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0. Polynédme minimal d’une matrice

1. La famille I,,, M, M2, ..., M™ de cardinal n?+ 1 est liée dans M,, (K) qui est de dimension n? d’aprés
le lemme de Steinitz. On en tire I'existence d’un polynéme annulateur non nul de M.
Si 'on considére 'ensemble des degrés des polynémes annulateurs non nuls de M, c¢’est donc un
ensemble non vide d’entiers naturels et comme tout ensemble d’entiers naturels non vide qui se
respecte, il admet un plus petit élément.
Ceci prouve 'existence d’'un polyndéme annulateur non nul de M de degré minimal.

2. Si P est un polynéme annulateur alors pour tout A € K, AP est aussi un polynéme annulateur.
Il suffit alors de diviser P par son coefficient dominant pour obtenir un polynéme annulateur non
nul unitaire de degré minimal.
S’il y avait deux polyndémes annulateurs de degré minimal unitaires non égaux P; et P, alors P; et
P, seraient de méme degré, sinon I'un des deux ne serait pas de degré minimal et donc P, — P, serait
un polyndéme annulateur non nul de degré plus petit, ce qui est absurde.

3. Soit P un polynéme annulateur de M. Par division euclidienne : P = Q) x ), + R avec deg R < deg ),
orsi P(M) = 0 alors R(M) = 0 ce qui implique R = 0 par minimalité du degré du polynéme minimal.
Par conséquent P = Q) X 7y

1 10 00 01 0 0O
01 0 0 0 00 0 0O
4. Posons M= |0 0 1 0 0].Il apparait que M —Is=E;2=[{0 0 0 0 0
0 0010 00 0 0O
000 01 00 00O

Il vient donc que (M — I5)? = 0, par conséquent (X — 1)? est un polynéme annulateur de M.
Si M admettait un polyndéme annulateur de degré 1 alors ce polynome serait de la forme X — a et il
est annulateur de M si et seulement si M = als, ce qui n’est pas le cas.

Conclusion : | mp = (X —1)?

I. Matrices compagnons et endomorphismes cycliques
L.A.
1. On a xy = det(X I, — M) = det (X1, — M)) = det(XI, —'M) = x,js donc

YAEK, Nesp(M) < xu(A) =0 x7(N) =04 X esp (M)

Ainsi sp(M) = sp (‘M) et donc | M et ‘M ont méme spectre

2. <« : On suppose que M est diagonalisable. ce qui nous fournit P € GL,(K) et D € M,(K)
diagonale telles que M = PDP~!
donc "M = {(P~1)D'P = (*P)”' D'P
d’ott M est diagonalisable

= : On suppose que ‘M est diagonalisable.
Pour montrer que M est diagonalisable, on utilise 'implication précédente en remarquant que

M = ().

On a bien montré que |!M est diagonalisable si et seulement si M est diagonalisable




I.B. Matrices compagnons

3. On montre que x¢, = @ par récurrence sur deg(Q) =n > 2
Initialisation : On suppose que deg(Q) = 2 ainsi Q = X?+a; X +ag et Cg = <(1) _ZO) € My (K)
—ay
On a x¢, = X? — tr(Co)X + det(Cqp) = X? 4+ a1.X + ag ce qui prouve l'initialisation
Hérédité : Soit 'entier n > 2. On suppose la propriété vraie pour tout polynéme unitaire de degré

n.
On considére Q(X) = X" 4+, X" + -+ ag ot les a; € K. On a en développant par rapport
a la premiére ligne :

X Cee e e 0 agp
-1 X ... ... 0 aq
0 -1 R as
XCo = | o oo : -
. -1 X Ap—1
o ... ... 0 -1 X+a"[n+1]
-X 0 ay -1 X 0
-1 . [¢5) 0 -1
X : +(=1)"ag
-1 X ay ; L1 X
0 -1 X+an[n} o ... ... 0 -1 .
Jenote R = X"+ a, X'+ ---+ay et on a xo, = Xx¢, + ao(—1)>""
Par hypothese, on a x¢, = R donc x¢, = XR +ag = Q
Conclusion : On a montré par récurrence que la propriété était vraie pour tout polyndéme unitaire
de degré > 2
En particulier | Q) est le polynéme caractéristique de Cy
0 1 0o ... 0
0 0 1
4. On a(Cy) = : 0
0o ... 0 1
—Qg —aip ... —Ap-1
On a XiCy = XCq = Q ainsi Q(\) =
X
T2
Soit X = | . | € M,1(K),
Tn
( (
T = A1y Ty = A1y
xI3 = )\.TQ I3 = )\21’1
C)X =X < (: —
Tn = \lpn_1 T, = Nl
(01— = g, = ATy, \ (—ap — A — ... — @ A" Nz = A"y

Vi € [2,n], z; = X"ty

Ainsi (Co)X = \X — { QN1 = 0



Notez bien que le "ainst" concerne toute ’équivalence !

