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0. Polynôme minimal d’une matrice
1. La famille In,M,M2, ...,Mn2 de cardinal n2+1 est liée dans Mn (K) qui est de dimension n2 d’après

le lemme de Steinitz. On en tire l’existence d’un polynôme annulateur non nul de M .
Si l’on considère l’ensemble des degrés des polynômes annulateurs non nuls de M , c’est donc un
ensemble non vide d’entiers naturels et comme tout ensemble d’entiers naturels non vide qui se
respecte, il admet un plus petit élément.
Ceci prouve l’existence d’un polynôme annulateur non nul de M de degré minimal.

2. Si P est un polynôme annulateur alors pour tout λ ∈ K, λP est aussi un polynôme annulateur.
Il suffit alors de diviser P par son coefficient dominant pour obtenir un polynôme annulateur non
nul unitaire de degré minimal.
S’il y avait deux polynômes annulateurs de degré minimal unitaires non égaux P1 et P2 alors P1 et
P2 seraient de même degré, sinon l’un des deux ne serait pas de degré minimal et donc P1−P2 serait
un polynôme annulateur non nul de degré plus petit, ce qui est absurde.

3. Soit P un polynôme annulateur deM . Par division euclidienne : P = Q×πM+R avec degR < deg πM
or si P (M) = 0 alors R(M) = 0 ce qui implique R = 0 par minimalité du degré du polynôme minimal.
Par conséquent P = Q× πM

4. Posons M =


1 1 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

. Il apparaît que M − I5 = E1,2 =


0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

.

Il vient donc que (M − I5)
2 = 0, par conséquent (X − 1)2 est un polynôme annulateur de M .

Si M admettait un polynôme annulateur de degré 1 alors ce polynôme serait de la forme X − a et il
est annulateur de M si et seulement si M = aI5, ce qui n’est pas le cas.
Conclusion : πM = (X − 1)2

I. Matrices compagnons et endomorphismes cycliques

I.A.

1. On a χM = det(XIn −M) = det (t(XIn −M)) = det(XIn − tM) = χtM donc

∀λ ∈ K, λ ∈ sp(M) ⇔ χM(λ) = 0 ⇔ χtM (λ) = 0 ⇔ λ ∈ sp
(
tM
)

Ainsi sp(M) = sp (tM) et donc M et tM ont même spectre

2. ⇐ : On suppose que M est diagonalisable. ce qui nous fournit P ∈ GLn(K) et D ∈ Mn(K)
diagonale telles que M = PDP−1

donc tM = t(P−1)tDtP = (tP )
−1
DtP

d’où tM est diagonalisable
⇒ : On suppose que tM est diagonalisable.

Pour montrer que M est diagonalisable, on utilise l’implication précédente en remarquant que
M = t(tM).

On a bien montré que tM est diagonalisable si et seulement si M est diagonalisable



I.B. Matrices compagnons

3. On montre que χCQ
= Q par récurrence sur deg(Q) = n ⩾ 2

Initialisation : On suppose que deg(Q) = 2 ainsi Q = X2+a1X+a0 et CQ =

(
0 −a0
1 −a1

)
∈ M2(K)

On a χCQ
= X2 − tr(CQ)X + det(CQ) = X2 + a1X + a0 ce qui prouve l’initialisation

Hérédité : Soit l’entier n ⩾ 2. On suppose la propriété vraie pour tout polynôme unitaire de degré
n.
On considère Q(X) = Xn+1 + anX

n + · · ·+ a0 où les ai ∈ K. On a en développant par rapport
à la première ligne :

χCQ
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

X . . . . . . . . . 0 a0
−1 X . . . . . . 0 a1

0 −1
. . .

... a2
...

. . .
. . .

. . .
...

...
...

. . . −1 X an−1

0 . . . . . . 0 −1 X + an

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
[n+1]

=

X

∣∣∣∣∣∣∣∣∣∣∣∣∣

−X . . . . . . 0 a1

−1
. . .

... a2
. . .

. . .
. . .

...
...

. . . −1 X an−1

. . . . . . 0 −1 X + an

∣∣∣∣∣∣∣∣∣∣∣∣∣
[n]

+ (−1)n+2a0

∣∣∣∣∣∣∣∣∣∣∣∣∣

−1 X . . . . . . 0

0 −1
. . .

...
...

. . .
. . .

. . .
...

...
. . . −1 X

0 . . . . . . 0 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣
[n]

Je note R = Xn + anX
−1 + · · ·+ a1 et on a χCQ

= XχCR
+ a0(−1)2n+2

Par hypothèse, on a χCR
= R donc χCQ

= XR + a0 = Q

Conclusion : On a montré par récurrence que la propriété était vraie pour tout polynôme unitaire
de degré ⩾ 2

En particulier Q est le polynôme caractéristique de CQ

4. On a t(CQ) =


0 1 0 . . . 0

0 0 1
. . .

...
...

. . .
. . . 0

0 . . . 0 1
−a0 −a1 . . . −an−1

.

On a χtCQ = χCQ
= Q ainsi Q(λ) = 0.

Soit X =


x1
x2
...
xn

 ∈ Mn,1(K),

t(CQ)X = λX ⇐⇒



x2 = λx1

x3 = λx2
...

xn = λxn−1

−a0x1 −. . .− an−1xn = λxn

⇐⇒



x2 = λx1

x3 = λ2x1
...

xn = λn−1x1

(−a0 − a1λ− . . .− an−1λ
n−1)x1 = λnx1

Ainsi t(CQ)X = λX ⇐⇒
{

∀i ∈ [[2, n]], xi = λi−1x1
Q(λ)x1 = 0



Notez bien que le "ainsi" concerne toute l’équivalence !

