
Correction du DS no 1

Problème : produits infinis

partie I

Soit n ∈ N⋆

1. Par récurrence sur n. Le cas n = 1 est clair.
Soit n ∈ N∗. Supposons l’inégalité vérifiée au rang n pour tous réels x1, · · · , xn.
Soit x1, · · · , xn+1, n+1 réels.

∣∣∣∣∣
(

n+1∏
k=1

(1 + xk)

)
− 1

∣∣∣∣∣ =
∣∣∣∣∣
(

n∏
k=1

(1 + xk)

)
− 1 + xn+1

n∏
k=1

(1 + xk)

∣∣∣∣∣
⩽

∣∣∣∣∣
(

n∏
k=1

(1 + xk)

)
− 1

∣∣∣∣∣+
∣∣∣∣∣xn+1

n∏
k=1

(1 + xk)

∣∣∣∣∣ inégalité triangulaire

⩽

(
n∏

k=1

(1 + |xk|)

)
− 1 + |xn+1|

n∏
k=1

(1 + |xk|) hypothèse de récurrence

⩽ (1 + |xn+1|)

(
n∏

k=1

(1 + |xk)

)
− 1

⩽

(
n+1∏
k=1

(1 + |xk|)

)
− 1

2. Pour tout x ∈ R, 1 + x ⩽ ex par une simple étude de la fonction x 7→ ex − x − 1 ou par convexité de exp
(courbe située au dessus de la tangente en 0) ou par croissance de l’intégrale :

• pour x ⩾ 0, ex − 1 =

∫ x

0
etdt ⩾

∫ x

0
1 = x

• pour x ⩽ 0, ex − 1 = −
∫ 0

x
etdt ⩾ −

∫ 0

x
1dt = x.

Par conséquent, comme 1 + xk ⩾ 0 pour xk ∈ [−1,+∞[, on peut multiplier les inégalités (1 + xk) ⩽ exk de
k = 1 à n :

n∏
k=1

(1 + xk) ⩽
n∏

k=1

exk = exp

(
n∑

k=1

xk

)

3. (a) Soit t ∈ C, en utilisant l’égalité : et =
+∞∑
k=0

tk

k!
ainsi que l’inégalité triangulaire puis k! ⩾ (k − 2)! :

|(1 + t)− et| =
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(b) On a par l’inégalité triangulaire :

|an − bn| =

∣∣∣∣∣(a− b)
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⩽ nMn−1|a− b|



(c) Soit n ∈ N∗, on pose M = max
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∣∣∣}. D’après les questions précédentes :
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(d) On a : ∀n ∈ N∗, 0 ⩽ |un − ez| ⩽ |z|2

n
e|z| et limn→+∞

|z|2

n
e|z| = 0 donc par le théorème d’encadre-

ment, lim
n→+∞

|un − ez| = 0 c’est à dire lim
n→+∞

un = ez

4. Pour N ⩾ 2,
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Donc lim
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2
d’où

+∞∏
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2

Et pour N ⩾ 2, en séparant le produit pour n = 2k (alors n + (−1)n+1 = 2k − 1) et n = 2k − 1 (alors
n+ (−1)n+1 = 2k) :
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De plus
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2

Donc
+∞∏
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n

)
=

1

2

5. Question vue en classe, on obtient (n+ 2)Wn+2 = (n+ 1)Wn par une IPP.
L’expression de W2n+1 s’obtient alors par récurrence (pour l’initialisation, W1 = 1)

6. On utilise la formule que nous livre Stirling : n! ∼
n→+∞

√
2πn

(n
e

)n
et (2n)! ∼

n→+∞

√
2π(2n)

(
2n

e

)2n

D’où

W2n+1 =
22n

(2n+ 1)

(n!)2

(2n)!
∼
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22n

(2n)

2πn(n/e)2n

2
√
πn(2n/e)2n

∼
n→+∞

1

2

√
π

n

Puis, pour n ⩾ 1,

n∏
k=1

(
1 +

1

4k2 − 1

)
=

n∏
k=1

4k2

(2k − 1)(2k + 1)
= 4n(n!)2

n∏
k=1

(2k)(2k)

(2n)!(2n+ 1)!
= (2n+ 1)W 2

2n+1 ∼
n→+∞

π

2

Donc
+∞∏
n=1

(
1 +

1

4n2 − 1

)
=

π

2



partie II

1. (a) Par définition, si le produit infini
∏

un converge, alors (pn)n∈N admet une limite ℓ non nulle.