1
A
Comme A\ est racine de @, alors |dim (E) ('Cq)) = 1, E\ ('Cgq) = vect(X),) ou X, =
Aﬂ—l
1.C. Endomorphismes cycliques
5. = : On suppose que f est cyclique.
Ceci nous fournit xg € E tel que B = (zq, f(z0), ..., f" ' (x0)) soit une base de F

n—1
Il existe alors (Ao, A1, ..., A1) € K" tel que f™(zg) = Z)\Zfz
=0

n—1

Je pose alors QQ = X" + Z ) X'K[X]
=0
de sorte que @ est unitaire de degré n et Mp(f) = Cq

< : On suppose qu’il existe une base B = (eg, e1,...¢,_1) de E dans laquelle la matrice de f est
de la forme Cg, ot ) est un polynéme unitaire de degré n

Ainsi Vi € [0,n — 2], f(e;) = eir1
donc (e, f(eo), f3(eq), .-, f" '(ey)) est une base de E et donc f est cyclique

f est cyclique si et seulement s’il existe une base B de E dans laquelle la matrice
de f est de la forme Cg ot () est un polyndéme unitaire de degré n

6. <= : On suppose que x; est scindé sur K et a toutes ses racines simples.
Ainsi [sp(f)| = deg(xf) = dim E
donc f est diagonalisable d’aprés le cours
< : On suppose que f est diagonalisable. Comme f est cyclique,

ceci nous fournit B une base de E et @) € K[X] unitaire de degré n tel que Mp(f) = Cq d’aprés
d.

Ainsi Cg est diagonalisable et il en est de méme pour 'Cy d’apres 2
AinsiK" = @ E\(Cq) doun= > dim(E\(Cq))

Aesp(f) resp(1CQ)
or on a VA € sp ('Cqp), dim (E) ('Cq)) =1 d’aprés 4 donc [sp (Cq)| =
or d’apres 1 : sp (‘Cg) = sp (Cg) =sp (f)
donc f admet n valeurs propres distinctes dans K
donc x est scindé sur K et a toutes ses racines simples

Ainsi | f est diagonalisable si et seulement si x; est scindé sur K et a toutes ses racines simples

7. On suppose que f est cyclique.
Soit (Ao, .., Au1) € K™ tel que Y A;f* = O(m). Montrons Vi € [0,n — 1], A; =0

i=0
Comme f est cyclique, ceci nous fournit x € E tel que B = (z, f(z),..., f*!(x)) soit une base de F

doncZ)\f ) = 0z(p)(z) = 0p

ainsi Vz E [0,n — 1], A; =0 car B est libre
Alors | (Id, f, f2,..., f™!) est libre dans £L(FE)




Je note d le degré de ms. D’apreés le cours on a d = dim (K[f]).

Or (Id, f, f2,..., f*') est libre dans K[f] donc d > n

de plus d’apres Cayley-Hamilton, on a x est annulateur de f

d’out 7y | xs or ce sont des polynémes non nuls ainsi on a d = deg (77) < deg (xr) =n

ainsi n = d d’ou ‘le polynéme minimal de f est de degré n‘

On ne se sert pas de cette question pour montrer le théoréme de Cayley-Hamilton dans le paragraphe I.D qui suit.

I.D. Application & une démonstration du théoréme de Cayley-Hamilton

8. On note N, = {m € N*} (f*(2))yc;cpn_, libre.
On sait que 1 € N, carx #0g et queVm >n, m ¢ N, car dimE =n
Ainsi N, est une partie de N* non vide majorée par n — 1
donc N, admet un plus grand élément p € N*.
Ainsi la famille (f*(2))o<;, ; est libre et la famille (f*(x)),c o, est lice

On a bien l'existence de p € N* et de (g, aq,...,a,-1) € KP tels que la famille
(z, f(x), f2(x),. .., [P () est libre et cpr 4 f(z)+- - -+ ap_1 fPH(z)+ fP(z) =0

9. On a f (Vect(z, f(x), f2(z),..., P (x))) = Vect(f(z), f2(z), f3(x),..., fP(z)) car f linéaire
or fP(z) = —apr — o f(x) + - — ap 1 [P () € Vect(z, f(x), f*(x ) f” '(z))
dott f (Vect(w, f(z), f*(x), ... f77'(x))) C Vect(z, f(z), f*(x),...., [~ 1( )
Ainsi | Vect(z, f(x), f2(x),..., fP71(x)) est stable par f