Comme λ est racine de Q, alors dim (Eλ (
tCQ)) = 1, Eλ (tCQ) = vect(Xλ) où Xλ =


1
λ
...

λn−1


I.C. Endomorphismes cycliques

5. ⇒ : On suppose que f est cyclique.
Ceci nous fournit x0 ∈ E tel que B = (x0, f(x0), . . . , f

n−1(x0)) soit une base de E

Il existe alors (λ0, λ1, . . . , λn−1) ∈ Kn tel que fn(x0) =
n−1∑
i=0

λif
i(x0)

Je pose alors Q = Xn +
n−1∑
i=0

(−λi)X iK[X]

de sorte que Q est unitaire de degré n et MB(f) = CQ
⇐ : On suppose qu’il existe une base B = (e0, e1, . . . en−1) de E dans laquelle la matrice de f est

de la forme CQ, où Q est un polynôme unitaire de degré n
Ainsi ∀i ∈ [[0, n− 2]], f(ei) = ei+1

donc (e0, f(e0), f
2(e0), . . . , f

n−1(e0)) est une base de E et donc f est cyclique

f est cyclique si et seulement s’il existe une base B de E dans laquelle la matrice
de f est de la forme CQ où Q est un polynôme unitaire de degré n

6. ⇐ : On suppose que χf est scindé sur K et a toutes ses racines simples.
Ainsi |sp(f)| = deg(χf ) = dimE

donc f est diagonalisable d’après le cours
⇐ : On suppose que f est diagonalisable. Comme f est cyclique,

ceci nous fournit B une base de E et Q ∈ K[X] unitaire de degré n tel que MB(f) = CQ d’après
5.
Ainsi CQ est diagonalisable et il en est de même pour tCQ d’après 2

Ainsi Kn =
⊕

λ∈sp(f)

Eλ
(
tCQ
)

d’où n =
∑

λ∈sp(tCQ)

dim
(
Eλ
(
tCQ
))

or on a ∀λ ∈ sp (tCQ) , dim (Eλ (
tCQ)) = 1 d’après 4 donc |sp (tCQ)| = n

or d’après 1 : sp (tCQ) = sp (CQ) = sp (f)

donc f admet n valeurs propres distinctes dans K
donc χf est scindé sur K et a toutes ses racines simples

Ainsi f est diagonalisable si et seulement si χf est scindé sur K et a toutes ses racines simples

7. On suppose que f est cyclique.

Soit (λ0, . . . , λn−1) ∈ Kn tel que
n∑
i=0

λif
i = 0L(E). Montrons ∀i ∈ [[0, n− 1]], λi = 0

Comme f est cyclique, ceci nous fournit x ∈ E tel que B = (x, f(x), . . . , fn−1(x)) soit une base de E

donc
n∑
i=0

λif
i(x) = 0L(E)(x) = 0E

ainsi ∀i ∈ [[0, n− 1]], λi = 0 car B est libre
Alors (Id, f, f 2, . . . , fn−1) est libre dans L(E)



Je note d le degré de πf . D’après le cours on a d = dim (K[f ]).
Or (Id, f, f 2, . . . , fn−1) est libre dans K[f ] donc d ⩾ n

de plus d’après Cayley-Hamilton, on a χf est annulateur de f
d’où πf | χf or ce sont des polynômes non nuls ainsi on a d = deg (πf ) ⩽ deg (χf ) = n

ainsi n = d d’où le polynôme minimal de f est de degré n

On ne se sert pas de cette question pour montrer le théorème de Cayley-Hamilton dans le paragraphe I.D qui suit.

I.D. Application à une démonstration du théorème de Cayley-Hamilton

8. On note Nx = {m ∈ N∗} (f i(x))0⩽i⩽m−1 libre.
On sait que 1 ∈ Nx car x ̸= 0E et que ∀m ⩾ n, m ̸∈ Nx car dimE = n

Ainsi Nx est une partie de N∗ non vide majorée par n− 1

donc Nx admet un plus grand élément p ∈ N∗.
Ainsi la famille (f i(x))0⩽i⩽p−1 est libre et la famille (f i(x))0⩽i⩽p est liée

On a bien l’existence de p ∈ N∗ et de (α0, α1, . . . , αp−1) ∈ Kp tels que la famille
(x, f(x), f 2(x), . . . , f p−1(x)) est libre et α0x+α1f(x)+ · · ·+αp−1f

p−1(x)+fp(x) = 0

9. On a f (Vect(x, f(x), f 2(x), . . . , f p−1(x))) = Vect(f(x), f 2(x), f 3(x), . . . , f p(x)) car f linéaire
or f p(x) = −α0x− α1f(x) + · · · − αp−1f

p−1(x) ∈ Vect(x, f(x), f 2(x), . . . , f p−1(x))

d’où f (Vect(x, f(x), f 2(x), . . . , f p−1(x))) ⊂ Vect(x, f(x), f 2(x), . . . , f p−1(x))

