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Le problème est tiré de Mines PC 2005, Maths 1, (3h)
I. Préliminaires.

1. ln est une fonction concave sur R+∗ (dérivée seconde négative sur l’intervalle). Son graphe est
donc situé sous chacune de ses tangentes. En prenant la tangente au point d’abscisse 1 on a donc

∀x > 0, ln(x) ⩽ x− 1

ou encore (en posant t = x−1) : ∀t > −1, ln(1+ t) ⩽ t La fonction f : t 7→ t.ln(t) est dérivable
sur R+∗ et f ′ : t 7→ 1 + ln(t). On a donc le tableau de variation suivant

t

f(t)
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e
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On en déduit que ∀t > 0, t.ln(t) ⩾ −1
e

2. I étant un intervalle ouvert, ψ est un C1 difféomorphisme de I dans J = ψ(I) si et seulement ψ
est dérivable à dérivée continue sur I avec

∀x ∈ I, ψ′(x) ̸= 0

Remarque : ceci entraîne la stricte monotonie de ψ sur I et donc la bijectivité de I dans J .
Dans ce cas, ∀x ∈ J, (ψ−1)′(x) = 1

ψ′(ψ−1(x))

II. Construction d’une application.
3. Comme f ∈ H0, l’intégrale de g : u 7→ f(u)e−u

2/2 existe sur R. Comme g est positive, cette
existence donne l’intégrabilité de g sur R. On a aussi intégrabilité sur R− et, par relation de
Chasles,

∀x ∈ R, Ff (x) = Ff (0) +

∫ x

0
f(u)e−u

2/2 du = Ff (0) +G(x)

Comme g est continue sur l’intervalle R, G est, par théorème fondamental, une primitive de g.
C’est donc une fonction de classe C1 (de dérivée égale à g). Ff est donc de classe C1 avec

∀x, F ′
f (x) = g(x) = f(x)e−x

2/2 > 0

Ff est donc, avec la première partie, un C1 difféomorphisme de R dans son image qui, par
croissance et continuité, est J = ]lim−∞ Ff , lim+∞ Ff [. Par définition de l’intégrale et par celle
de H0, on a J =]0,

√
2π[.

4. L’égalité proposée se lit Ff (φ(x)) = F1(x). Comme F1(x) ∈]0,
√
2π[, ceci équivaut, par bijectivité

de Ff , à φ(x) = F−1
f ◦ F1(x). Il ya donc une unique fonction φ convenable et c’est

φ = F−1
f ◦ F1

5. F−1
f et F1 étant de classe C1, φ l’est aussi et

∀x, φ′(x) = (F−1
f )′(F1(x))F

′
1(x) =

F ′
1(x)

F ′
f ◦ F

−1
f (F1(x))



Les calculs précédent donnent donc (puisque F−1
f ◦ F1 = φ)

(∗) : ∀x, φ′(x) =
e−x

2/2

f(φ(x))e−φ(x)2/2
> 0

La question 1 indique que φ est un C1 difféomorphisme de R dans son image qui, par croissance
et continuité, est ] lim−∞ φ, lim+∞ φ[. Enfin, on a

lim
t→−∞

F−1
f ◦ F1(t) = lim

x→0+
F−1
f (x) = −∞

lim
t→+∞

F−1
f ◦ F1(t) = lim

x→
√
2π

−
F−1
f (x) = +∞

ce qui montre que φ est un C1 difféomorphisme de R dans R.

6. En passant au logarithme dans (∗), on obtient directement

∀x, ln(φ′(x)) + ln(f(φ(x)))− φ(x)2

2
= −x

2

2

Soit y ∈ R et x = φ−1(y). La relation précédente donne

ln(φ′(φ−1(y))) + ln(f(y))− y2

2
= −φ

−1(y)2

2

Avec la formule rappelée en question 2, on a donc

−ln((φ−1)′(y)) + ln(f(y))− y2

2
= −φ

−1(y)2

2

On a donc montré que

∀y, ln((φ−1)′(y))− ln(f(y))− φ−1(y)2

2
= −y

2

2

7. Remarquons que, avec la relation (∗) de laquestion 5,

∀u, h(φ(u))e−u2 = h(φ(u))f(φ(u))e−φ(u)
2/2φ′(u)

