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Conditionnement d’une matrice et applications

Dans tout ce probléme, n désigne un entier naturel non nul, et on rappelle que M, (R) désigne I’ensemble des matrices
carrées a n lignes et n colonnes. On note D,, (R) le sous-espace vectoriel de M, (R) des matrices diagonales.

On rappelle que 'on désigne par M " la transposée d’une matrice M.
Pour alléger les notations, on identifiera les vecteurs de R™ aux matrices colonnes de M, 1 (R).

On désignera par B = (E1,Fs,...,E,) la base canonique de R™.

n
g x7 qui est la norme euclidienne

i=1

On munit R™ de la norme ||-||, en posant pour tout = = (z1,...,2,) € R", ||z| =

associée au produit scalaire canonique (-,-) de R™ ot par définition, pour tout X et Y de R", (X,Y) = XTY.

Pour toute matrice M de M,, (R) on note p (M) le réel défini par : p (M) = N gna)((M) [A]
€5Pp¢

On note par ailleurs S;7 (R) I'ensemble des matrices symétriques positives de M,, (R) et par S (R) I'ensemble des
matrices symétriques définies positives de M., (R).

Partie A — Construction d’une norme sur M, (R)

On se propose dans cette partie de montrer que ’application N donnée sur M,, (R) par :

N:A+— sup ||AX]|
X 11=1

est une norme sur M,, (R) et d’en étudier quelques propriétés.

I — Etude de l’application N

Dans toute cette partie, on considére A une matrice quelconque de M, (R) dont on note Ly, Ls, ..., L, les n lignes
et Cq, Oy, ...C, les n colonnes, que I'on pourra identifier a des éléments de R™.

Q1. Soit X € R™ tel que || X|| = 1. En notant M = Jmax IIL;||, montrer que :
<ign

JAX|| < My
On pourra au préalable s’intéresser a la i ligne de la matrice AX et utiliser I'inégalité de Cauchy-Schwarz pour
les vecteurs de R™.

Axo]
Xo#0 ||X0||

Q2. En déduire que lapplication N est bien définie, puis que : N (A) =

Q3. Mountrer que l'application N ainsi définie est une norme sur M., (R).

Q4. En est-il de méme pour lapplication S: | M, (R) — R4 ?
M — p(M)

Q5. Soit A € D, (R) dont on note 4y, ..., 0, les termes diagonaux.

Vérifier que N (A) = max [d;].

1<ikn
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Q6. A Paide de Papplication X — ||AX ||, démontrer que : N (A) = Hx)rglz‘xzcl [|AX]|.

Q7. Etablir que: VX €R”, |AX|| < N (4)|X].

Q8. Soit B une autre matrice quelconque de M, (R). Montrer que :
N (AB) < N (A) N (B).

Q9. Montrer que :  max [|C;]| < N (A).
1<ign

Q10. Déterminer N (A) dans le cas ou toutes les colonnes de A sont nulles, sauf la derniére.

0 0 O
En déduire N (A) danslecasou A= [0 0 -1
0 0 1

II — Cas des matrices orthogonales et symétriques

Dans cette partie, A désigne une matrice quelconque de M,, (R) et U une matrice orthogonale de M,, (R).
Q11. Déterminer N(U).

Q12. Démontrer que N(UA) et N(A) sont égales.

Q13. En considérant X, € R™ ou || Xp|| = 1 tel que ||AXo|| = N(A), démontrer que N(AU) = N(A).

Q14. On suppose de plus dans cette question uniquement que la matrice A est une matrice symétrique réelle de
M, (R).
Montrer que : N (A) = p(4).

2 11
Q15. Déterminer N(A) danslecasou A= |1 2 1
11 2

Partie B — Conditionnement d’une matrice pour la norme N
On définit sur GL,, (R) I'application notée cond par : cond: | GL,(R) — R
A — N(A)N (A
I — Quelques résultats sur le conditionnement
Dans toute cette sous-partie, A désigne une matrice inversible de M,, (R) et U une matrice orthogonale de M,, (R).
Q16. Montrer que : 1 < cond (A).
Q17. Quel lien a-t-on entre cond (A) et cond (aA) pour o € R*?
Q18. Démontrer que cond(U) = 1.

Q19. Que dire de cond(UA), cond(AU) et de cond(A) ?

IT — Un exemple de minoration du conditionnement d’une matrice
1 si i=j
On suppose dans cette partie uniquement que A = (a; ;) 1<i<n OU:  @;; = ¢ 2 si j=1+1.
1<i<n .
0 sinon

Q20. On considere le vecteur X de R™ donné par : X = Z(fl)”*kQ”*kEk .

Montrer que AX = E,,.
Q21. Déduire de ce qui précede que N (A1) > 2n~L,

Q22. Justifier ||AFEz|| > 2, pour en déduire que cond(A4) > 2.
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Partie C — Conditionnement pour une matrice réelle inversible

Q23. Soit S une matrice de S, (R).