Ainsi Vect(x, f(x), f 2(x), . . . , f p−1(x)) est stable par f

10. Je note alors f̃ l’endomorphisme induit par f sur Vect(x, f(x), f 2(x), . . . , f p−1(x))

D’après ce qui précède B = (x, f(x), f 2(x), . . . , f p−1(x)) est une base de Vect(x, f(x), f 2(x), . . . , f p−1(x))

On remarque que MB(f̃) = CQ en notant Q = α0 + α1X + · · ·+ αp−1X
p−1 +Xp

d’où χf̃ = Q or χf̃ |χf car f̃ induit par f

On a montré que Xp + αp−1X
p−1 + · · ·+ α0 divise le polynôme χf

11. En reprenant les notations précédentes, on a Q(f)(x) = 0 et il existe P ∈ K[X] tel que PQ = χf
Ainsi χf (f) = P (f) ◦Q(f) donc χ(f)(x) = P (f) [Q(f)(x)] = P (f)(0) = 0 car P (f) linéaire
On a ainsi montré que : ∀x ∈ E, χ(f)(x) = 0

or χ(f) ∈ L(E) d’où χf (f) est l’endomorphisme nul

12. D’après la question 0.3), χf est un polynôme annulateur de f donc χf est un multiple de πf .
Ce qui revient à dire πf divise χf

II. Etude des endomorphismes cycliques

II.A. Endomorphismes cycliques nilpotents

13. ⇒ : On suppose f cyclique alors deg (πf ) = n d’après 7
De plus d’après le cours, χf = Xn car f nilpotente
or πf |χf selon Cayley-Hamilton et πf est unitaire par définition
donc πf = Xn

ainsi fn = 0 et ∀i ∈ [[0, n− 1]], f i ̸= 0

d’où r = n



⇐ : On suppose que r = n donc fn = 0 et fn−1 ̸= 0

Ceci nous fournit x ∈ E tel que fn−1(x) ̸= 0

Soit λ0, . . . , λn−1 ∈ K tels que
n−1∑
i=0

λif
i(x) = 0.

On montre que ∀i ∈ [[0, n− 1]], λi = 0

On suppose, par l’absurde, que la propriété est fausse
Je note alors j le minimum de {i ∈ [[0, n− 1]]}λi ̸= 0

Ainsi 0 = fn−1−j

(
n−1∑
i=0

λif
i(x)

)
= fn−1−j

(
n−1∑
i=j

λif
i(x)

)
= λjf

n−1(x) +
n−1∑
i=j

λif
n−1+i−j(x)

Or ∀i ⩾ p, f i(x) = 0 donc λjfn−1(x) = 0 et λj ̸= 0

d’où fn−1(x) = 0 ce qui est absurde
Ainsi (x, f(x), . . . , fn−1(x)) est une famille libre composée de n vecteurs de E et dimE = n

donc (x, f(x), . . . , fn−1(x)) est une base de E
donc f est cyclique.

On a montré que f est cyclique si et seulement si r = n

On remarque que la matrice compagnon associée est unique car les coefficients de cette matrices sont
donnés par ceux du polynôme caractéristique.
On sait que si f est cyclique et nilpotente, alors χf = Xn

ainsi la matrice compagnon de f dans ce cas est



0 . . . . . . . . . 0 0
1 0 . . . . . . 0 0

0 1
. . .

... 0
...
. . .

. . .
. . .

...
...

...
. . . 1 0 0

0 . . . . . . 0 1 0


∈ Mn(R)

II.B.

14. Pour k ∈ [[1, p]], (f − λkIdE)mk et f commutent car C[f ] est une algèbre commutative
donc Fk = Ker((f − λkIdE)mk) est stable par f

On a χf (X) =

p∏
k=1

(X − λk)
mk et les polynômes (X − λk)

mk sont deux à deux premiers entre eux

Alors selon le lemme de décomposition des noyaux, on a

Ker (χ(f)) = Ker((f − λ1IdE)m1)⊕ · · · ⊕Ker((f − λpIdE)mp) = F1 ⊕ · · · ⊕ Fp

de plus selon Cayley-Hamilton, χf (f) = 0 et donc Ker (χ(f)) = E

d’où E = F1 ⊕ · · · ⊕ Fp

15. Soit x ∈ Fk. On a (f − λkId)mk(x) = 0

Pour tout y ∈ Fk, on a (f − λkId)(y) = φk(y) ∈ Fk
ainsi pour tout p ∈ N, (f − λkId)p(x) = φpk(x) par récurrence immédiate sur p
donc φmk

k (x) = 0, comme c’est vrai pour tout x ∈ Fk, on conclut que

φk est un endomorphisme nilpotent de Fk
16. D’après le cours, l’indice de nilpotence de φk, endomorphisme de Fk est majoré par dimFk

ainsi νk ⩽ dim(Fk)



17. Je note P =

p∏
i=1

(X − λi)
νi . Soit k ∈ [[1, p]]. Soit x ∈ Fk.

