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Les calculatrices ne sont pas autorisées. Les résultats devront être encadrés.

Problème 1 : Dans ce problème ,
— E est un K.e.v. de dimension n ⩾ 2.
— On note N (E) l’ensemble des endomorphismes nilpotents de E.
— On note F(E) l’ensemble des endomorphismes u de E non inversibles tels que Imu⊕Keru = E.

— On note Jn la matrice



0 . . . . . . . . . 0

1 0
...

0 1
. . .

...
. . .

. . .
...

0 . . . 0 1 0


de Mn(K).

— T +
n (K) est l’ensemble des matrices triangulaires supérieures de Mn(K)

L’objectif du problème est de déterminer les endomorphismes de E qui peuvent s’écrire comme un
produit d’endomorphismes nilpotents.

I Généralités
1) Soient u1, . . . , up dans N (E). Justifier que up ◦ · · · ◦ u1 n’est pas inversible.
2) Soit F un sev de E de dimension p ∈ [[1, n]]. Montrer qu’il existe f ∈ N (E) tel que Ker f = F .
3) Soient deux s.e.v. E1 et E2 de E. Montrer que si E1 et E2 ont un supplémentaire commun alors

ils sont de même dimension.
On admettra la réciproque, vue dans l’exercice 210 de la feuille 4, corrigé en TD : Si deux s.e.v.
de E ont la même dimension, alors ils ont un supplémentaire commun.

II Lemme de factorisation
1) Soient a et c dans L(E), soit S un supplémentaire de Im c.

Montrer que : Ker c ⊂ Ker a ⇐⇒ il existe un unique b ∈ L(E) tel que a = b ◦ c et b|S = 0.

2) Dans cette question, u ∈ L(E) est un endomorphisme non inversible.
a) Montrer qu’il existe v ∈ N (E) tel que Keru = Ker v.
b) Prouver qu’il existe un supplémentaire commun à Imu et Im v. Dans la suite, on choisit T

un tel supplémentaire.
c) Montrer qu’il existe un unique w ∈ L(E) tel que u = w ◦ v et w|T = 0.
d) Montrer que w ∈ F(E).

III Génération du groupe linéaire
Soit p ∈ N∗. Soient r et s dans [[1, p]] avec r ̸= s, et soit λ ∈ K.
On pose T

(p)
r,s (λ) la matrice de Mp(K) dont tous les coefficients diagonaux valent 1, le coefficient

(r, s) vaut λ et les autres coefficients sont nuls. On note Gp l’ensemble des matrices de Mp(K) qui
s’écrivent comme produits de matrices T

(p)
r,s (λ).

On note également, pour µ ∈ K∗, D
(p)
µ la matrice diagonale


1 0 . . . 0

0
. . .

. . .
...

...
. . . 1 0

0 . . . 0 µ

 .



1) a) Calculer T
(p)
r,s (λ)× T

(p)
r,s (λ′). Quel est l’inverse de T

(p)
r,s (λ) ?

b) Vérifier qu’un élément de Gp est inversible et que son inverse est dans Gp.
2) Soit M ∈ Mp(K). On suppose ici p ⩾ 2.

a) Expliquer en termes d’opérations sur les lignes et les colonnes comment s’obtiennent à partir
de M les matrices T

(p)
r,s (λ)×M et M × T

(p)
r,s (λ).

b) Montrer que si M ∈ GLp (K), on peut trouver A et B dans Gp telles que M ′ = AMB vérifie
m′

11 = 1.
c) Montrer que si M ∈ GLp (K), on peut trouver C et D dans Gp telles que CMD soit de la

forme


1 0 . . . 0

0
... M̄
0

 où M̄ ∈ Mp−1(K)

3) a) Si p ⩾ 2 et si P ∈ Gp−1, montrer que la matrice


1 0 . . . 0

0
... P
0

 est dans Gp

b) Montrer que toute matrice M de GLp (K) est de la forme R×D
(p)
µ ×S où R et S sont dans

Gp et µ dans K∗.

IV Soit d ∈ [[1, n− 1]].
1) soit g ∈ L(E), montrer l’équivalence entre :

a) g ∈ F(E) et rang g = d.

b) il existe une base B de E et P dans GLd (K) telles que matB(g) =

(
P 0

0 0

)
.

2) Montrer que toute matrice de GLd (K) s’écrit comme produit de matrices de T +
d (K) ∪ T −

d (K).

3) Montrer que si Q ∈ GLd (K) alors
(

Q 0

0 0

)
∈ Mn(K) est un produit de matrices de T +

n (K)∪

T −
n (K) ayant toutes leur dernière ligne et leur dernière colonne nulles.

4) Soit M ∈ T +
n (K) ayant sa dernière colonne nulle. Montrer qu’il existe N ∈ Mn(K) nilpotente

telle que M = N × Jn.
5) Quels sont les u ∈ L(E) qui peuvent s’écrire sous la forme u = up ◦ · · · ◦ u1 avec u1, . . . , up dans

N (E) ?



Problème 2 :

On cherche à montrer que tout hyperplan de Mn (R) contient au moins une matrice inversible.
Première méthode :

1) Montrer que l’ensemble des matrices de trace nulle est un hyperplan et qu’il contient bien une matrice
inversible.

2) Soit A ∈ Mn (R) une matrice réelle de taille n.
a) Calculer tr( tA× A) .

b) On pose fA =

{
Mn (R) −→ R

M 7−→ tr( tAM)
.

Montrer que φ =

{
Mn (R) −→ L(Mn (R) ,R)

A 7−→ fA
est un isomorphisme.

3) Soit H un hyperplan de Mn (R) ,
a) Montrer qu’il existe une unique matrice A ∈ Mn (R) non nulle telle que

H = {M ∈ Mn (R) , tr( tAM) = 0}.
b) i) On suppose tr(A) = 0. Conclure.

ii) On suppose A diagonale. En considérant la matrice J =


0 . . . 0 1

1
. . . 0
. . .

. . .
...

0 1 0

, conclure.

iii) On suppose A non diagonale. Soit ak,l un coefficient non diagonal de A non nul.
Chercher une matrice de la forme In + λEkl appartenant à H, puis conclure.

4) Peut-on étendre ce résultat à Mn (C) ?

Deuxième méthode :
On suppose que H est un hyperplan qui ne contient pas de matrice inversible.

1) Montrer que Mn (R) = H ⊕ V ect(In) .
2) Soit i et j dans [[1, n]] tels que i ̸= j.

a) Montrer qu’il existe hij ∈ H et λij ∈ R tels que Eij = hij + λijIn.
b) Montrer que si λij ̸= 0 alors Eij − λijIn ∈ GLn (R).

c) En déduire que Eij ∈ H .
3) Conclure.

Exercice
On pose P (X) = (X + i)2n+1 − (X − i)2n+1.
a) Calculer le degré de P et son coefficients dominant.
b) Factoriser P dans C[X].

c) Calculer
2n∑
k=1

cotan

(
kπ

2n+ 1

)
, puis

2n∑
k=1

cotan2

(
kπ

2n+ 1

)
.

d) Montrer que
n∑

k=1

cotan2

(
kπ

2n+ 1

)
=

n(2n− 1)

3
.

e) Montrer que ∀x ∈
]
0,

π

2

[
, sin x < x < tan x et que cotan2x ⩽

1

x2
⩽ 1 + cotan2x.

f) En déduire
+∞∑
n=1

1

n2

♢ ♢ ♢