φ étant un C1 difféomorphisme d’un segment [a, b] dans son image, on peut poser v = φ(u) pour
obtenir (avec la remarque initiale)∫ b

a
h(φ(u))e−u

2/2 du =

∫ φ(b)

φ(a)
h(v)f(v)e−v

2/2 dv

Quand a tend vers −∞ et b vers +∞, le membre de droite admet une limite avec l’hypothèse
d’intégrabilité faite (φ(a) → −∞ et φ(b) → +∞). On peut donc passer à la limite dans notre
relation et obtenir ∫ +∞

−∞
h(φ(u))e−u

2/2 du =

∫ +∞

−∞
h(v)f(v)e−v

2/2 dv

Remarque : on n’a pas prouvé l’intégrabilité de u 7→ h(φ(u))e−u
2/2 sur R mais seulement l’exis-

tence de l’intégrale pour cette fonction continue par morceaux qui ne présente de problème d’inté-
grabilité qu’aux voisinages des infinis. Ceci suffit pour obtenir la formule demandée. Remarquons
cependant que le même calcul peut être mené en remplacant h(u) par |h(u)|. On obtient alors
l’existence de

∫
R |h(φ(u))|e−u2/2 du c’est à dire l’intégrabilité de u 7→ h(φ(u))e−u

2/2.



8. φ étant croissante sur R et de limite infinie en +∞, elle est positive au voisinage de +∞. Quitte
à restreindre ce voisinage, on a

∃A > 0/ ∀x ⩾ A, φ(x) ⩾ 0

Pour tout x ⩾ A, on a

∀u ∈ [x, x+ 1], φ(u) ⩾ φ(x) ⩾ 0, 0 ⩽ u ⩽ x+ 1

Sur R+, on a croissance de t 7→ t2 et décroissance de t 7→ e−t
2/2. On en déduit que

∀u ∈ [x, x+ 1], φ(u)2e−u
2/2 ⩾ φ(x)2e−(x+1)2/2

Par croissance de l’intégrale (x ⩽ x+ 1) on en déduit que∫ x+1

x
φ(u)2e−u

2/2 du ⩾ φ(x)2e−(x+1)2/2

9. Avec la question précédente, on a

∀x ⩾ A, φ2(x) ⩽ e
(x+1)2

2

∫ x+1

x
φ(u)2e−u

2/2 du

On a 0 ⩽ u2f(u)e−u
2/2 ⩽ u2

ρ e
−ρu2 = o(1/u2) ce qui prouve l’intégrabilité de cette fonction

aux voisinages des infinis et donc sur R (pas de problème ailleurs). La question 7 utilisée avec
h(u) = u2 donne l’intégrabilité de φ(u)2e−u2/2 sur R. Ainsi, l’intégrale de cette fonction entre x
et x+ 1 tend vers 0 quand x→ +∞ (différence de

∫ x+1
0 et de

∫ x
0 qui tend vers l − l = 0). Pour

x assez grand cette intégrale est inférieure à 1. On a donc un B > 0 tel que

∀x ⩾ B, 0 ⩽ φ(x) ⩽ e
(x+1)2

4

Pour traiter le cas du voisinage de −∞, on reprend la question précédente. En prenant garde aux
signes, on obtient pour x assez petit (x ⩽ A′ < 0)

φ(x+ 1)2e−x
2
⩽

∫ x+1

x
φ(u)2e−u

2/2 du

Pour x assez petit le majorant est inférieur à 1 et ainsi, on trouve B′ tel que

∀x ⩽ B′ < 0, |φ(x+ 1)| ⩽ e
(x−1)2

4 = e
(|x|+1)2

4

Le B cherché est max(B,−B′).
10. L’application u 7→ (uφ(u)− u2 −φ′(u) + 1)e−u

2/2 étant continue sur R, on obtient une primitive
H en posant

H(x) =

∫ x

0
(uφ(u)− u2 − φ′(u) + 1)e−u

2/2 du

Soit x ∈ R. Par intégration par parties, on obtient∫ x

0
φ′(u)e−u

2/2 du =
[
φ(u)e−u

2/2
]x
0
+

∫ x

0
uφ(u)e−u

2/2 du∫ x

0
u2e−u

2/2 du =
[
−ue−u2/2

]x
0
+

∫ x

0
e−u

2/2 du

En combinant ces résultats, on obtient

H(x) =
[
(u− φ(u))e−u

2/2
]x
0

On obtient finalement que x 7→ (x − φ(x))e−x
2/2 est une primitive de la fonction proposée. On

peut le vérifier d’ailleurs en dérivant !