On a P (f) =

 p∏
i=1
i̸=k

(X − λi)
νi(f)

 ◦ (f − λkId)νk

donc P (f)(x) =

 p∏
i=1
i̸=k

(X − λi)
νi(f)

 (φνkk (x)) =

 p∏
i=1
i̸=k

(X − λi)
νi(f)

 (0) = 0

donc P (f) coïncide avec l’endomorphisme nul sur chaque Fk et E = F1 ⊕ · · · ⊕ Fp d’après 13
donc P (f) = 0

Je note d le degré de P comme P est unitaire alors (Id, f, f 2, . . . , fd) est liée
donc d ⩾ n car (Id, f, f 2, . . . , fn−1) est libre

or d =

p∑
i=0

νi d’où n ⩽
p∑
i=0

νi

On remarque à l’aide de la question 14 que νk ⩽ mk pour tout k ∈ [[1, p]]

donc n ⩽
p∑

k=0

νk ⩽
p∑
i=0

mk = n

ainsi les inégalités sont des égalités et pour tout k ∈ [[1, p]], on a νk = mk

18. Comme E = F1 ⊕ · · · ⊕ Fp d’après 13 et ∀k ∈ [[1, p]], νk ⩽ dimFk d’après 15

on a donc avec la question précédente n =

p∑
k=1

νk ⩽
p∑

k=1

dim(Fk) = n

Comme à la question précédente, on obtient : ∀k ∈ [[1, p]], νk = mk = dim (Fk)

φk est un endomorphisme nilpotent de Fk d’indice νk = mk = dim (Fk)

donc selon 12, φk est nilpotent et cyclique.

ceci nous fournit une base Bk de Fk tel que MBk
(φk) =



0 0 . . . . . . . . . 0

1 0
. . .

...

0 1 0
. . .

...
...
. . .

. . .
. . .

. . .
...

...
. . .

. . . 0 0
0 . . . . . . 0 1 0


∈ Mmk

(C)

En notant fk l’endomorphisme induit par f sur Fk,

on a alors MBk
(fk) =



λk 0 . . . . . . . . . 0

1 λk
. . .

...

0 1 λk
. . .

...
...

. . .
. . .

. . .
. . .

...
...

. . .
. . . λk 0

0 . . . . . . 0 1 λk


∈ Mmk

(C)

En concaténant les bases Bk pour k allant de 1 à p
On obtient une base B adaptée à la décomposition en somme directe E = F1 ⊕ · · · ⊕ Fp
ainsi
B = (u1, . . . , un) est une base de E dans laquelle f a une matrice diagonale par blocs de formes voulues



Remarque : pour la suite on peut démontrer que pour une telle base on a nécessairement :

∀k ∈ [[1, p]], (f − λkId)mk(um1+···+mk−1+1) = 0 puis

∀k ∈ [[1, p]], ∀i ∈ [[1,mk]], um1+···+mk−1+i ∈ Fk

On peut aussi supposer que l’on travaille avec la base choisie.
19. Pour k ∈ [[1, p]], on a um1+···+mk−1+1 ∈ Fk

ainsi ∀i ∈ N, f i(um1+···+mk−1+1) ∈ Fk car Fk stable par f
puis pour tout P ∈ C[X], on a P (f)(um1+···+mk−1+1) ∈ Fk car Fk est stable par combinaison linéaire.

Et ainsi P (f)(x0) =
p∑

k=1

P (f)(um1+···+mk−1+1) est la décomposition de P (f)(x0) sur F1 ⊕ · · · ⊕ Fp

Soit Q ∈ C[X]. On a donc Q(f)(x0) = 0 ⇐⇒ ∀k ∈ [[1, p]], Q(f)(ek) = 0

Je note ek = um1+···+mk−1+1 et on a Bk = (ek, φk(ek), . . . , φ
mk−1
k (ek)) est une base de Fk

On a vu que la matrice de φk dans cette base est CXmk

donc πφk
= Xmk car φk est cyclique et nilpotent et dim(Fk) = mk selon 12

∀k ∈ [[1, p]], (f − λkId)mk(um1+···+mk−1+1) = 0 puis

∀k ∈ [[1, p]], ∀i ∈ [[1,mk]], um1+···+mk−1+i ∈ Fk

Par ailleurs on montre facilement que

∀P ∈ C[X], P (φk) = 0 ⇐⇒ P (φk)(ek) = 0

car P (φk) commute avec tout φik et que (φik(ek))0⩽i<mk
est une base de Fk.

Par ailleurs on a Q(φk) = 0 ⇐⇒ Xmk |Q (nilpotent et cyclique)
donc Q(f)(ek) = 0 ⇐⇒ Q(φk + λkIdFk

)(ek) = 0 ⇐⇒ Xmk |Q(X + λk)

ainsi Q(f)(ek) = 0 ⇐⇒ (X − λk)
mk |Q(X)

donc comme les (X − λk)
mk sont deux à deux premiers entre eux,

on a finalement Q(f)(x0) = 0 ⇐⇒
p∏

k=1

(X − λk)
mk |Q

20. Soit (λi)0⩽i⩽n−1 ∈ Kn tel que
n−1∑
i=0

λif
i(x0) = 0 Je note Q =

n−1∑
i=0

λiX
i de sorte que Q(f)(x0) = 0

ainsi
p∏

k=1

(X − λk)
mk |Q d’après la question précédente or deg(Q) ⩽ n−1 < n = deg

(
p∏

k=1

(X − λk)
mk

)
donc Q est le polynôme nul et ainsi ∀i ∈ [[0, n− 1]], λi = 0

donc (f i(x0))0⩽i⩽n−1 est une famille libre de n vecteurs de E et n = dimE

d’où (f i(x0))0⩽i⩽n−1 est une base de E ce qui justifie que f est cyclique

III. Endomorphismes commutants, décomposition de Frobenius
21. L’application g 7−→ f ◦ g − g ◦ f est un endomorphisme de L(E) dont le noyau est C(f)

Ainsi C(f) est un sous-espace vectoriel de L(E)

De plus, soit g et h ∈ C(f). On a (g ◦ h) ◦ f = g ◦ f ◦ h = f ◦ (g ◦ h)
ainsi C(f) est stable par ◦ et il est clair que Id ∈ C(f)

Ainsi C(f) est une sous-algèbre de L(E)



III.A. Commutant d’un endomorphisme cyclique

22. On a g(x0) ∈ E et (x0, f(x0), . . . , f
n−1(x0)) est une base de E.

d’où l’existence de λ0, λ1, . . . , λn−1 de K tels que g(x0) =
n−1∑
k=0

λkf
k(x0)

23. Il suffit d’établir que les applications linéaires g et
n−1∑
k=0

λkf
k coïncident sur la base (x0, f(x0), . . . , fn−1(x0)).