10. Je note alors f endomorphisme induit par f sur Vect(z, f(z), f2(z),..., f7~1(z))

D’apres ce qui précede B = (z, f(z), f*(z), ..., fF~1(z)) est une base de Vect(z, f(z), f2(x),..., [P~ (x))
On remarque que Mg(f) = Cg en notant Q = ag + oy X + - - + a1 XP~1 + X7
d’'ott x5 = Q or xj|x; car f induit par f

On a montré que | X? + o, 1 XP~! + - 4 ap divise le polynome

11. En reprenant les notations précédentes, on a Q(f)(z) = 0 et il existe P € K[X] tel que PQ = xs

Ainsi xf(f) = P(f) o Q(f) donc x(f)(z) = P(f) [Q(f)(x)] = P(f)(0) = 0 car P(f) linéaire
On a ainsi montré que : Vo € E, x(f)(x) =0

or x(f) € L(E) d’ot | xs(f) est 'endomorphisme nul

12. D’apreés la question 0.3), xs est un polynoéme annulateur de f donc x; est un multiple de 7.

Ce qui revient a dire | ¢ divise xy

II. Etude des endomorphismes cycliques

II.A. Endomorphismes cycliques nilpotents

13. = : On suppose f cyclique alors deg (7f) = n d’aprés 7
De plus d’aprés le cours, x5 = X" car f nilpotente
or 7s|xs selon Cayley-Hamilton et 7; est unitaire par définition
donc 7y = X"
ainsi f* =0et Vi€ [0,n—1], f*#0

dourr=n



< : On suppose que 7 = n donc f* =0et f* 1 #£0
Ceci nous fournit = € E tel que f"'(x) # 0

n—1

Soit Ap, ..., Ano1 € K tels que Y \;f'(x) = 0.
=0

On montre que Vi € [0,n — 1], \; =0
On suppose, par 'absurde, que la propriété est fausse
Je note alors j le minimum de {7 € [0,n — 1]} \; # 0

n—1 n—1 n—1
Ainst 0 = f* (Z Azf%c)) = (Z Aif%as)) = N @)+ AT )
=0 i=j =3

Or Vi = p, fi(z)=0donc \;f" (z)=0et \; #0

d’ou f"~1(x) = 0 ce qui est absurde

Ainsi (z, f(z),..., f"}(z)) est une famille libre composée de n vecteurs de E et dim E = n
donc (z, f(x),..., f* 1 (x)) est une base de F

donc f est cyclique.

On a montré que ‘ f est cyclique si et seulement si r =n

On remarque que la matrice compagnon associée est unique car les coefficients de cette matrices sont
donnés par ceux du polyndéme caractéristique.

On sait que si f est cyclique et nilpotente, alors yy = X"

0 ... .00
1 0 0 0
0 1 . 0
ainsi [la matrice compagnon de f dans ce casest | . .| e My (R)
1 00
0 10

II.B.

14. Pour k € [1,p], (f — MeIdg)™ et f commutent car C[f] est une algébre commutative
donc | F}, = Ker((f — M\ Idg)™*) est stable par f
p

Ona xp(X) = H(X — Ar)™ et les polynomes (X — A\g)™ sont deux a deux premiers entre eux
k=1
Alors selon le lemme de décomposition des noyaux, on a

Ker (x(f)) = Ker((f — MIdg)™) & --- @ Ker((f = \ldp)™) = L& --- & F,

de plus selon Cayley-Hamilton, x;(f) = 0 et donc Ker (x(f)) = F

doa[E=F @ - oF,
15. Soit x € Fy. On a (f — A\Id)™ (z) =0

Pour tout y € Fy, on a (f — \Id)(y) = ¢r(y) € Fy

ainsi pour tout p € N, (f — A\Id)P(z) = ¢} (x) par récurrence immédiate sur p

donc ¢, (x) = 0, comme c’est vrai pour tout x € Fj, on conclut que

’gpk est un endomorphisme nilpotent de Fk‘

16. D’apres le cours, 'indice de nilpotence de ¢y, endomorphisme de Fj, est majoré par dim Fj,

ainsi | v, < dim(Fy)




17.