Or un =
pn+1

pn
. Par passage à la limite, on en déduit que la suite (un)n∈N converge vers 1.

(b)
n∏

k=1

(1 +
1

k
) = n+ 1 → +∞. La réciproque de a) est donc fausse.

2. Par une récurrence immédiate, on trouve (1− z2)
n∏

k=1

(1 + z2
k
) = 1− z2

n+1
.

Comme |z| < 1, on trouve :
+∞∏
k=1

(1 + z2
k
) =

1

1− z2
.

3. (a) On applique de manière itérée la formule sin(θ) = 2 sin(
θ

2
) cos(

θ

2
), puis sin(

θ

2
) = 2 sin(

θ

4
) cos(

θ

4
), etc ...

On obtient : sin(
θ

2n
)

n∏
k=1

cos(
θ

2k
) =

1

2n
sin(θ).

(b) Si θ = 0, alors le produit est constant et vaut 1.

Si θ ̸= 0, grâce à l’équivalent sin(
θ

2n
) ∼ θ

2n
et comme le terme sin

θ

2n
est non nul pour n assez grand, il

vient :
+∞∏
k=1

cos
θ

2k
=

sin θ

θ
̸= 0 .

partie III

1. (a) Par continuité des fonctions exponentielle et logarithme, la suite (pn)n⩾1 converge vers une limite non

nulle si et seulement si la suite ln pn converge. Comme ln pn =
n∑

k=1

lnuk, la convergence de la suite ln pn

est par définition la convergence de la série
∑

lnun. Dans le cas de convergence, on a donc P = eS .

(b) On a ln n
√
n =

lnn

n
⩾

1

n
pour n ⩾ 3. Donc la série

∑ ln

n
diverge par théorème de comparaison, et

d’après (a), le produit infini
∏

n
√
n est donc divergent.

2. (a) On a lnun = ln(1 + εn) ∼ εn. Comme εn est de signe constant, on peut invoquer le théorème sur les
équivalents : les séries

∑
lnun et

∑
εn sont de même nature.

(b) Si α ⩽ 0 alors un ne tend pas vers 1 et le produit diverge. Si α > 0 alors on a bien un qui s’écrit 1 + εn

avec εn → 0 et qui est de signe constant, donc la question a) s’applique : Le produit infini
∏(

1 +
1

nα

)
si et seulement si la série de Riemann

∑ 1

nα
converge, i.e. si et seulement si α > 1.

(c) D’après a),
∏(

1− 1

4n2

)
converge.

On a
n∏

k=1

(
1− 1

4k2

)
=

n∏
k=1

(
(2k − 1)(2k + 1)

4k2

)
=

(2n+ 1)((2n)!)2

42n(n!)4
∼ 2n

24n
(2n)4n4πn

e4n
e4n

n4n(2πn)2
(Stir-

ling) ∼ 2

π
.

Par conséquent,
∏(

1− 1

4n2

)
=

2

π

3. On a ln(1 + εn)− εn ∼ −1

2
ε2n. Comme la série

∑
εn converge, la série

∑
lnun est de même nature que la

série
∑

−1

2
ε2n (on peut appliquer ici à nouveau le théorème sur les équivalents car cette dernière série est à

termes strictement négatifs).



partie IV

1. Par inégalité triangulaire, on a |pn| ⩽
n∏

k=1

(1+ |εk|) ⩽
+∞∏
k=1

(1+ |εk|) = M , car ce produit infini converge d’après

II. 2.a).

2. Pour n ⩾ 2, on a |pn − pn−1| = |pn−1(un − 1)| = |pn−1||εn| ⩽ Mεn. Par conséquent, la série
∑

|pn − pn−1|
converge. La série

∑
(pn − pn−1) converge donc aussi.