On montre par récurrence immédiate que ∀i ∈ N, g ∈ C (f i)

Soit i ∈ [[0, n− 1]]. En utilisant 21 et le fait que l’algèbre K[f ] est commutative

g
(
f i(x0)

)
= f i (g(x0)) = f i

(
n−1∑
k=0

λkf
k(x0)

)
=

n−1∑
k=0

λkf
k
(
f i(x0)

)

donc g =
n−1∑
k=0

λkf
k et g ∈ K[f ]

24. On vient d’établir le sens direct (avec un polynôme de degré ⩽ n− 1)
La réciproque vient du fait que K[f ] est une algèbre commutative et que Kn−1[X] ⊂ K[X] et f ∈ K[f ].
On conclut que

g ∈ C(f) si et seulement s’il existe un polynôme R ∈ Kn−1[X] tel que g = R(f)

III.B. Décomposition de Frobenius

25. On suppose que G = F1 ∪ · · · ∪ Fr est un sous espace de E.
Par l’absurde, je suppose qu’aucun des sous-espaces Fi ne contient tous les autres.
Ainsi r ⩾ 2 et G ̸= {0}.

Quitte à réduire le nombre, on peut supposer qu’aucun Fi n’est inclus dans la réunion des autres.
Cela nous fournit x1 ∈ F1 qui n’est dans aucun des Fi pour i ⩾ 2.
Sinon, F1 ̸= G et on peut aussi trouver y ∈ G \ F1.
Pour tout scalaire λ, on a y + λx1 ̸∈ F1 (car sinon y ∈ F1) et ainsi y + λx1 ∈ F2 ∪ · · · ∪ Fr.
La droite affine y +Kx1 est donc incluse dans F2 ∪ · · · ∪ Fr et contient une infinité d’éléments
car K est infini et t ∈ K 7→ y + tx1 est injective car x1 ̸= 0

Ceci nous fournit j ∈ [[2, r]] et λ ̸= λ′ dans K tel que y + λx1 ∈ Fj et y + λ′x1 ∈ Fj
donc x1 ∈ Fj (par combinaison linéaire) ce qui est absurde
Ainsi l’un des sous-espaces Fi contient tous les autres

Remarque : Pour r = 2, il existe une preuve classique purement algébrique.

26. Soit x ∈ E

(a) Comme dans la partie 0, l’ensemble des polynômes P non nuls tels que P (f)(x) = 0 est non
vide (il contient πf ) donc il admet un polynôme de degré minimal, et par division euclidienne,
tous les autres polynômes sont des multiples de celui-ci.

(b) Avec ce qui précède, on a donc : ∀x ∈ E, πf,x|πf



(c) Si on écrit πf =
N∏
k=1

Pαi
i décomposition en facteurs irréductibles, où N ∈ N∗, les Pi sont irréduc-

tibles unitaires et distincts deux à deux et enfin les αi ∈ N∗.

Alors le nombre de diviseurs unitaires de πf est
N∏
k=1

(αi + 1)

(d) Ainsi l’ensemble {πf,x} x ∈ E est fini de cardinal noté r où r ∈ [[1,
N∏
k=1

(αi + 1)]]

On peut donc choisir u1, . . . ur ∈ E, tel que {πf,x} x ∈ E = {πf,ui} i ∈ [[1, r]]

Ainsi E =
r⋃
i=1

Ker(πf,ui(f)) car ∀x ∈ E, x ∈ Ker(πf,x(f))

(e) La question précédente (question 25) nous fournit i0 ∈ [[1, r]] tel que Ker(πf,ui0 (f)) = E

On note x1 = ui0 et on a Ker(πf,x1(f)) = E

On remarque que πf,x1(f) = 0L(E) donc πf |πf,x1
or πf,x1 |πf et ce sont des polynômes unitaires
donc πf,x1 = πf Finalement

∀P ∈ K[X], P (f)(x1) = 0 ⇐⇒ πf |P

en faisant comme en 19, on montre que (x1, f(x1), . . . , f
d−1(x1)) est libre

27. En faisant comme en 9, on montre que E1 est stable par f
De plus, on a E1 = {P (f)(x1)/ P ∈ Kd−1[X]} ⊂ {P (f)(x1)/ P ∈ K[X]}
Soit P ∈ K[X]. Comme πf ̸= 0,

le théorème de la division euclidienne nous fournit Q et R ∈ K[X] tels que
{
P = Qπf +R
deg(R) < d = deg(πf )

On a alors P (f)(x1) = [Q(f) ◦ πf (f)] (x1) +R(f)(x1) = R(f)(x1) ∈ {T (f)(x1)/ T ∈ Kd−1[X]}
On conclut que E1 = {P (f)(x1)/ P ∈ K[X]}

