PC2 Correction du devoir a rendre pour le jeudi 8 janvier 2026

Le probleme est tiré de Mines PC 2005, Maths 1, (3h)
I. Préliminaires.

1. In est une fonction concave sur R™ (dérivée seconde négative sur l'intervalle). Son graphe est
donc situé sous chacune de ses tangentes. En prenant la tangente au point d’abscisse 1 on a donc

Ve >0, In(z) <z -1

ou encore (en posant t = —1) : Vt > —1, In(1+4+t) <t La fonction f : ¢+ t.In(t) est dérivable
sur Rt et f': ¢+ 1+ In(t). On a donc le tableau de variation suivant

t 0 1 +00

0 +00

f(t) \ /

On en déduit que Vt > 0, t.In(t) > —%

2. I étant un intervalle ouvert, ¢ est un C' difféomorphisme de I dans J = (I) si et seulement 1)
est dérivable & dérivée continue sur I avec

Ve el, ¢ (x)#0

Remarque : ceci entraine la stricte monotonie de ¥ sur I et donc la bijectivité de I dans J.

Dans ce cas, Vz € J, (1) (z) = W

II. Construction d’une application.

3. Comme f € Hy, lintégrale de g : u — f(u)e”‘z/2 existe sur R. Comme ¢ est positive, cette
existence donne l'intégrabilité de g sur R. On a aussi intégrabilité sur R~ et, par relation de
Chasles,

Vo € R, Fr(z) = Fr(0) + /050 Fwe /2 du = Fr(0) + G(z)

Comme g est continue sur l'intervalle R, G est, par théoréme fondamental, une primitive de g.
C’est donc une fonction de classe C! (de dérivée égale a g). Fy est donc de classe C! avec

Vo, Fi(x) = g(z) = f(z)e /2 >0

Fy est donc, avec la premiére partie, un C! difféomorphisme de R dans son image qui, par
croissance et continuité, est J = Jlim_o F'y,lim o F¢[. Par définition de l'intégrale et par celle
de Hyp, on a J =]0,V27].

4. L’égalité proposée se lit F(p(x)) = Fi(x). Comme Fi(zx) €]0,v/ 27|, ceci équivaut, par bijectivité
de Fy, a p(x) = Ff_1 o Fy(z). Il ya donc une unique fonction ¢ convenable et c’est

p=F;loF
5. ijl et Fy étant de classe C', ¢ 'est aussi et
Fi(x)

Fjo FiH(Fi(x))

Vo, ¢'(x) = (F; 1) (Fi(x))Fi(z) =



Les calculs précédent donnent donc (puisque Ff_1 oFy =)

2
6&8/2

Flelee ver

(%) = Yz, ¢(z) =

La question 1 indique que ¢ est un C' difféomorphisme de R dans son image qui, par croissance
et continuité, est | lim_ ¢, lim; ¢[. Enfin, on a

lim ijl oFi(t) = lim F;'(z) = -0

t——o0 z—0t f

lim FyloFi(t)= lim F;'(z) =400

f _
t—=+oo TV 21

ce qui montre que ¢ est un C' difféomorphisme de R dans R.

. En passant au logarithme dans (%), on obtient directement

Ve, in(@/ (@) + In(f(p(@) - £ = 2

Soit y € R et = ¢~ !(y). La relation précédente donne

2 -1 2
(' (p7' W) + In(f () — 5 = _ )

Avec la formule rappelée en question 2, on a donc

2 —1/,N\2
—n((e™Y ) + ()~ & = —F )

On a donc montré que

Yy, In((eY @) — In(r) - £~ Y

. Remarquons que, avec la relation () de laquestion 5,

2

Vu, h(p(w)e™ = h(p(u)) f(p(u))e 7 ()

¢ étant un C! diffSomorphisme d’un segment [a, b] dans son image, on peut poser v = ¢(u) pour
obtenir (avec la remarque initiale)

b (0)
/ h(gp(u))e_“2/2 du = /90 h(v)f(v)e_”2/2 dv
a v(a)

Quand a tend vers —oo et b vers 400, le membre de droite admet une limite avec I’hypotheése
d’intégrabilité faite (p(a) — —oo et ¢(b) — +00). On peut donc passer a la limite dans notre

relation et obtenir
+o0 5 +o0 5
/ h(p(u))e ™/ du = / h(v)f(v)e " /2 dv

—00 —00

Remarque : on n’a pas prouvé lintégrabilité de u — h(p(u))e /2 sur R mais seulement Ueris-

tence de l'intégrale pour cette fonction continue par morceaux qui ne présente de probléme d’inté-
grabilité qu’auz voisinages des infinis. Ceci suffit pour obtenir la formule demandée. Remarquons
cependant que le méme calcul peut étre mené en remplacant h(u) par |h(u)|. On obtient alors
Vexistence de [, Ih(p(w)|e /2 du c’est a dire intégrabilité de u — h(p(u))e /2.



