
MATRICES A DIAGONALE PROPRE

1 EXEMPLES

1. (a) Le polynôme caractéristique de M(α) est
χM(α)(X) = −X3 + tr(M(α))X2 − tr(Com(M(α)))X + det(M(α))

= −X3 + (5− α)X2 − (8− 3α)X + (4− 2α)
= (1−X)(2−X)((2− α)−X).

Les racines de χM(α) sont bien les éléments diagonaux de M(α).
Pour tout α, la matrice M(α) est une matrice à diagonale propre.

(b) Si α ̸= 0 et α ̸= 1 alors les valeurs propres de M(α) sont deux à deux distinctes, M(α) est diagonalisable.
Si α = 0 les valeurs propres sont 1 de multiplicité 1 et 2 de multiplicité 2 .

rg (M(0)− 2I3) = rg

 −1 −1 0
0 0 0
1 1 0

 = 1, la dimension de E2 est donc 2 et M(0) est diagonalisable.

Si α = 1 les valeurs propres sont 1 de multiplicité 2 et 2 de multiplicité 1 .

rg (M(1)− I3) = rg

 0 −1 1
0 1 −1
0 1 1

 = 2, la dimension de E1 est donc 1 et M(0) n’est pas diagonalisable.

M(α) est diagonalisable si et seulement si α ̸= 1.

2. χA(X) = −X3 + tr(A)X2 − tr(Com(A))X + det(A) = −X3 −X.
χA n’est pas scindé sur R donc la matrice A n’est pas à diagonale propre .

3. Soit A =

(
a b
c d

)
.

χA(X) = X2 − (a+ d)X + (ad− bc).
Si A est une MDP alors ses valeurs propres sont a et d et son polynôme caractéristique vaut alors Q(X) =
(X − a)(X − d) = X2 − (a+ d)X + ad.

Par conséquent la matrice A est une MDP si et seulement si PA = Q, c’est à dire si et seulement si bc = 0. E2 est
donc l’ensemble des matrices triangulaires.

2 TEST DANS LE CAS n = 3

4. Pour une MDP, le déterminant est égal au produit des éléments diagonaux.
Par conséquent, une MDP est inversible si et seulement si ses éléments diagonaux sont tous non nuls
Pour obtenir l’exemple demandé, il suffit de prendre une matrice triangulaire, non diagonale et inversible :

A =

 1 1 0
0 1 0
0 0 1

 , A−1 =

 1 −1 0
0 1 0
0 0 1


5. Soit A = (aij) une matrice de M3(R). A est une matrice à diagonale propre si et seulement si son polynône

caractéristique est égal à (a11 −X) (a22 −X) (a33 −X)
En développant ces deux polynômes et en identifiant leurs coefficients on trouve que

A est une matrice à diagonale propre si et seulement si detA =

3∏
i=1

aii et a12a21 + a13a31 + a23a32 = 0

6. (a) Si (detA = a11a22a33) et (a12a21 + a13a31 + a23a32 = 0) alors la matrice est MDP sinon la matrice n’est pas
MDP.

(b) Les matrices à diagonale propre sont A1, A3, A4, A5, A6 et A8

(c) a12a21 = a13a31 = a23a32 = 0



3 EXEMPLES DE MATRICES PAR BLOCS

7. (a) Si M =

(
A B
0 C

)
est une matrice par blocs de Mn(R), et si les matrices A et C sont des matrices

carrées d’ordre r et s à diagonale propre, alors M est une matrice à diagonale propre. En effet, χM (X) =

det

(
A−XIr B

0 C −XIs

)
= det (A−XIr) det (C −XIs) = χA(X)χC(X) Les matrices A et C étant à

diagonale propre, les valeurs propres de M sont ses éléments diagonaux.
On prend alors A = (1) (matrice à diagonale propre car triangulaire), B = (111) et C = A5 (définie à la question

6, matrice à diagonale propre dont tous les termes sont non nuls)

On obtient M =


1 1 1 1
0 1 1 1
0 −1 1 1
0 −2 3 6

, M est à diagonale propre et contient bien treize réels non nuls

(b) Soit M =

(
A B
0 C

)
une matrice par blocs de M4(R) où les matrices A,B et C sont des matrices de M2(R)

qui ne contiennent aucun terme nul.

De même qu’en a), χM (X) = χA(X)χC(X). Posons A =

(
a b
c d

)
et C =

(
e f
g h

)
.

Si a ou d est valeur propre de A, alors χA est scindé et trA = a + d, les valeurs propres de A sont alors a et d,
la matrice A est alors à diagonale propre et d’après la question 3. c’est une matrice triangulaire ce qui est
impossible car la matrice A ne contient aucun terme nul.