18.

p
Je note P = H(X — \)". Soit k € [1,p]. Soit z € Fy.

i=1

On a P(f) = H(X =) (f)] o (f — Nald)™

i=1
i#k
p p
donc P(f)(z) = | [J(X = 2)"(5)| () = [ T](X = 2)"(f)] (0) =0
ik ik
donc P(f) coincide avec 'endomorphisme nul sur chaque Fy et E = F} & --- & F, d’aprés 13
donc P(f) =0

Je note d le degré de P comme P est unitaire alors (Id, f, f2,..., f9) est liée
donc d > n car (Id, f, f%,..., f*') est libre

p p
or d:ZVi d’oun < Zl/i
i=0 i=0
On remarque a I'aide de la question 14 que v, < my, pour tout k € [1, p]

p p
doncnég Ukég my=n
k=0 i=0

ainsi les inégalités sont des égalités et | pour tout k € [1,p], on a vy = my
Comme E = F, & --- & F, d’aprés 13 et Vk € [1,p], v, < dim F), d’apreés 15
p p
on a donc avec la question précédente n = Z Vg < Z dim(Fy) =n
k=1 k=1

Comme & la question précédente, on obtient : |Vk € [1,p], v, = my = dim (Fj)

¢k est un endomorphisme nilpotent de Fj d’indice vy = my, = dim (Fy)
donc selon 12, ¢y est nilpotent et cyclique.

0 0 0
10
. . o 1 0 - ;
ceci nous fournit une base By de Fj; tel que Mp, (¢r) = | | € My, (C)
: 0 0
0 . 0 1 0
En notant f; 'endomorphisme induit par f sur Fy,
M O ... .0 .00 0
1\ '
0 1 X
on a alors Mg, (fx) = e M, (C)
0O ... ... 0 1 X

En concaténant les bases By pour k allant de 1 & p
On obtient une base B adaptée a la décomposition en somme directe ' = F} @ --- @ F),

ainsi

B = (uy,...,u,) est une base de E dans laquelle f a une matrice diagonale par blocs de formes voulues




19.

20.

21.

Remarque : pour la suite on peut démontrer que pour une telle base on a nécessairement :

VE € [1,p], (f — MId)™ (wmysootmy_,+1) = 0 puis

Vk € ﬂl,p]], Vi € [[1,mk]], Uy 4 dmy_ 41 € F},

On peut aussi supposer que 'on travaille avec la base choisie.

Pour k € [1,p], on a tpy4.omy,_,+1 € Fi

ainsi Vi € N, f*(tpmyy.tm,_,+1) € Fi car F, stable par f

puis pour tout P € C[X], on a P(f)(Umyt-tm;_,+1) € F car F}, est stable par combinaison linéaire.

P
Et ainsi P(f)(zo) = Z P(f)(tmyt-tmy_,+1) est la décomposition de P(f)(xg) sur Fy & --- @ F,
k=1

Soit Q € C[X]. On a done Q(f)(xo) = 0 <= V& € [1.p], Q(f)(ex) =0

Je note ex = Uy +tm,_,+1 €t o0 a By = (ex, vr(er), - - -, gozn’“_l(ek)) est une base de Fj,
On a vu que la matrice de ;. dans cette base est C'xmy

donc m,, = X™* car gy, est cyclique et nilpotent et dim(Fy) = my, selon 12
Vk € Hl,p]], (f - AkId)mk (Um1+...+mk71+1> =0 puiS

VEk € [1,p], Vi € [1,mg], tmyttmpr+i € F

Par ailleurs on montre facilement que
VP € C[X], Ppy) = 0 <= P(py)(e) = 0

car P(g;) commute avec tout ¢j, et que (¢} (ex))gc;cp,, €t une base de Fy.
Par ailleurs on a Q) = 0 <= X"™*|Q (nilpotent et cyclique)

donc Q(f)(ex) =0 = Qpr + Aldp)(er) = 0 <= X" |Q(X + Ax)

ainsi Q(f)(er) = 0 <= (X = Ap)™|Q(X)

donc comme les (X — A\g)™* sont deux a deux premiers entre eux,

on a finalement | Q(f)(zy) = 0 < H(X — )™ @Q

k=1
n—1 n—1

Soit (Ai)gcicn_1 € K" tel que Z Nif'(xg) = 0 Je note Q = Z A X" de sorte que Q(f)(x) =0
1=0 1=0

P P

ainsi H(X — A\k)™*|@Q d’aprés la question précédente or deg(Q) < n—1 < n = deg (H(X — )\k)m’“)
k=1 k=1

donc @ est le polynome nul et ainsi Vi € [0,n — 1], \; =0

donc (f*(0))g<;cn_y est une famille libre de n vecteurs de E et n = dim E

d’ott (f(20))g<icn_1 €st une base de E ce qui justifie que ‘f est cyclique‘

III. Endomorphismes commutants, décomposition de Frobenius

L’application g — f o g — go f est un endomorphisme de £(F) dont le noyau est C(f)
Ainsi C'(f) est un sous-espace vectoriel de L£(E)

De plus, soit get h € C(f). Ona (goh)o f=gofoh=fo(goh)
ainsi C'(f) est stable par o et il est clair que Id € C(f)
Ainsi |C(f) est une sous-algebre de L(E)