8.

10.

 étant croissante sur R et de limite infinie en 400, elle est positive au voisinage de 4+o00. Quitte
a restreindre ce voisinage, on a

JA>0/ Vx> A, o(x) >0
Pour tout x > A, on a

Vu e [z, x4+ 1], o(u) 2 o(x) 20, 0<u<z+1

. . . _$2 . .
Sur R, on a croissance de ¢ — ¢2 et décroissance de t — et /2. On en déduit que

Vu € [,z + 1], go(u)Qe_“Q/2 > cp(av)Qe_(gchl)Q/2

Par croissance de l'intégrale (z < z + 1) on en déduit que
z+1 ) R
/ QO(U)QG_U /2 du > (p($)2€_(x+1) /2
x
Avec la question précédente, on a

2 @2 (T 2,—u?/2
Ve > A, o°(z) <e 2 / o(u)e™™/ du
x

On a0 < u2f(u)e /2 < %6_9“2 = o(1/u?) ce qui prouve l'intégrabilité de cette fonction
aux voisinages des infinis et donc sur R (pas de probléme ailleurs). La question 7 utilisée avec
h(u) = u? donne l'intégrabilité de p(u)2e=**/2 sur R. Ainsi, I'intégrale de cette fonction entre
et z + 1 tend vers 0 quand x — +oo (différence de fSH_l et de fox qui tend vers [ — I = 0). Pour
x assez grand cette intégrale est inférieure & 1. On a donc un B > 0 tel que

(@+1)?
Ve> B, 0< p(x) <e 1

Pour traiter le cas du voisinage de —oo, on reprend la question précédente. En prenant garde aux
signes, on obtient pour x assez petit (z < A’ < 0)

2 z+1 2
oz +1)%e < / o(u)?e™/? du

X
Pour x assez petit le majorant est inférieur a 1 et ainsi, on trouve B’ tel que

(z—1)2 (z]+1)2
4

Ve< B <0, |p(z+1)|<e 1 =e

Le B cherché est max(B,—B’).
L’application u — (up(u) —u? — ¢'(u) + 1)6*“2/2 étant continue sur R, on obtient une primitive

H en posant
H(z) = / (up(u) — u? — @' (u) + 1)e /2 du
0

Soit x € R. Par intégration par parties, on obtient

/ go’(1L)e_“2/2 du = [g@(u)e_“2/2r —I—/ ugp(u)e_“2/2 du
0 0 0

/ ue /2 dy = [—u67“2/2r +/ e~/ dy
0 0 0

En combinant ces résultats, on obtient

x
H(w) = | (u—p(u)e™2|
On obtient finalement que = — (z — ¢(z))e"/2 est une primitive de la fonction proposée. On

peut le vérifier d’ailleurs en dérivant !



11. Par continuité de la fonction sous l'intégrale et avec la question précédente, on a
’ 2 / 2/2 b2/2 2/2
/ (up(u) —u® = ¢'(u) + 1)e™ /% du= (b= p(b))e™"/* = (a — p(a))e™*/
a

. , _r2 .. .
Par croissances comparées, ze* /2 est de limite nulle en +oco et —oo. La question 9 donne par
ailleurs que

(ul+n? W2 —u? 4 2ful+1
4 2 =e 4

Vjul = B, p(u)e /2 <e

et cette quantité est de limite nulle aux infinis. On peut ainsi passer a la limite a — —oo et
b — +oo dans l'intégrale. On peut ainsi écrire que

+oo
I= / (up(u) —u® — ¢ (u) + 1)6_“2/2 du=0

—00

Remarque : & nouveau, on n’a pas prouwvé d’intégrabilité mais juste une existence d’intégrale.
L’énoncé commencant par demander de calculer une primitive, il ne semble pas utile de prouver
une intégrabilité ici.