11. Par continuité de la fonction sous l’intégrale et avec la question précédente, on a∫ b

a
(uφ(u)− u2 − φ′(u) + 1)e−u

2/2 du = (b− φ(b))e−b
2/2 − (a− φ(a))e−a

2/2

Par croissances comparées, xe−x2/2 est de limite nulle en +∞ et −∞. La question 9 donne par
ailleurs que

∀|u| ⩾ B, |φ(u)e−u2/2| ⩽ e
(|u|+1)2

4
−u2

2 = e
−u2+2|u|+1

4

et cette quantité est de limite nulle aux infinis. On peut ainsi passer à la limite a → −∞ et
b→ +∞ dans l’intégrale. On peut ainsi écrire que

I =

∫ +∞

−∞
(uφ(u)− u2 − φ′(u) + 1)e−u

2/2 du = 0

Remarque : à nouveau, on n’a pas prouvé d’intégrabilité mais juste une existence d’intégrale.
L’énoncé commençant par demander de calculer une primitive, il ne semble pas utile de prouver
une intégrabilité ici.

III. Une inégalité intéressante.
12. L’application u 7→ |u−φ(u)|2e−u2/2 est continue sur R et les seuls problèmes d’intégrabilité sont

ceux aux voisinages des infinis. D’après la question 9 et l’inégalité triangulaire, on a

∀|u| ⩾ B, |u− φ(u)|2e−u2/2 ⩽ |u|e−u2/2 + e
−u2+2|u|+1

4 = o

(
1

u2

)
et on a donc aussi intégrabilité aux voisinages des infinis. Finalement, la fonction est intégrable
sur R et on a existence de ∫ +∞

−∞
|u− φ(u)|2e−u2/2 du

De même, u 7→ ln(f(u))f(u)e−u
2
2 est continue sur R et les seuls problèmes d’intégrabilité sont

ceux aux voisinages des infinis. Soit u ∈ R.

- Si f(u) ⩽ 1 alors avec la question 1, |f(u)ln(f(u))| = −f(u)ln(f(u)) ⩽ 1
e .

- Si f(u) ⩾ 1 alors 0 ⩽ f(u)ln(f(u)). L’hypothèse faite sur f donne alors

f(u)ln(f(u))e−u
2/2 ⩽

1

ρ
e−ρu

2 (
(1/2− ρ)u2)− ln(ρ)

)
Ainsi, dans tous les cas,

|f(u)ln(f(u))|e−u2/2 ⩽ 1

e
e−u

2/2 +
1

ρ
e−ρu

2 (
(1/2− ρ)u2)− ln(ρ)

)
et le majorant est, par croissances comparées, négligeable devant 1/u2 aux voisinages des infinis.
Comme dans le premier cas, on obtient l’existence de∫ +∞

−∞
ln(f(u))f(u)e−u

2
2 du

13. Avec l’intégrabilité prouvée ci-dessus on peut utiliser la question 7 avec h(u) = ln(f(u)) (h est
continue par morceaux sur R et on a l’intégrabilité voulue) pour obtenir

E(f) =

∫ +∞

−∞
ln(f(φ(u)))e−u

2/2 du



14. En combinant les question 13 et 6, on obtient

E(f)− Φ(f) =

∫ +∞

−∞
(−ln(φ′(u))− u2 + uφ(u))e−u

2/2 du

L’intégration par parties donne∫ b

a
uφ(u)e−u

2/2 du =
[
−φ(u)e−u2/2

]b
a
+

∫ b

a
φ′(u)e−u

2/2 du

∫ b

a
u2e−u

2/2 du =
[
−ue−u2/2

]b
a
+

∫ b

a
e−u

2/2 du

On obtient donc∫ b

a
(−ln(φ′(u))−u2+uφ(u))e−u2/2 du =

[
ue−u

2/2 − φ(u)e−u
2/2

]b
a
+

∫ b

a
(−ln(φ′(u))−1+φ′(u))e−u

2/2 du

Le membre de gauche admet une limite quand a → −∞ et b → +∞. Il en est de même pour le
terme entre crochets du membre de droite (déjà vu plus haut) avec une limite nulle. Le troisième
DOIT donc admettre une limite et on peut écrire