III.A. Commutant d’un endomorphisme cyclique

22. On a g(xg) € E et (xo, f(x0),---, f" 1 (x0)) est une base de E.

n—1
d’ott |lexistence de Ag, Ay, ..., A1 de K tels que g(xg) = Z e (o)
k=0

n—1
23. Il suffit d’établir que les applications linéaires g et Z Mo f* coincident sur la base (o, f(20), ..., [ (20)).
k=0
On montre par récurrence immédiate que Vi € N, g € C (f?)
Soit i € [0,n — 1]. En utilisant 21 et le fait que 'algébre K[f] est commutative

g (f'(x0)) = f' (9(z0)) = f' (2 )\kfk(5[70)> = i: At (f (0)

n—1
donc g = Z)\kfk et | g € K[f]
k=0

24. On vient d’établir le sens direct (avec un polyndéme de degré < n — 1)
La réciproque vient du fait que K[ f] est une algébre commutative et que K,,_;[X] C K[X] et f € K[f].
On conclut que

g € C(f) si et seulement 8’1l existe un polynéme R € K, _1[X] tel que g = R(f)

II1.B. Décomposition de Frobenius

25. On suppose que G = F; U --- U F, est un sous espace de E.

Par I’absurde, je suppose qu’aucun des sous-espaces F; ne contient tous les autres.
Ainsi r > 2 et G # {0}.

Quitte & réduire le nombre, on peut supposer qu’aucun F; n’est inclus dans la réunion des autres.
Cela nous fournit z; € F; qui n’est dans aucun des F; pour i > 2.

Sinon, F} # G et on peut aussi trouver y € G\ F}.

Pour tout scalaire A, on a y + Azy € F} (car sinon y € F}) et ainsi y + Az € FoU--- U F,.

La droite affine y + Kz est donc incluse dans F, U - - - U F}. et contient une infinité d’éléments
car K est infini et ¢t € K+ y + tx; est injective car zy # 0

Ceci nous fournit j € [2,7] et A # X dans K tel que y + A\xy € Fj et y + Ny € F

donc z; € F; (par combinaison linéaire) ce qui est absurde

Ainsi ‘l’un des sous-espaces F; contient tous les autres‘

Remarque : Pour r = 2, il existe une preuve classique purement algébrique.

26. Soit x €

(a) Comme dans la partie 0, I’ensemble des polynémes P non nuls tels que P(f)(z) = 0 est non
vide (il contient 7s) donc il admet un polynéme de degré minimal, et par division euclidienne,
tous les autres polynémes sont des multiples de celui-ci.

(b) Avec ce qui précéde, on a donc : Vo € E, my,|my



N

(c) Sion écrit mp = H P décomposition en facteurs irréductibles, ot N € N*, les P, sont irréduc-

k=1
tibles unitaires et distincts deux & deux et enfin les a; € N*.
N
Alors le nombre de diviseurs unitaires de 7 est H(ai +1)
k=1
N
(d) Ainsi 'ensemble {r;,}z € E est fini de cardinal noté r ou r € [1, H(ai +1)]
k=1

On peut donc choisir uy,...u, € E, tel que {ny,}x € E = {ms,,}i € [1,7]

Ainsi E = UKer(wf,ui(f)) car Ve € E, x € Ker(ms,(f))
i=1
(e) La question précédente (question 25) nous fournit 4o € [1,r] tel que Ker(ms,, (f)) = E
On note x; = u;, et on a Ker(ms,, (f)) =FE
On remarque que 7y, (f) = Ozg) donc m¢|mys 4,
Or s, |Tp et ce sont des polyndmes unitaires

donc 7., = my Finalement

VP € K[X], P(f)(z1) = 0 <= P

en faisant comme en 19, on montre que | (x1, f(z1), ..., f4 (z1)) est libre

27. En faisant comme en 9, on montre que ‘El est stable par f ‘
De plus, on a Ey = {P(f)(z1)/ P € K1 [X]} C{P(f)(21)/ P € K[X]}
Soit P € K[X]. Comme 7 # 0,

le théoréme de la division euclidienne nous fournit @ et R € K[X] tels que { P=0Qm+ 1t

On a alors P(f)(z1) = [Q(f) o m;(f)] (z1) + R(f)(z1) = R(f)(z1) € {T(F)(x1)/ T € Ky [X]}
On conclut que | Ey = {P(f)(x1)/ P € K[X]}

28. D’apreés ce qui précéde B = (eq, ea, ..., eq) est une base de Fj.
De plus on a Mp(t)1) = Cr, matrice compagnon du 7y polynéme unitaire de degré d = dim ()

alors d’apres 5, Wl est Cyclique‘

29. Pour i € N, on note F; = Ker (® o f?) ainsi F = ﬂ F;; est bien un sous-espace de E
ieN
De plus, on a pour i > 1, f(F;) C F;_; donc

f(F)Cf<ﬂE>C (N fE)C () Fa=F

1EN* 1EN* 1EN*

d’ou | F' est stable par f ‘
Soit u € EiNF.