On considere C = (V4,...,V,,) une base diagonalisante orthonormée de R™ ou pour tout i € {1,...,n}, V; est un
vecteur propre associé a la valeur propre notée \; et o 'on suppose que A\; < ... < A\, sont les valeurs propres
de S comptées avec leur ordre de multiplicité.

Montrer que : N (5) = HI)r(lﬂixl [(SX,X)|.

Q24. Soit A € M,, (R) non nulle.
Démontrer que la matrice AT A appartient & S;7 (R) pour établir que N (ATA) = N(A)2.
Q25. Déduire de ce qui précede que pour A € M,, (R) non nulle : N (A4) =+/p(ATA).

Q26. On suppose dans cette question que A est une matrice M,, (R) inversible.
En remarquant que ATA = A"'AAT A, démontrer que les matrices AAT et AT A ont exactement les mémes
valeurs propres.

Q27. Soit A € M,, (R) inversible. On note p,, et py respectivement la plus petite et la plus grande des valeurs
propres de la matrice AT A et ot I'on suppose que 'on a 0 < f,, < s

Montrer que :  cond (4) = Har
M7n

Q28. Exprimer cond (A) lorsque A appartient & S (R) & l'aide des valeurs propres de A en remarquant que
ATA = A%

Partie D — Calcul explicite de conditionnement
2 -1 0)

Dans toute cette partie, on désigne par T la matrice de M,, (R) donnée par : T = -1

(0) -1 2
Le but de cette partie est de déterminer la valeur de cond(7T') en commengant par déterminer les éléments propres de
la matrice T.

Q29. Montrer que les valeurs propres de T sont réelles.

Q30. Soit k € N tel que k € (n + 1)Z. On consideére le vecteur Uy, de R™ donné par :

. km . 2km . ((n—1knm . [ nkrm
Up = |sin| —— | ,sin yow.,8in | ———— ] ,sin .
n+1 n+1 n+1 n+1

Montrer que U est un vecteur propre de T et préciser la valeur propre associée.

Q31. En déduire I’ensemble des valeurs propres de T'.

Q32. Déterminer alors la valeur de cond(T).

Partie E — Inégalité de Kantorovich

Dans toute cette partie, A désigne une matrice de S/ (R) et on désigne par A1, ...,\, ensemble de ses valeurs
propres ou 'on suppose que 0 < A\; < Ay < ... < A\, et comptées avec leur ordre de multiplicité, et on désigne par
C = (V1,...,V,,) une base orthonormée de R™ formée de vecteurs propres de A.

On se propose d’établir le résultat suivant, appelée inégalité de Kantorovich :

2
(K): VX eR, X" < (AX.X) (A X.X) < - [ 4 \Jeond(A) | |IX]*.
4 cond(A)
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On désigne par P le polynome de R[X] donné par P = X2 — (A1 + \,) X + A\,

Q33.
Q34.

Q35.
Q36.
Q37.

Q38s.

Exprimer cond(A) a l’aide des valeurs propres de A.

On admet que 'application (-,-),: | R* xR* — R est un produit scalaire sur R".
(X)Y) — (AX)Y)

A Taide de I'inégalité de Cauchy-Schwarz, démontrer que : VX € R”, HX||4 < (AX,X) <A*1X,X>.
Montrer que :  Vk € {1,...,n},P (M) <O.
Déterminer les valeurs propres de la matrice B = A71P(A) et en déduire que (BX,X) < 0 pour tout X € R™.

Pour X € R™ fixé, on désigne par f la fonction polynéme de degré 2 définie par :

f+/IR — R
A= (AX,X)A2 — (A + ) [IXIP A+ Aid, (A71X XD

Vérifier que f(1) = (BX,X), montrer que f(0)f(1) < 0, puis établir que :
(*): M+ A7 IX* = 4(AX,X) (ATEX,X) MA, > 0.

Déduire de ce qui précéde 'inégalité de Kantorovich.

Exercice :

1. Soit E un Kev de dimension finie.

n

Montrer que si Oy, ..., O, sont des ouverts denses de E alors ﬂ O; est un ouvert dense de E.

i=1

2. lére application :

(a) Montrer que GL, (K) est un ouvert de M,, (K) et qu'’il est dense dans M,, (K) .

(b) En déduire qu’il existe une matrice M € M,,(K) telle que, pour n’importe quelle permutation
de ses n? coefficients, on obtienne toujours une matrice inversible.

3. 2éme application

(a) Soit F un sev strict de E (i.e. tel que F # E ).
Montrer que le complémentaire de F' : O = F© = E\F est un ouvert dense de E.

(b) En déduire que si une union finie de sev de E est un sev alors I'un contient tous les autres.
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