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4 heures Calculatrice autorisée

Conditionnement d’une matrice et applications

Dans tout ce problème, n désigne un entier naturel non nul, et on rappelle que Mn (R) désigne l’ensemble des matrices
carrées à n lignes et n colonnes. On note Dn (R) le sous-espace vectoriel de Mn (R) des matrices diagonales.
On rappelle que l’on désigne par M⊤ la transposée d’une matrice M .
Pour alléger les notations, on identifiera les vecteurs de Rn aux matrices colonnes de Mn,1 (R).
On désignera par B = (E1,E2, . . . ,En) la base canonique de Rn.

On munit Rn de la norme ∥·∥, en posant pour tout x = (x1, . . . ,xn) ∈ Rn, ∥x∥ =

vuut
nX

i=1
x2

i qui est la norme euclidienne

associée au produit scalaire canonique ⟨·,·⟩ de Rn où par définition, pour tout X et Y de Rn, ⟨X,Y ⟩ = X⊤Y .
Pour toute matrice M de Mn (R) on note ρ (M) le réel défini par : ρ (M) = max

λ∈SpC(M)
|λ|.

On note par ailleurs S+
n (R) l’ensemble des matrices symétriques positives de Mn (R) et par S++

n (R) l’ensemble des
matrices symétriques définies positives de Mn (R).

Partie A – Construction d’une norme sur Mn (R)
On se propose dans cette partie de montrer que l’application N donnée sur Mn (R) par :

N : A 7−→ sup
∥X∥=1

∥AX∥

est une norme sur Mn (R) et d’en étudier quelques propriétés.

I – Étude de l’application N

Dans toute cette partie, on considère A une matrice quelconque de Mn (R) dont on note L1, L2, . . ., Ln les n lignes
et C1, C2, . . .Cn les n colonnes, que l’on pourra identifier à des éléments de Rn.

Q1. Soit X ∈ Rn tel que ∥X∥ = 1. En notant M = max
1⩽i⩽n

∥Li∥, montrer que :

∥AX∥ ⩽ M
√

n.

On pourra au préalable s’intéresser à la ie ligne de la matrice AX et utiliser l’inégalité de Cauchy-Schwarz pour
les vecteurs de Rn.

Q2. En déduire que l’application N est bien définie, puis que : N (A) = sup
X0 ̸=0

∥AX0∥
∥X0∥ .

Q3. Montrer que l’application N ainsi définie est une norme sur Mn (R).

Q4. En est-il de même pour l’application S : Mn (R) −→ R+
M 7−→ ρ (M)

?

Q5. Soit ∆ ∈ Dn (R) dont on note δ1, . . ., δn les termes diagonaux.

Vérifier que N (∆) = max
1⩽i⩽n

|δi|.

1 / 4

DS n°4 : Centrale 2025 PSI 1 sauf la fin + un exercice 



Q6. À l’aide de l’application X 7−→ ∥AX∥, démontrer que : N (A) = max
∥X∥=1

∥AX∥.

Q7. Établir que : ∀X ∈ Rn, ∥AX∥ ⩽ N (A) ∥X∥.

Q8. Soit B une autre matrice quelconque de Mn (R). Montrer que :
N (AB) ⩽ N (A) N (B) .

Q9. Montrer que : max
1⩽i⩽n

∥Ci∥ ⩽ N (A).

Q10. Déterminer N (A) dans le cas où toutes les colonnes de A sont nulles, sauf la dernière.

En déduire N (A) dans le cas où A =




0 0 0
0 0 −1
0 0 1


.

II – Cas des matrices orthogonales et symétriques
Dans cette partie, A désigne une matrice quelconque de Mn (R) et U une matrice orthogonale de Mn (R).

Q11. Déterminer N(U).

Q12. Démontrer que N(UA) et N(A) sont égales.

Q13. En considérant X0 ∈ Rn où ∥X0∥ = 1 tel que ∥AX0∥ = N(A), démontrer que N(AU) = N(A).

Q14. On suppose de plus dans cette question uniquement que la matrice A est une matrice symétrique réelle de
Mn (R).
Montrer que : N (A) = ρ(A).

Q15. Déterminer N(A) dans le cas où A =




2 1 1
1 2 1
1 1 2


.

Partie B – Conditionnement d’une matrice pour la norme N

On définit sur GLn (R) l’application notée cond par : cond : GLn (R) −→ R
A 7−→ N (A) N


A−1�

I – Quelques résultats sur le conditionnement
Dans toute cette sous-partie, A désigne une matrice inversible de Mn (R) et U une matrice orthogonale de Mn (R).

Q16. Montrer que : 1 ⩽ cond (A).

Q17. Quel lien a-t-on entre cond (A) et cond (αA) pour α ∈ R∗ ?

Q18. Démontrer que cond(U) = 1.

Q19. Que dire de cond(UA), cond(AU) et de cond(A) ?

II – Un exemple de minoration du conditionnement d’une matrice

On suppose dans cette partie uniquement que A = (ai,j) 1⩽i⩽n
1⩽j⩽n

où : ai,j =





1 si i = j
2 si j = i + 1
0 sinon

.

Q20. On considère le vecteur X de Rn donné par : X =
nX

k=1
(−1)n−k2n−kEk .

Montrer que AX = En.

Q21. Déduire de ce qui précède que N

A−1�

⩾ 2n−1.

Q22. Justifier ∥AE2∥ > 2, pour en déduire que cond(A) > 2n.
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Partie C – Conditionnement pour une matrice réelle inversible
Q23. Soit S une matrice de S+

n (R).
On considère C = (V1, . . . ,Vn) une base diagonalisante orthonormée de Rn où pour tout i ∈ {1, . . . ,n}, Vi est un
vecteur propre associé à la valeur propre notée λi et où l’on suppose que λ1 ⩽ . . . ⩽ λn sont les valeurs propres
de S comptées avec leur ordre de multiplicité.
Montrer que : N (S) = max

∥X∥=1
|⟨SX,X⟩|.