d
Comme u € Ej, cela nous fournit \,..., Ay € K tels que u = Z AL€L
k=1
d—1
or ®(z) = Mg et ®(f%(z)) =0 car u € F, donc \y =0 d’ot u = Z)\kek
k=1

d—1

d—2
puis f(u) = Z Akeri1 et donc Ay =0 et f(u) = Z Ak€hi1
k=1

k=1

deg(R) < d = deg(my)



30.

31.

32.

En réitérant le procédé, on trouve \g_ o =...=A; =0
donc u =0

L’autre inclusion étant évidente, on a F; N F' = {0} d’ou ’ E, et F sont en somme directe

Je note W, I'application linéaire induite par ¥ entre £, et K9.

Soit x € Ker(¥y).

Onax € B et ®(z) =d(f(x)) == d(fi 1 (x)) =0.

En faisant comme a la question précédente, on obtient x = 0

L’autre inclusion étant évidente, on a Ker(¥;) = {0}

Ainsi U, est une application linéaire injective entre F; et K¢ or dim(FE;) = d = dim(K?)
En utilisant le théoréme du rang, on obtient que W, est surjective puis bijective

Ainsi | ¥ induit un isomorphisme entre E; et K¢

De la question précédente, on montre que ¥ est surjective de E vers K¢ et que Ker(¥) (N E; = {0}.
Ainsi dim (E;) = d = rg (¥) et dim(E) = dim (Ker(¥)) + rg(V) = dim (Ker(¥)) + dim (E})
donc F = E; @ Ker(V)
d—1
On a Ker ¥ = ﬂ F; (les F; sont introduits en 28) on a donc F' C Ker ¥
i=0
Soit x € Ker(¥). Montrons que x € F
Soit ¢ € N. 1l suffit d’établir que ®(fi(x)) =0
Le théoreme de la division euclidienne nous fournit @ et R € K[X] tel que deg(R) < d et X' =
Qﬂ'f + R.

d—1
On peut écrire R = E a; X". On a comme en 26 et car ® est linéaire
k=0

IS

-1

O(f'(2)) =@ (0) + @ (R(f)(2)) =0+ ) ax® (f*(z)) =0

B
Il

ainsi F' D Ker ¥V d’ou F = Ker ¥

on conclut que |F = FE, ® F

Préambule : Avant de commencer la construction par récurrence, on remarque que dans ce qui
précéde le polynéme minimal de f est celui de 1y et donc que Vo € F,my, (f)(x) =0

Initialisation : On prend E;, F et ¢; comme ci dessus.
On a E; stable par F' et 1, cyclique.
On pose P, = 1y = my,, G1 = F de sorte que £, G, = F
OnaVre Gy, Pi(f)(x)=0
Hérédité : Soit £ € N*.
On suppose avoir 'existence de k sous-espaces vectoriels de E, notés Ei,..., E; et Gj tous
stables par f, tels que

. E:El@"‘@Ek@Gk;

— pour tout 1 < ¢ < k, 'endomorphisme v, induit par f sur le sous-espace vectoriel E; est
cyclique;

— si on note P; le polynéome minimal de ¢;, alors P,; divise P, pour tout entier ¢ tel que
1<i<k-1

Si dim G = 0, on s’arréte et on pose r = k

Sinon, on applique 24 & 30 a ’endomorphisme induit par f sur G

On obtient alors Ej.1, Gri1 sous espaces stables par f et le polynéme Py tels que



33.

34.

1.
2.

— E=FE & - & Epp1 ®Grir;

— l’endomorphisme ;1 induit par f sur le sous-espace vectoriel Ej ., est cyclique;
— si on note Py, le polynéme minimal de 1y, alors Py, divise Py

— Vo € Gy1, Pea(f)(2) =0

On a ainsi la construction voulue au rang k.

Conclusion : Cette construction algorithmique s’arréte car a chaque étape dim(Fy) < 1 et donc
r < dim(E). car (dim Gy), est une suite a valeurs dans N strictement décroissante.

On obtient ainsi le résultat voulu.

On en déduit qu’il existe r sous-espaces vectoriels de F, notés Ey,..., E,., tous stables par f, tels
que :

— E=E & --0k;

— pour tout 1 < ¢ < r, 'endomorphisme 1); induit par f sur le sous-espace vectoriel F; est
cyclique ;

— si on note P; le polynéme minimal de 1);, alors P, divise P; pour tout entier ¢ tel que 1 <7 <
r—1.