28. D’après ce qui précède B = (e1, e2, . . . , ed) est une base de E1.
De plus on a MB(ψ1) = Cπf matrice compagnon du πf polynôme unitaire de degré d = dim(E1)

alors d’après 5, ψ1 est cyclique

29. Pour i ∈ N, on note Fi = Ker (Φ ◦ f i) ainsi F =
⋂
i∈N

Fi est bien un sous-espace de E

De plus, on a pour i ⩾ 1, f(Fi) ⊂ Fi−1 donc

f(F ) ⊂ f

(⋂
i∈N∗

Fi

)
⊂
⋂
i∈N∗

f (Fi) ⊂
⋂
i∈N∗

Fi−1 = F

d’où F est stable par f
Soit u ∈ E1 ∩ F .

Comme u ∈ E1, cela nous fournit λ1, . . . , λd ∈ K tels que u =
d∑

k=1

λkek

or Φ(x) = λd et Φ(f 0(x)) = 0 car u ∈ F , donc λd = 0 d’où u =
d−1∑
k=1

λkek

puis f(u) =
d−1∑
k=1

λkek+1 et donc λd−1 = 0 et f(u) =
d−2∑
k=1

λkek+1



En réitérant le procédé, on trouve λd−2 = . . . = λ1 = 0

donc u = 0

L’autre inclusion étant évidente, on a E1 ∩ F = {0} d’où E1 et F sont en somme directe

30. Je note Ψ1 l’application linéaire induite par Ψ entre E1 et Kd.
Soit x ∈ Ker(Ψ1).
On a x ∈ E1 et Φ(x) = Φ(f(x)) = · · · = Φ(fd−1(x)) = 0.
En faisant comme à la question précédente, on obtient x = 0

L’autre inclusion étant évidente, on a Ker(Ψ1) = {0}
Ainsi Ψ1 est une application linéaire injective entre E1 et Kd or dim(E1) = d = dim(Kd)

En utilisant le théorème du rang, on obtient que Ψ1 est surjective puis bijective
Ainsi Ψ induit un isomorphisme entre E1 et Kd

31. De la question précédente, on montre que Ψ est surjective de E vers Kd et que Ker(Ψ)
⋂
E1 = {0}.

Ainsi dim (E1) = d = rg (Ψ) et dim(E) = dim (Ker(Ψ)) + rg(Ψ) = dim (Ker(Ψ)) + dim (E1)

donc E = E1 ⊕Ker(Ψ)

On a KerΨ =
d−1⋂
i=0

Fi (les Fi sont introduits en 28) on a donc F ⊂ KerΨ

Soit x ∈ Ker(Ψ). Montrons que x ∈ F

Soit i ∈ N. Il suffit d’établir que Φ(f i(x)) = 0

Le théorème de la division euclidienne nous fournit Q et R ∈ K[X] tel que deg(R) < d et X i =
Qπf +R.

On peut écrire R =
d−1∑
k=0

akX
k. On a comme en 26 et car Φ est linéaire

Φ(f i(x)) = Φ (0) + Φ (R(f)(x)) = 0 +
d−1∑
k=0

akΦ
(
fk(x)

)
= 0

ainsi F ⊃ KerΨ d’où F = KerΨ

on conclut que E = E1 ⊕ F

32. Préambule : Avant de commencer la construction par récurrence, on remarque que dans ce qui
précède le polynôme minimal de f est celui de ψ1 et donc que ∀x ∈ F, πψ1(f)(x) = 0

Initialisation : On prend E1, F et ψ1 comme ci dessus.
On a E1 stable par F et ψ1 cyclique.
On pose P1 = πf = πψ1 , G1 = F de sorte que E1 ⊕G1 = E

On a ∀x ∈ G1, P1(f)(x) = 0

Hérédité : Soit k ∈ N∗.
On suppose avoir l’existence de k sous-espaces vectoriels de E, notés E1, . . . , Ek et Gk tous
stables par f , tels que

— E = E1 ⊕ · · · ⊕ Ek ⊕Gk ;
— pour tout 1 ⩽ i ⩽ k, l’endomorphisme ψk induit par f sur le sous-espace vectoriel Ei est

cyclique ;
— si on note Pi le polynôme minimal de ψi, alors Pi+1 divise Pi pour tout entier i tel que

1 ⩽ i ⩽ k − 1

— ∀x ∈ Gk, Pk(f)(x) = 0

Si dimGk = 0, on s’arrête et on pose r = k

Sinon, on applique 24 à 30 à l’endomorphisme induit par f sur Gk

On obtient alors Ek+1, Gk+1 sous espaces stables par f et le polynôme Pk+1 tels que



— E = E1 ⊕ · · · ⊕ Ek+1 ⊕Gk+1 ;
— l’endomorphisme ψk+1 induit par f sur le sous-espace vectoriel Ek+1 est cyclique ;
— si on note Pk+1 le polynôme minimal de ψk+1, alors Pk+1 divise Pk
— ∀x ∈ Gk+1, Pk+1(f)(x) = 0

On a ainsi la construction voulue au rang k.
Conclusion : Cette construction algorithmique s’arrête car à chaque étape dim(Ek) ⩽ 1 et donc

r ⩽ dim(E). car (dimGk)k est une suite à valeurs dans N strictement décroissante.
On obtient ainsi le résultat voulu.