3. Par conséquent, la suite (pn)n⩾1 converge.

4. | exp(z)− 1− z| =

∣∣∣∣∣
+∞∑
n=2

zn

n!

∣∣∣∣∣ ⩽ |z|2

2

∣∣∣∣∣
+∞∑
n=0

2zn

(n+ 2)!

∣∣∣∣∣ ⩽ |z|2

2

+∞∑
n=0

|z|n

n!
=

|z|2

2
e|z|.

Par conséquent, e−z/n = 1 − z

n
+ O(

1

n2
). On a donc : (1 +

z

n
)e−z/n − 1 = O(1/n2), qui est le terme d’une

série absolument convergente. Le produit infini
∏

(1 +
z

n
)e−z/n est donc absolument convergent.

5. On pose zn = an + ibn. La relation de récurrence donne alors zn+1 = zn(1 − i

(n+ 1)(n+ 2)
). On a donc

zn = z0

n∏
k=0

(1− i

n(n+ 1)
). Or la série

∑ 1

n(n+ 1)
converge d’après le critère de Riemann, donc d’après les

questions qui précèdent, le produit infini
∏

(1− i

n(n+ 1)
) converge absolument, donc converge. Conclusion,

la suite zn converge et par conséquent les suites an et bn sont également convergentes.

partie V

Identité d’Euler (1737)

1. 1ère méthode

(a) i. Ecrivons le produit de Cauchy de an et bn : αj =

j∑
k=1

akbj−k puis le produit de Cauchy de αn et de

cn : dn =
n∑

j=1

αjcn−j .

On a donc :

dn =
n∑

j=1

j∑
k=1

akbj−kcn−j = a0b0cn + a0b1cn−1 + a1b0cn−1 + a0b2cn−2 + a1b1cn−2 + a2b0cn−2 + ...

On voit que ça revient à sommer sur tous les triplets d’indice dont la somme est égale à n. Ce qui
donne donc dn =

∑
(i,j,k)∈N3
i+j+k=n

aibjck.

Justifions la convergence ; par Cauchy, si
∑

an et
∑

bn sont ACV alors
∑

αn est ACV et à

nouveau, par Cauchy,
∑

dn est ACV.
ii. Généralisons : Soient a1,n, a2,n, ..., aN,n N suites qui sont chacune le terme général d’une série ACV

alors le produit de Cauchy itéré de ces N suites donne dn =
∑

(k1,...,kN )∈NN
k1+...+kN=n

a1,k1 × ...× aN,kN et c’est

le terme général d’une série ACV.

(b) i.
+∞∑
k=0

1

pksm
est une série géométrique de raison

1

psm
< 1. Cette série est donc convergente et sa somme

vaut αm(S) =
1

1− p−s
m

.



ii. On calcule le produit partiel :
N∏

m=1

αm(s) =

N∏
m=1

+∞∑
k=0

1

pksm
.

Il s’agit d’un produit fini de séries absolument convergentes, d’après le résultat établi plus haut sur
le produit de Cauchy itéré :
On a :
N∏

m=1

αm(s) =

+∞∑
n=0

∑
k1+k2+....+kN=n

1

pk1s1

× 1

pk2s2

× ...× 1

pkNs
N

=

+∞∑
n=0

∑
k1+k2+....+kN=n

1

(pk11 ...pkNN )s

iii. Les entiers (pk11 pk22 ...pkNN ) sont tous distincts par unicité de la décomposition en facteurs premiers
et par conséquent, pour tout N :
+∞∑
n=0

∑
k1+k2+....+kN=n

1

(pk11 ...pkNN )s
est majorée par ζ(s) =

+∞∑
n=1

1

ns
.