III. Une inégalité intéressante.

12. L’application u — |u — @(u)[2e~**/2 est continue sur R et les seuls problémes d’intégrabilité sont

ceux aux voisinages des infinis. D’apres la question 9 et I'inégalité triangulaire, on a
2
2 2 —uf+2ul+1 1
Vju| = B, |u—ou)|?e™ /2 < |ule™ /2 +e= 3 :0<2)
U
et on a donc aussi intégrabilité aux voisinages des infinis. Finalement, la fonction est intégrable

sur R et on a existence de
+oo 5
[l eta e du

—00

De méme, u — In(f(u))f(u)e "2 est continue sur R et les seuls problémes d’intégrabilité sont
ceux aux voisinages des infinis. Soit u € R.

- Si f(u) <1 alors avec la question 1, | f(u)in(f(u))| = —f(u)in(f(u)) < 1.

- Si f(u) =1 alors 0 < f(u)in(f(u)). L’hypothése faite sur f donne alors

Fin(f)e™ < e ((1/2 = ) = In(p)
Ainsi, dans tous les cas,

F)in(f@)|e /2 < Sevr2 4 ; ((1/2 = p)u®) — In(p))

gy

et le majorant est, par croissances comparées, négligeable devant 1/u? aux voisinages des infinis.
Comme dans le premier cas, on obtient I'existence de

o0 5
/ In(f (w) f (w)e "2 du

—00

13. Avec l'intégrabilité prouvée ci-dessus on peut utiliser la question 7 avec h(u) = In(f(u)) (h est
continue par morceaux sur R et on a I'intégrabilité voulue) pour obtenir

“+oo 9
B(f) = / In(f(p(u)))e /2 du

—00



14. En combinant les question 13 et 6, on obtient
oo / 2 —u?/2
B~ 0() = [ (inle! () — o+ uplu))e ™2 du

L’intégration par parties donne

b b b
/ ugo(u)e_“2/2 du = [—(p(u)e_ﬁ/ﬂ +/ Lp'(u)e_“2/2 du

b 2 2 b b 2
/ u2e /2 dy = [—ue_“ /2] +/ e /2 dy

a

On obtient donc

b

b . ) 2 , 2
/ (—ln(Sd(u))—u?—i—ugo(u))e—u /2 du = [UQ—U /2 gO(U)e_u /2:| +/ (—ln(tp'(u))—l—i—cp'(u))e_“ /2 du

a

Le membre de gauche admet une limite quand a — —oc et b — +o0. Il en est de méme pour le
terme entre crochets du membre de droite (déja vu plus haut) avec une limite nulle. Le troisiéme
DOIT donc admettre une limite et on peut écrire

“+oo
B - o) = [ (-inle!w) 1+ ¢/ ))e ™2 du
15. D’apres la question 1, on a In(¢'(u)) < ¢’'(u) — 1. La question précédente inique alors que

E(f) =2(f) 20

16. Si g est une fonction intégrable sur R, continu et positive telle que fR g = 0 alors

b
Va<b,0</ gé/g:O
a R

et, avec le cours, g est nulle sur [a,b] et donc sur R (vrai sur tout segment). La réciproque est
immeédiate.

Ainsi, E(f) = ®(f) a lieu si et seulement si ¢'(u) — 1 — In(¢'(u)) = 0 c’est a dire ¢'(u) =1 (In
est strictement concave et il n’y a égalité dans la premiére inégalité de la question 1 que si t = 0).

- Si f convient alors il existe ¢ tel que ¢ :  — x + ¢. La question 6 donne alors

261+c2

Vo, f(x+c)=e 2

et donc ,
Vi, f(z) = e T
- Réciproquement, soit f une fonction du type précédent. f est strictement positive et continue
sur R et on a

o (u—c)2
2

f(u)67“2/2 =e

et en posant v = u — ¢ on obtient

[ s au= [ e
R R

I1 reste a voir si la condition (A) est vérifiée pour une bonne valeur de p > 0.



Le probléme du transport de Monge consiste & optimiser le codt global du transport d’une répartition de masse
vers une autre. Dans le cas uni-dimensionnel que mous venons de traiter, on se donne un tas de sable
infiniment fin dont le poids entre les abscisses u — du et u+ du est donné par 2 exp(—u?/2)du. On veut le
déplacer vers un tas de sable de densité linéique f(u)exp(—u?/2). Cela est représenté par une application s
de R dans R qui pour tout réel u donne l’abscisse, s(u), du grain situé en u apres le transport. On montre que
Dapplication ¢ déterminée en question 4 minimise le codt du transport défini par fjooj |u— s(u)|e*“2/2 du,
parmi toutes les fonctions s possibles. L’objectif de ce probléme est de majorer ce coit minimal par une
quantité qui ne dépend que de f et qui ne nécessite pas le calcul de p. Le nombre E(f) est appelé lentropie
de Boltzmann.