I11.C. Commutant d’un endomorphisme quelconque

Je reprends les notations de la questions précédente pour la décomposition de Frobenius de f.
Je note A l'application telle que pour (gi,...,g,)L(Ey) X -+ x L(E,), on a A(g,...,g,) défini sur

E par A(g1,...,9.)(x) = q1(x1) + -+ gr(x,) QU = Zxk et les x), € E
k=1
Ainsi définie, A est linéaire de L(E;) X --- x L(E,) a valeurs dans L(E)
De plus on montre facilement que A est injective et que A (C'(¢1) x -+ x C(¢,.)) C C(f)
Ainsi dim (C(f)) > dim (C(¢1) x -+ x C(¢h,)) = dim (C(¢1)) + - - - + dim (C(¢),.))
or pour i € [1,r], en notant n; = dim E; on a C(v);) = Vect(4?, 4}, ... 4" 1) d’aprés 23 du ITLLA
Comme 1); est cyclique alors (2,4}, ... 4™ ") est libre d’aprés 7

donc dim (C(v);)) = n; = dim (E;) d’on

dim (C(¢1)) + -+ - + dim (C(¢)) = dim (Ey) + - - - + dim (E,) = dim (£} & --- @ E,) = dim(E) =n

Ainsi |la dimension de C(f) est supérieure ou égale a n

On note d = deg (7f). D’apreés le cours, on a dim (K[f]) =d

or K[f] = C(f) et dim C(f) > n donc d > n.

Or on a my|xs comme conséquence de Cayley-Hamilton ainsi d < n
donc d =n

Or en reprenant les notations précédentes, on a dim(E;) =d =n
Donc E; = E et ¢; = f or 1 est cyclique

ainsi ’ f est cyclique‘

Exercice

Si B est solution, alors AB = B*B = B* = BB? = BA.

Si A admet trois valeur propres réelles distinctes, alors elle est diagonalisable et les sous-espaces
propres de A sont trois droites vectorielles. Comme A et B commutent, ces droites sont stables par
B et les vecteurs propres de A sont donc aussi des vecteurs de propres de B.

Par conséquent A et B sont diagonalisables dans la méme base, elles sont donc codiagonalisables.



3.

4.

Si 'on note D4 = diag(\, i, v) la matrice diagonale semblable & A et Dp = diag(«, 5,7) la matrice
diagonale semblable & B, la relation B> = A se raméne a D% = D 4.
Ou encore o® = \, 32 = ju,v3 = v. Comme la fonction x — 22 est bijective de R dans R alors il n’y
a qu'une seule solution & I’équation B? = A.
rcos(30) —rsin(36) 0
(a) M3 = | rsin(30) rcos(36) 0
0 0 1
(b) Si A = I3, montrons qu'’il y a une infinité de solutions. Remarquons que la matrice précédente
pour r = 1 et § = 27/3 vérifie M3 = I3. Par conséquent, toute matrice B semblable a M vérifie
B = PMP7!, ce qui implique B> = PM3P~! = P[P~ = I;.
/2 —/3/2 0
Il reste & montrer que la classe de similitude de M = | /3 /2 1/2 0] est infinie.
0 0 1

1
Posons P, = [0
0

o = O

0
t |. C’est une matrice inversible dont I'inverse (cf. ds 2) est la matrice
1

P,
/2 —V3/2  —t/3)2
Le calcul P_4M P, donne | v/3/2 1/2  t(1/2 —+/3) | . En faisant varier ¢, on obtient donc
0 0 1
une infinité de matrices semblables a M.
(c) Si A est diagonalisable et a un sous-espace propre de dimension > 2 alors soit A a deux valeurs
propres distinctes dont 'une est d’ordre 2, soit A a une seule valeur propre d’ordre 3.
Dans ce dernier cas, A = A3 et il suffit de multiplier I'infinité de solutions de la question pré-
cédente par v\ pour obtenir une infinité de solutions de 'équation B* = A.

A0 0
Dans 'autre cas, A est semblable & | 0 A 0 | et avec la multiplication par blocs, il suffit de
0 0 p

trouver une infinité de solutions dans My (R) a I'équation M3 = \I,.
Pour cela, prenons une matrice réelle dont les valeurs propres sont j et j2.

1/2 —\/§/2)

C’est la matrice utilisée en fait dans la question précédente : M = /A ( V32 12

Calculons alors ((1] _1t) X VA (\}5/32 _1/_/32/2) X ((1) i) =\ (1/2 —t\/§/2 ) et il suffit
de faire varier ¢ pour obtenir une infinité de solutions a ’équation B3 = A .
rcos(f) —rsin(f) 0
Soit A= | rsin(d) rcos(@) 0] avecr >0, \eRet R\ 7Z.
0 0 A
cos(f) —sin(6)
sin(f)  cos(0)

sont distinctes d’aprés I’hypothése faite sur 6.