E(f)− Φ(f) =

∫ +∞

−∞
(−ln(φ′(u))− 1 + φ′(u))e−u

2/2 du

15. D’après la question 1, on a ln(φ′(u)) ⩽ φ′(u)− 1. La question précédente inique alors que

E(f)− Φ(f) ⩾ 0

16. Si g est une fonction intégrable sur R, continu et positive telle que
∫
R g = 0 alors

∀a < b, 0 ⩽
∫ b

a
g ⩽

∫
R
g = 0

et, avec le cours, g est nulle sur [a, b] et donc sur R (vrai sur tout segment). La réciproque est
immédiate.
Ainsi, E(f) = Φ(f) a lieu si et seulement si φ′(u)− 1− ln(φ′(u)) = 0 c’est à dire φ′(u) = 1 (ln
est strictement concave et il n’y a égalité dans la première inégalité de la question 1 que si t = 0).

- Si f convient alors il existe c tel que φ : x 7→ x+ c. La question 6 donne alors

∀x, f(x+ c) = e
2cx+c2

2

et donc
∀x, f(x) = ecx−

c2

2

- Réciproquement, soit f une fonction du type précédent. f est strictement positive et continue
sur R et on a

f(u)e−u
2/2 = e−

(u−c)2

2

et en posant v = u− c on obtient∫
R
f(u)e−u

2/2 du =

∫
R
e−v

2/2 dv

Il reste à voir si la condition (A) est vérifiée pour une bonne valeur de ρ > 0.



Le problème du transport de Monge consiste à optimiser le coût global du transport d’une répartition de masse
vers une autre. Dans le cas uni-dimensionnel que nous venons de traiter, on se donne un tas de sable
infiniment fin dont le poids entre les abscisses u− du et u+ du est donné par 2 exp(−u2/2)du. On veut le
déplacer vers un tas de sable de densité linéique f(u)exp(−u2/2). Cela est représenté par une application s
de R dans R qui pour tout réel u donne l’abscisse, s(u), du grain situé en u après le transport. On montre que
l’application φ déterminée en question 4 minimise le coût du transport défini par

∫ +∞
−∞ |u− s(u)|e−u2/2 du,

parmi toutes les fonctions s possibles. L’objectif de ce problème est de majorer ce coût minimal par une
quantité qui ne dépend que de f et qui ne nécessite pas le calcul de φ. Le nombre E(f) est appelé l’entropie
de Boltzmann.



Exercice

1. On pose fn(t) =
(
sin t

t

)n
. Cette fonction est continue sur R∗

+ et tend vers 1 en 0. Il y a donc

un faux problème de convergence en 0.

Par ailleurs, en +∞, fn(t) = O(
1

tn
) qui est une intégrale de Riemann convergente sur [1,+∞[,

ce qui prouve l’intégrabilité de fn sur R+.
2. Il est clair que In > 0 si n est pair. Supposons donc n impair.

On pose uk =

∫ (k+1)π

kπ

(
sin t

t

)n
dt =

∫ π

0
(−1)k

(
sinu

u+ kπ

)n
du = (−1)kak avec ak positive, qui

décroît et qui est telle que ak ⩽
π

(kπ)n
, donc lim

k→+∞
ak = 0. D’après le critère spécial des séries

alternées, In est le reste d’ordre 0 de cette série, il est donc du signe du premier terme, c’est-à-dire
positif strictement.
Montrons que lim

n→+∞
In = 0.

|In| ⩽
∫ 1

0
|sin t
t

|ndt+
∫ +∞

1

dt

tn
.