Exercice
sint\"
1. On pose fy(t) = - ) Cette fonction est continue sur RY et tend vers 1 en 0. Il y a donc

un faux probléme de convergence en 0.

1
Par ailleurs, en +o00, f,(t) = O(-—) qui est une intégrale de Riemann convergente sur [1, 400,
ce qui prouve l'intégrabilité de f,, sur R..

2. Il est clair que I, > 0 si n est pair. Supposons donc n impair.

(k+1)m int n T . n
On pose u = /]€7r <SI?> dt = /0 (—1)F (;f;r) du = (—1)*ay, avec aj, positive, qui

décroit et qui est telle que ap < ——— , donc lim ap = 0. D’aprés le critére spécial des séries
k)™ k—400

alternées, I, est le reste d’ordre O de cette série, il est donc du signe du premier terme, c’est-a-dire
positif strictement.

Montrons que lim I, =0.
n—+00

1 +o00
sint dt
|1,] < |—|"dt + —.
0 t 1 tn

oo qt 1
Or/ = —0
1

o on—1
¢ |sint|™ sint
Soit5>0ﬁxé,posonsA:/ | t"’ dt.OnaAéecar[T\gl
0
1 : n 1 : n : n
sint sine sin e
et B = / | o | dt. On a B < / | - | dt < ‘ car une étude de fonction montrerait
€
€ €

sint
sans difficulté que la fonction ¢ — —— est décroissante sur [0, 1].
n

— 0 et dongc, il existe N € N tel que Vn > N,

n

sine .
< € ce qul

sine sine
< 1 donc |—

Or,
€ €
donne finalement, Vn > N, |I,,| < 3e.
3. (a) On procéde a des intégration par parties successives en dérivant a chaque fois sin” ¢ :
+00 . n sm 300 400 +o00
sint —1 [sin"t 1 1 d 1 1 d
j— ) = — = & —(sin™ t)dt = / —(sin" t)dt
" /0 < t ) n—l[tn—lh n—l/o t"—ldt( ) n—1J t"—ldt( )

car la partie entre crochets est nulle.

En effet, en 0, sin™ ¢t ~ ¢t" donc lim = 0 et en 400, sin” ¢ est bornée, donc lim st
t—0 tn—1 t—4oo ¢l
0.
Avec une nouvelle intégration par parties :
I = /m L4 Gnm byt
= —— —(sin
" n—1Jy tvldt
® )]
_1 —(SIn 1 “+oc0 1 d2
(n—1)(n—2) - m—1)(n-2) /), tr2dt
0
1 +oo 1 d2 "
= —— ——(sin" t)dt.
(n—1)(n—2) /0 tn—2 dtQ( )
Justifions la nullité de la partie entre crochets :
d,. .
d ﬁ(sm t)
sin”t ~ " au voisinage de 0, donc — (sin”t) ~g "1 et donc lim ¢*— — = 0.
dt t—0  tn—2 P
d % (Sinn t)
a, ., . . T, _
En +o0, 7 (sin™ t) est un polyndme en sin et cos donc est bornée, d’ou tl}eroo T 0.
dk
k ﬁ (Sinn t)
Généralisons : sin” t ~q t" , donc ——(sint) ~¢ t" ¥ = lim at " _

dtk t—0 tn—k-1



dk
k (sin™t)

Atk
T (sin™ t) est un polyndme en sin et cos donc borné, d’ou _lgrnOQ dttnﬁ =0.

Par desintégrations par parties successives, avec & chaque fois la nullité de la partie entre
crochets, on aboutit finalement a

1 +ool dn—l n

En +o0,

(b) Avec les techniques habituelles :

P — (;2113)7’ [g(_l)k <2]§9> cos ((2p — 2k)z) + (—1)P <2;’>]

et

sin?Ptl g =

<2p + ) sin ((2p — 2k + 1)z)

(c) En utilisant la formule de 3.a) et la linéarisation de la question b),

p—1
By = gy LD k! (F)

k=0

k=0

et
P
2p+1
2p
Iopy1 = 22p+1 (2p) '1; 0: 2p 2k +1) < L )

(d) Avec la formule précédente, on trouve :
/JFOO (sint)Zdt _ E) /+°° (Sint)3dt _ 37 7 /*oo (sint)4dt _ z’ /*OO (sint)5dt _ 11577’
0 t2 2" Jo t3 8 " Jo t4 3" Jo to 384
/+°° (sinGt)G g U
0 t 40