iv. On a donc PN =
N∏

m=1

αm(s) ⩽ ζ(s), or PN+1 = PN ×αN+1(s) donc (Pn)n∈N est une suite croissante,

majorée d’après la question précédente. Elle converge donc vers une limite non nulle. Par conséquent,
+∞∏
m=1

αm(s) converge et sa limite vérifie
∏

αm(s) ⩽ ζ(s).

v. Par ailleurs, si N0 est assez grand (en particulier si N0 ⩾ pN ), la somme partielle obtenue à partir
du produit partiel ci-dessus contient tous les entiers de l’intervalle [[1, pN ]] car les nombres de cet
intervalle ont tous leurs facteurs premiers parmi p1, ..., pN .

On a donc :
pN∑
n=1

1

ns
⩽

N0∏
m=1

αm(s) ⩽ ζ(s).

vi. Il ne reste plus qu’à invoquer les gendarmes pour en déduire que le produit infini
∏

αm(s) converge
et vaut ζ(s).

(c) Supposons que
∑ 1

pm
converge.

Les séries géométriques
+∞∑
k=0

1

pkm
convergent et ont pour somme αm(1) =

1

1− p−1
m

.

Or, αm(1) − 1 ∼ 1

pm
et d’après la partie III, la convergence de

∑ 1

pm
entraîne celle du produit infini∏

αm(1).

Cependant, les calculs de l’avant-dernière question ont montré que
pN∑
n=1

1

n
⩽

N∏
m=1

αm(1), on aurait donc

pN∑
n=1

1

n
⩽

+∞∏
m=1

αm(1) ce qui est impossible car il est notoire que la série harmonique diverge.

2. 2ème méthode

(a) Si la série converge, la suite des restes partiels tend vers 0 donc il existe un entier N tel que
∞∑

i=N+1

1

pi
⩽

1

2
.

(b) soit q = pα1
1 pα2

2 ... pαN
N la décomposition en facteurs premiers de q.

On pose β1 = ⌊α1

2
⌋, ..., βN = ⌊αN

2
⌋ et γ1 = α1 − 2β1, ..., γN = αN − 2βN . En fait, βi et γi sont les

quotients et les restes de la division euclidienne de αi par 2.
On peut donc écrire q = k2m avec k = pβ1

1 ... pβN
N et m = pγ11 ... pγNN et comme les γi valent soit 0, soit 1,

m n’a pas de divisieur carré autre que 1. D’où l’existence de l’écriture.
De même, si q s’écrit k2m avec m n’ayant pas de diviseur carré autre que 1, alors k et m appartiennent
à An et si l’on écrit k = pβ1

1 ... pβN
N et m = pγ11 ... pγNN alors on doit avoir αi = 2βi + γi avec γi ⩽ 1

donc nécessairement, βi et γi sont les quotients et les restes de la division euclidienne de αi par 2, d’où
l’unicité de l’écriture.

(c) q = k2m. Or, q ⩽ n donc k2 ⩽ n =⇒ k ⩽
√
n, donc il y a au maximum

√
n choix possibles pour k.

Par ailleurs, l’entier m s’écrit uniquement avec les N facteurs premiers p1, ..., pN , et de plus, les mul-



tiplicités de ces facteurs premiers sont égales à 0 ou à 1, car m est sans diviseur carré. Il y a donc 2N

possibilités pour m.
On en déduit que le cardinal de An est majoré par

√
n 2N .

(d) Soit q ∈ [[1, n]] \An, donc q est divisible par pi avec i ⩾ N + 1.
Or, il y a au plus ⌊ n

pi
⌋ multiples de pi dans l’ensemble [[1, n]].

Le cardinal de [[1, n]] \An est donc majoré par
∞∑

i=N+1

⌊ n
pi
⌋ ⩽

∞∑
i=N+1

n

pi
⩽

n

2
.

Donc cardAn ⩾
n

2
.

(e) D’où
n

2
⩽

√
n 2N , ∀n ⩾ 1, ce qui est d’une absurdité abyssale.