Or
∫ +∞

1

dt

tn
=

1

n− 1
→ 0

Soit ε > 0 fixé, posons A =

∫ ε

0

| sin t|n

tn
dt. On a A ⩽ ε car |sin t

t
| ⩽ 1

et B =

∫ 1

ε

| sin t|n

tn
dt. On a B ⩽

∫ 1

ε

| sin ε|n

εn
dt ⩽

∣∣∣∣sin εε
∣∣∣∣n car une étude de fonction montrerait

sans difficulté que la fonction t 7→ sin t

t
est décroissante sur [0, 1].

Or,
sin ε

ε
< 1 donc

∣∣∣∣sin εε
∣∣∣∣n → 0 et donc, il existe N ∈ N tel que ∀n ⩾ N,

∣∣∣∣sin εε
∣∣∣∣n < ε ce qui

donne finalement, ∀n ⩾ N, |In| ⩽ 3ε.
3. (a) On procède à des intégration par parties successives en dérivant à chaque fois sinn t :

In =

∫ +∞

0

(
sin t

t

)n
=

−1

n− 1

[
sinn t

tn−1

]∞
0

+
1

n− 1

∫ +∞

0

1

tn−1

d

dt
(sinn t)dt =

1

n− 1

∫ +∞

0

1

tn−1

d

dt
(sinn t)dt

car la partie entre crochets est nulle.

En effet, en 0, sinn t ∼ tn donc lim
t→0

sinn t

tn−1
= 0 et en +∞, sinn t est bornée, donc lim

t→+∞

sinn t

tn−1
=

0 .
Avec une nouvelle intégration par parties :

In =
1

n− 1

∫ +∞

0

1

tn−1

d

dt
(sinn t)dt

=
−1

(n− 1)(n− 2)

 d

dt
(sinn t)

tn−2


∞

0

+
1

(n− 1)(n− 2)

∫ +∞

0

1

tn−2

d2

dt2
(sinn t)dt

=
1

(n− 1)(n− 2)

∫ +∞

0

1

tn−2

d2

dt2
(sinn t)dt.

Justifions la nullité de la partie entre crochets :

sinn t ∼ tn au voisinage de 0, donc
d

dt
(sinn t) ∼0 t

n−1 et donc lim
t→0

d

dt
(sinn t)

tn−2
= 0.

En +∞,
d

dt
(sinn t) est un polynôme en sin et cos donc est bornée, d’où lim

t→+∞

d

dt
(sinn t)

tn−2
= 0.

Généralisons : sinn t ∼0 t
n , donc

dk

dtk
(sinn t) ∼0 t

n−k =⇒ lim
t→0

dk

dtk
(sinn t)

tn−k−1
= 0.



En +∞,
dk

dtk
(sinn t) est un polynôme en sin et cos donc borné, d’où lim

t→+∞

dk

dtk
(sinn t)

tn−k−1
= 0.

Par desintégrations par parties successives, avec à chaque fois la nullité de la partie entre
crochets, on aboutit finalement à

In =
1

(n− 1)!

∫ +∞

0

1

t

dn−1

dxn−1
(sinn t)dt

(b) Avec les techniques habituelles :

sin2p x =
(−1)p

22p

[
p−1∑
k=0

(−1)k
(
2p

k

)
cos ((2p− 2k)x) + (−1)p

(
2p

p

)]

et

sin2p+1 x =
(−1)p

22p

p∑
k=0

(−1)k
(
2p+ 1

k

)
sin ((2p− 2k + 1)x)

(c) En utilisant la formule de 3.a) et la linéarisation de la question b),

I2p =
π

2(2p− 1)!

p−1∑
k=0

(−1)k(p− k)2p−1

(
2p

k

)
et

I2p+1 =
π

22p+1(2p)!

p∑
k=0

(−1)k(2p− 2k + 1)2p
(
2p+ 1

k

)
(d) Avec la formule précédente, on trouve :∫ +∞

0

(sin t)2

t2
dt =

π

2
,
∫ +∞

0

(sin t)3

t3
dt =

3π

8
,
∫ +∞

0

(sin t)4

t4
dt =

π

3
,
∫ +∞

0

(sin t)5

t5
dt =

115π

384
,∫ +∞

0

(sin t)6

t6
dt =

11π

40
.