Or nous savons que la matrice > a pour valeurs propres complexes e et e qui

. . 1 1
Les vecteurs propres associés sont respectivement (z) et (_Z)

: . 1
La matrice de passage P de la base canonique a la base de vecteurs propres est donc ; ] et

—1
)

: cos(9) —sin(0)\ (e’ 0 .
On obtient donc (sin(@) cos(6) =P 0 it P

. 1
I’on calcule aisément P~ = % )

Dans M3(C) la matrice A est diagonalisable & spectre simple : on peut écrire



1 1 0 0 1 =7 0
A= (i —i 0 re_w 0 1 i 0

0 0 1 A 0 0 2
Le raisonnement de la questlon (b) reste valable. B est donc diagonalisable dans la méme base de
vecteurs propres.

N[ =

1 1 0 a 0 0 1 —¢ 0
On peut donc écrire B= |1 —i 0 0 8 0 % 1 4 0
0 0 1 0 0 v 0 0 2

Et I'équation B® = A devient o® = re?, 32 = re %, 4% = \.

Ces trois valeurs sont distinctes et elles ont chacune dans C trois racines cubiques distinctes.

Si l'on avait da résoudre I'équation B* = A dans M3(C), on aurait ainsi trouvé 9 solutions distinctes.
Mais nous devons résoudre dans M;3(R).

On peut déja dire que le sous-espace propre dirigé par E3 le 3éme vecteur de la base canonique est de
dimension 1 et est stabilisé par B donc c’est aussi un vecteur propre de B, par conséquent, v = V.
De plus les racines cubiques de e et e™® sont complexes non réelles et comme B est une matrice a
coefficients réels, ses valeurs propres complexes non réelles vont par paires de complexes conjugués.
Le triplet («, 8,7) peut donc prendre les valeurs possibles :

(/rei®/3, re=03 N, (/rei®/3+2m/3 3fre=i0/3=2m/3 YN) (/reid/3+47/3 3/re=i0/3-4n/3 YX).

Si Pon multiplie par P et P!, on va trouver trois matrices réelles qui seront solutions.

. Si A est diagonalisable dans M;3(R) avec trois valeurs propres distinctes, on est dans le cas de la
question 2 et il y a une solution unique.
Si A est diagonalisable dans M3(R) avec une valeur propre d’ordre > 2, alors d’apreés la question 3,
il y a une infinité de solutions.
Si A est diagonalisable dans M;3(C) alors A est semblable & une matrice du type de la question 4 et
il y a donc trois solutions.
Si A n’est pas diagonalisable dans M3(C') , alors A est semblable & une matrice de la forme :

A1 0 A1 0 A1 0

0O XN O)avecA#pu,ou [0 X OfJou |0 XA 1

0 0 u 0 A 0 0 A

0
A1 0

(a) lercas: A=P |0 X 0| P! Silon écrit B= PCP~! alors 'équation B®> = A équivaut a
0 0 p

A1 0
C3=1(0 X 0] (%)
0 0 u
En particulier, comme & la question 1), ces deux matrices commutent ce qui implique que C' soit
a [ 0
de la forme | 0 « 0 |. Puis (%) implique a® = \,73 = pu,2a%8 = 1. Cette derniére équation
0 0 v

impose de considérer deux sous-cas.

Si A # 0 alors les trois équations ci dessus déterminent (dans R) de maniére unique «, 5 et v :
il y a donc une unique solution.

Si A =0, il n’y a pas de solution (on pouvait retrouver ce résultat en considérant 'indice de

nilpotence de la matrice extraite ) (a b ) S

0 o
A1 0
(b) 2éme cas: A= PTP'=P |0 XA 0| P! Avec les mémes notations que précédemment, C'
0 0 A

commute avec T' = A3 + E) 5, ce qui revient a dire que C' commute avec ;. Comme dans le
premier cas, on trouve une unique solution si A # 0 et aucune solution si A = 0.



A1 0
(c) 3éme cas : A = PTP™' = P|0 X 1] P'. Avec les mémes notations C' commute avec
0 0 A
T =Ms+ E192+ Ey3 = M35+ N, ce qui équivaut a dire que C' commute avec N.
Or N est nilpotente d’indice 3 donc c’est un endomorphisme cyclique et d’aprés le probléme

a [ v
étudié dans ce DS, le commutant de N est égale & R[N] et donc C = |0 «a f
0 0 «

A nouveau, le systéme obtenu admet une unique solution si A # 0 et aucune si A = 0.



