XTAX ⩾ 0.
• A ∈ S++

n (R) ⇐⇒ ∀X ∈ Mn,1(R)\{0}, XTAX > 0.

2) ▶ Proposition :

• u ∈ S+(E) ⇐⇒ Sp(f) ⊂ R+ .

• u ∈ S++(E) ⇐⇒ Sp(f) ⊂ R∗
+ .

• A ∈ S+
n (R) ⇐⇒ Sp(A) ⊂ R+ .

• A ∈ S++
n (R) ⇐⇒ Sp(A) ⊂ R∗

+ .

IX: Etude de O(E) et SO(E) où E est un e.v. euclidien orienté de dimension 2

1) Proposition :

soit u ∈ SO(E) et soit B une B.O.N.D. alors ∃θ ∈ R tel que matB(u) =

(
cos θ − sin θ
sin θ cos θ

)
= R(θ)

et cette matrice ne dépend pas de la B.O.N.D. choisie. θ s’appelle l’angle de la rotation u.

2) Ecriture complexe d’une rotation du plan euclidien orienté.

3) Soit u ∈ SO(E) d’angle θ, soit x un vecteur non nul alors cos θ =
(a|u(a))
||x||2

et sin θ =

det [x, u(x)]

||x||2
.



4) Proposition : soient (a, b) ∈ E2ollaire, tels que ∥a∥ = ∥b∥ ̸= 0 alors ∃!u ∈ SO(E) tel que
u(a) = b.

5) Définition : angle orienté de deux vecteurs non nuls dans le plan.

6) Proposition : Soit u ∈ O(E)\SO(E).

(i) soit B = (e⃗1, e⃗2) une B.O.N.D. alors ∃θ ∈ R tel que matB(u) =

(
cos θ sin θ
sin θ − cos θ

)
= S(θ) et

cette matrice dépend de la B.O.N.D. choisie.
(ii) u est la réflexion par rapport à la droite D dirigée par le vecteur u⃗ = (cos θ

2
, sin θ

2
) où

θ
2
= (e⃗1, u⃗).

X: Compléments de cours
E est ici un e.v. euclidien.

1) F stable par A ⇐⇒ F⊥ stable par AT . Applications.

a) ▶Proposition : A ∈ S+
n (R) ⇐⇒ ∃B ∈ Mn(R), A = BTB .

b) Proposition : A ∈ S++
n (R) ⇐⇒ ∃B ∈ GLn (R) , A = tBTB .

2) ▶ Proposition : (racine carrée)

a) Soit A ∈ S+
n (R), ∃ !C ∈ S+

n (R), A = C2 .

b) Soit A ∈ S++
n (R), ∃ !C ∈ S++

n (R), A = C2 .

3) Proposition : réduction simultanée Soient A ∈ S++
n (R) et B ∈ Sn(R), il existe P ∈ GLn (R)

et D ∈ Dn(R) telles que A = P T × P et B = P T ×D × P .

4) Quotient de Rayleigh

a) Soit u ∈ S(E), on définit, pour x ∈ E\0E, q(x) =
(x|u(x))
||x||2

b) ▶ Proposition : min Sp(u) ⩽ q(x) ⩽ maxSp(u) et ces valeurs sont atteintes.

c) Traduction matricielle : Soit A ∈ Sn(R), on pose pour X ∈ Mn,1(R), q(X) =
XTAX

XTX
Proposition : min Sp(A) ⩽ q(X) ⩽ maxSp(A) et ces valeurs sont atteintes.

5) Proposition : : Une matrice antisymétrique réelle a ses valeurs propres dans iR et est diago-
nalisable dans Mn (C).

6) Proposition : Soit u une isométrie vectorielle, alors on peut trouver une BON de E dans
laquelle la matrice de u est diagonale par blocs avec des blocs de taille 1 × 1 valant 1 ou -1 et

des blocs de taille 2× 2 de la forme R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
Corollaire : une matrice orthogonale est diagonalisable dans Mn (C).

7) Toute matrice M de GLn (R) se décompose de manière unique en M = K × T où K est une
matrice orthogonale et T une matrice triangulaire supérieure dont les coeff diagonaux sont
strictement positifs.

8) Une matrice de Mn (R) trigonalisable est orthotrigonalisable.

le prochain programme ne sera pas hors-norme ...