Q24. Soit A ∈ Mn (R) non nulle.
Démontrer que la matrice A⊤A appartient à S+

n (R) pour établir que N

A⊤A

�
= N(A)2.

Q25. Déduire de ce qui précède que pour A ∈ Mn (R) non nulle : N (A) =
p

ρ (A⊤A).

Q26. On suppose dans cette question que A est une matrice Mn (R) inversible.
En remarquant que A⊤A = A−1AA⊤A, démontrer que les matrices AA⊤ et A⊤A ont exactement les mêmes
valeurs propres.

Q27. Soit A ∈ Mn (R) inversible. On note µm et µM respectivement la plus petite et la plus grande des valeurs
propres de la matrice AT A et où l’on suppose que l’on a 0 < µm ⩽ µM .

Montrer que : cond (A) =
r

µM

µm
.

Q28. Exprimer cond (A) lorsque A appartient à S++
n (R) à l’aide des valeurs propres de A en remarquant que

A⊤A = A2.

Partie D – Calcul explicite de conditionnement

Dans toute cette partie, on désigne par T la matrice de Mn (R) donnée par : T =




2 −1 (0)

−1 . . . . . .
. . . . . . −1

(0) −1 2




.

Le but de cette partie est de déterminer la valeur de cond(T ) en commençant par déterminer les éléments propres de
la matrice T .

Q29. Montrer que les valeurs propres de T sont réelles.

Q30. Soit k ∈ N tel que k ̸∈ (n + 1)Z. On considère le vecteur Uk de Rn donné par :

Uk =
�

sin
�

kπ

n + 1

�
, sin

�
2kπ

n + 1

�
, . . . , sin

�
(n − 1)kπ

n + 1

�
, sin

�
nkπ

n + 1

��
.

Montrer que Uk est un vecteur propre de T et préciser la valeur propre associée.

Q31. En déduire l’ensemble des valeurs propres de T .

Q32. Déterminer alors la valeur de cond(T ).

Partie E – Inégalité de Kantorovich
Dans toute cette partie, A désigne une matrice de S++

n (R) et on désigne par λ1, . . . ,λn l’ensemble de ses valeurs
propres où l’on suppose que 0 < λ1 ⩽ λ2 ⩽ . . . ⩽ λn et comptées avec leur ordre de multiplicité, et on désigne par
C = (V1, . . . ,Vn) une base orthonormée de Rn formée de vecteurs propres de A.
On se propose d’établir le résultat suivant, appelée inégalité de Kantorovich :

(K) : ∀X ∈ Rn, ∥X∥4 ⩽ ⟨AX,X⟩


A−1X,X

�
⩽ 1

4

 
1p

cond(A)
+
p

cond(A)
!2

∥X∥4
.
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I – Une première démonstration
On désigne par P le polynôme de R[X] donné par P = X2 − (λ1 + λn) X + λ1λn.

Q33. Exprimer cond(A) à l’aide des valeurs propres de A.

Q34. On admet que l’application (·,·)A : Rn × Rn −→ R
(X,Y ) 7−→ ⟨AX,Y ⟩

est un produit scalaire sur Rn.

À l’aide de l’inégalité de Cauchy-Schwarz, démontrer que : ∀X ∈ Rn, ∥X∥4 ⩽ ⟨AX,X⟩


A−1X,X

�
.

Q35. Montrer que : ∀k ∈ {1, . . . ,n} , P (λk) ⩽ 0.

Q36. Déterminer les valeurs propres de la matrice B = A−1P (A) et en déduire que ⟨BX,X⟩ ⩽ 0 pour tout X ∈ Rn.

Q37. Pour X ∈ Rn fixé, on désigne par f la fonction polynôme de degré 2 définie par :

f : R −→ R
λ 7−→ ⟨AX,X⟩ λ2 − (λ1 + λn) ∥X∥2

λ + λ1λn



A−1X,X

�

Vérifier que f(1) = ⟨BX,X⟩, montrer que f(0)f(1) ⩽ 0, puis établir que :

(⋆) : (λ1 + λn)2 ∥X∥4 − 4 ⟨AX,X⟩


A−1X,X

�
λ1λn ⩾ 0.

Q38. Déduire de ce qui précéde l’inégalité de Kantorovich.

II – Une deuxième démonstration
On admet que, pour établir la relation (K), il suffit de la vérifier pour un vecteur X de norme 1.
Dans toute cette partie, X = (x1, . . . ,xn) désigne donc un vecteur de Rn de norme 1 dont les coordonnées sont données
dans la base C.
On considère alors un espace probabilisé (Ω,A,P), et on définit la variable aléatoire Z par :

Z (Ω) = {λ1, . . . ,λn} et : ∀i ∈ {1, . . . ,n} ,P ([Z = λi]) = x2
i

Q39. Justifier que l’on définit bien une loi de probabilité pour Z.

Q40. Justifier que Z et 1
Z

admettent une espérance, puis les exprimer en fonction de ⟨AX,X⟩ et de


A−1X,X

�
.

Q41. En remarquant que la variable aléatoire (Z − λ1) (Z − λn) est négative, établir l’inégalité suivante :

1
Z

⩽ λ1 + λn − Z

λ1λn
.

Q42. En déduire alors que : E (Z)E
�

1
Z

�
⩽ − 1

λ1λn

�
E (Z) − λ1 + λn

2

�2
+ (λ1 + λn)2

4λ1λn
.

Q43. Déduire de ce qui précède la seconde partie de l’inégalité de Kantorovich.

⋄ Fin ⋄
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Exercice :
 