On en déduit qu’il existe r sous-espaces vectoriels de E, notés E1, . . . , Er, tous stables par f , tels
que :

— E = E1 ⊕ · · · ⊕ Er ;
— pour tout 1 ⩽ i ⩽ r, l’endomorphisme ψi induit par f sur le sous-espace vectoriel Ei est

cyclique ;
— si on note Pi le polynôme minimal de ψi, alors Pi+1 divise Pi pour tout entier i tel que 1 ⩽ i ⩽

r − 1.

III.C. Commutant d’un endomorphisme quelconque

33. Je reprends les notations de la questions précédente pour la décomposition de Frobenius de f .
Je note Λ l’application telle que pour (g1, . . . , gr)L(E1) × · · · × L(Er), on a Λ(g1, . . . , gr) défini sur

E par Λ(g1, . . . , gr)(x) = g1(x1) + · · · gr(xr) où x =
r∑

k=1

xk et les xk ∈ Ek

Ainsi définie, Λ est linéaire de L(E1)× · · · × L(Er) à valeurs dans L(E)
De plus on montre facilement que Λ est injective et que Λ (C(ψ1)× · · · × C(ψr)) ⊂ C(f)

Ainsi dim (C(f)) ⩾ dim (C(ψ1)× · · · × C(ψr)) = dim (C(ψ1)) + · · ·+ dim (C(ψr))

or pour i ∈ [[1, r]], en notant ni = dimEi on a C(ψi) = Vect(ψ0
i , ψ

1
i , . . . , ψ

ni−1
i ) d’après 23 du III.A

Comme ψi est cyclique alors (ψ0
i , ψ

1
i , . . . , ψ

ni−1
i ) est libre d’après 7

donc dim (C(ψi)) = ni = dim (Ei) d’où

dim (C(ψ1)) + · · ·+ dim (C(ψr)) = dim (E1) + · · ·+ dim (Er) = dim (E1 ⊕ · · · ⊕ Er) = dim(E) = n

Ainsi la dimension de C(f) est supérieure ou égale à n

34. On note d = deg (πf ). D’après le cours, on a dim (K[f ]) = d

or K[f ] = C(f) et dimC(f) ⩾ n donc d ⩾ n.
Or on a πf |χf comme conséquence de Cayley-Hamilton ainsi d ⩽ n

donc d = n

Or en reprenant les notations précédentes, on a dim(E1) = d = n

Donc E1 = E et ψ1 = f or ψ1 est cyclique
ainsi f est cyclique

Exercice
1. Si B est solution, alors AB = B3B = B4 = BB3 = BA.
2. Si A admet trois valeur propres réelles distinctes, alors elle est diagonalisable et les sous-espaces

propres de A sont trois droites vectorielles. Comme A et B commutent, ces droites sont stables par
B et les vecteurs propres de A sont donc aussi des vecteurs de propres de B.
Par conséquent A et B sont diagonalisables dans la même base, elles sont donc codiagonalisables.



Si l’on note DA = diag(λ, µ, ν) la matrice diagonale semblable à A et DB = diag(α, β, γ) la matrice
diagonale semblable à B, la relation B3 = A se ramène à D3

B = DA.
Ou encore α3 = λ, β3 = µ, γ3 = ν. Comme la fonction x 7−→ x3 est bijective de R dans R alors il n’y
a qu’une seule solution à l’équation B3 = A.

3. (a) M3 =

r cos(3θ) −r sin(3θ) 0
r sin(3θ) r cos(3θ) 0

0 0 1

.

(b) Si A = I3, montrons qu’il y a une infinité de solutions. Remarquons que la matrice précédente
pour r = 1 et θ = 2π/3 vérifie M3 = I3. Par conséquent, toute matrice B semblable à M vérifie
B = PMP−1, ce qui implique B3 = PM3P−1 = PI3P

−1 = I3.

Il reste à montrer que la classe de similitude de M =

 1/2 −
√
3/2 0√

3/2 1/2 0
0 0 1

 est infinie.

Posons Pt =

1 0 0
0 1 t
0 0 1

. C’est une matrice inversible dont l’inverse (cf. ds 2) est la matrice

P−t.

Le calcul P−tMPt donne

 1/2 −
√
3/2 −t

√
3/2√

3/2 1/2 t(1/2−
√
3)

0 0 1

 . En faisant varier t, on obtient donc

une infinité de matrices semblables à M .
(c) Si A est diagonalisable et a un sous-espace propre de dimension ⩾ 2 alors soit A a deux valeurs

propres distinctes dont l’une est d’ordre 2, soit A a une seule valeur propre d’ordre 3.
Dans ce dernier cas, A = λI3 et il suffit de multiplier l’infinité de solutions de la question pré-
cédente par 3

√
λ pour obtenir une infinité de solutions de l’équation B3 = A.

Dans l’autre cas, A est semblable à

λ 0 0
0 λ 0
0 0 µ

 et avec la multiplication par blocs, il suffit de

trouver une infinité de solutions dans M2 (R) à l’équation M3 = λI2.
Pour cela, prenons une matrice réelle dont les valeurs propres sont j et j2.

C’est la matrice utilisée en fait dans la question précédente : M = 3
√
λ

(
1/2 −

√
3/2√

3/2 1/2

)
Calculons alors

(
1 −t
0 1

)
× 3
√
λ

(
1/2 −

√
3/2√

3/2 1/2

)
×
(
1 t
0 1

)
= 3

√
λ

(
1/2− t

√
3/2 ...

... ...

)
et il suffit

de faire varier t pour obtenir une infinité de solutions à l’équation B3 = A .

4. Soit A =

r cos(θ) −r sin(θ) 0
r sin(θ) r cos(θ) 0

0 0 λ

 avec r > 0, λ ∈ R et θ ∈ R \ πZ.

Or nous savons que la matrice
(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
a pour valeurs propres complexes eiθ et e−iθ qui

sont distinctes d’après l’hypothèse faite sur θ.

Les vecteurs propres associés sont respectivement
(
1
i

)
et
(

1
−i

)
.

La matrice de passage P de la base canonique à la base de vecteurs propres est donc
(
1 1
i −i

)
et

l’on calcule aisément P−1 = 1
2

(
1 −i
1 i

)
.

On obtient donc
(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
= P

(
eiθ 0
0 e−iθ

)
P−1.

Dans M3(C) la matrice A est diagonalisable à spectre simple : on peut écrire



A =

1 1 0
i −i 0
0 0 1

reiθ 0 0
0 re−iθ 0
0 0 λ

 1
2

1 −i 0
1 i 0
0 0 2

.

Le raisonnement de la question (b) reste valable. B est donc diagonalisable dans la même base de
vecteurs propres.

On peut donc écrire B =

1 1 0
i −i 0
0 0 1

α 0 0
0 β 0
0 0 γ

 1
2

1 −i 0
1 i 0
0 0 2

.

Et l’équation B3 = A devient α3 = reiθ, β3 = re−iθ, γ3 = λ.
Ces trois valeurs sont distinctes et elles ont chacune dans C trois racines cubiques distinctes.
Si l’on avait dû résoudre l’équation B3 = A dans M3(C), on aurait ainsi trouvé 9 solutions distinctes.
Mais nous devons résoudre dans M3(R).
On peut déjà dire que le sous-espace propre dirigé par E3 le 3ème vecteur de la base canonique est de
dimension 1 et est stabilisé par B donc c’est aussi un vecteur propre de B, par conséquent, γ = 3

√
λ.

De plus les racines cubiques de eiθ et e−iθ sont complexes non réelles et comme B est une matrice à
coefficients réels, ses valeurs propres complexes non réelles vont par paires de complexes conjugués.
Le triplet (α, β, γ) peut donc prendre les valeurs possibles :
( 3
√
reiθ/3, 3

√
re−iθ/3, 3

√
λ), ( 3

√
reiθ/3+2π/3, 3

√
re−iθ/3−2π/3, 3

√
λ), ( 3

√
reiθ/3+4π/3, 3

√
re−iθ/3−4π/3, 3

√
λ).

Si l’on multiplie par P et P−1, on va trouver trois matrices réelles qui seront solutions.
5. Si A est diagonalisable dans M3(R) avec trois valeurs propres distinctes, on est dans le cas de la

question 2 et il y a une solution unique.
Si A est diagonalisable dans M3(R) avec une valeur propre d’ordre ⩾ 2, alors d’après la question 3,
il y a une infinité de solutions.
Si A est diagonalisable dans M3(C) alors A est semblable à une matrice du type de la question 4 et
il y a donc trois solutions.
Si A n’est pas diagonalisable dans M3(C) , alors A est semblable à une matrice de la forme :λ 1 0
0 λ 0
0 0 µ

 avec λ ̸= µ, ou

λ 1 0
0 λ 0
0 0 λ

 ou

λ 1 0
0 λ 1
0 0 λ


(a) 1er cas : A = P

λ 1 0
0 λ 0
0 0 µ

P−1. Si l’on écrit B = PCP−1 alors l’équation B3 = A équivaut à

C3 =

λ 1 0
0 λ 0
0 0 µ

 (∗).

En particulier, comme à la question 1), ces deux matrices commutent ce qui implique que C soit

de la forme

α β 0
0 α 0
0 0 γ

. Puis (∗) implique α3 = λ, γ3 = µ, 2α2β = 1. Cette dernière équation

impose de considérer deux sous-cas.
Si λ ̸= 0 alors les trois équations ci dessus déterminent (dans R) de manière unique α, β et γ :
il y a donc une unique solution.
Si λ = 0, il n’y a pas de solution (on pouvait retrouver ce résultat en considérant l’indice de

nilpotence de la matrice extraite )
(
α β
0 α

)
.‘

(b) 2ème cas : A = PTP−1 = P

λ 1 0
0 λ 0
0 0 λ

P−1. Avec les mêmes notations que précédemment, C

commute avec T = λI3 + E1,2, ce qui revient à dire que C commute avec E1,2. Comme dans le
premier cas, on trouve une unique solution si λ ̸= 0 et aucune solution si λ = 0.



(c) 3ème cas : A = PTP−1 = P

λ 1 0
0 λ 1
0 0 λ

P−1. Avec les mêmes notations C commute avec

T = λI3 + E1,2 + E2,3 = λI3 +N , ce qui équivaut à dire que C commute avec N .
Or N est nilpotente d’indice 3 donc c’est un endomorphisme cyclique et d’après le problème

étudié dans ce DS, le commutant de N est égale à R[N ] et donc C =

α β γ
0 α β
0 0 α

.

A nouveau, le système obtenu admet une unique solution si λ ̸= 0 et aucune si λ = 0.