Donc, les valeurs propres de A sont e et h et les valeurs propres de C sont a et d.
On en déduit χA(X) = (X − e)(X − h) et χC(X) = (X − a)(X − d).

En développant ces polynômes et en identifiant leurs coefficients, on obtient les relations :


a+ d = e+ h
ad− bc = eh
eh− gf = ad

Il suffit de trouver des réels a, b, c, d, e, f, g et h tous non nuls vérifiant ces équations et de prendre une matrice
B quelconque ne contenant aucun terme nul.

Par exemple : A =

(
1 2
2 1

)
, B =

(
1 1
1 1

)
et C =

(
3 2
−2 −1

)

On obtient : M =


1 2 1 1
2 1 1 1
0 0 3 2
0 0 −2 −1

.

4 QUELQUES PROPRIETES

8. (a) On note A = (aij) ∈ Mn(R)
Les valeurs propres deA sont a11, a22 . . . ann.
Les valeurs propres de aA+ bIn sont a · a11 + b, a · a22 + b, . . . , a · ann + b.
Ce sont les termes diagonaux de aA+ bIn, aA+ bIn est donc une matrice à diagonale propre .
Les termes diagonaux et les valeurs propres d’une matrice et de sa transposée sont les mêmes,

et (aA+ bIn)
T = aAT + bIn, aAT + bIn est donc une matrice à diagonale propre .

(b) La réponse est non. Prenons par exemple la matrice A =

(
1 1
1 1

)
qui est diagonalisable et de valeurs propres

0 et 2. Cette matrice n’est pas une MDP et est semblable à une matrice diagonale qui est une MDP.

9. Soit A ∈ En, pour p ∈ N∗, on pose Up = A− 1

p
In.

D’après la question précédente, Up est une matrice à diagonale propre.
D’autre part, detUp = χA

(
1
p

)
est nul si et seulement si 1

p est valeur propre de A.
Up est donc inversible sauf pour un nombre fini de valeurs de p.
Il existe donc P0 ∈ N tel que la suite (Up)p⩾P0

soit une suite d’éléments de Gn. Cette suite converge vers A.
De la caractérisation séquentielle de la densité, on déduit que Gn est dense dans En .



10. (a)
(

0 1
1 0

)
est une matrice réelle symétrique donc elle est diagonalisable et aussi trigonalisable, mais d’après

la question 3., elle n’est pas à diagonale propre.
Une matrice trigonalisable n’est donc pas nécessairement à diagonale propre.
(b) Par définition, le polynôme caractéristique d’une matrice à diagonale propre est scindé, une telle matrice est

donc trigonalisable.
(c) Soit A ∈ Mn(R), si A est semblable à une matrice B à diagonale propre, alors χA = χB et χB est scindé,
donc χA est scindé.
Réciproquement, si χA est scindé, alors A est semblable à une matrice triangulaire supérieure, or toute matrice
triangulaire est à diagonale propre donc A est semblable à une matrice à diagonale propre.

En conclusion : A est semblable à une matrice à diagonale propre si et seulement si χA est scindé.
11. Soit A = (aij) ∈ Mn(R)

Comme toute matrice triangulaire est à diagonale propre, il suffit d’écrire A comme une somme de deux
matrices triangulaires :

A =


a11 · · · · · · a1n

0
. . .

...
...

. . .
...

0 · · · 0 ann

+


0 · · · · · · 0

a21
. . .

...
...

. . .
. . .

...
an1 · · · an,n−1 0


Pour tout n ⩾ 2 il existe une matrice de Mn(R) qui n’est pas à diagonale propre, par exemple la matrice par

blocs M =

(
A 0
0 0

)
avec A =

(
0 1
1 0

)
Cette matrice s’écrit comme somme de deux matrices à diagonale

propre, donc En n’est pas un sous-espace vectoriel de Mn(R) .

5 MATRICES SYMETRIQUES ET MATRICES ANTISYMETRIQUES

12. (a) A est une matrice réelle et symétrique donc il existe une matrice orthogonale P et une matrice diagonale
D telles que A = PDP T .
tr
(
ATA

)
= tr

(
PDP TPDP T

)
= tr

(
PDDP T

)
= tr

(
D2

)
(car PD2P T est semblable à D2 et deux matrices semblables ont la même trace.)

Or tr
(
ATA

)
=

n∑
i=1

n∑
j=1

a2ij et tr
(
D2

)
=

n∑
i=1

λ2
i , donc

n∑
i=1

n∑
j=1

a2ij =
n∑

i=1

λ2
i

(b) Si de plus A est une matrice à diagonale propre, alors les valeurs propres de A sont a11, a22, . . . , ann.

Donc
n∑

i=1

n∑
j=1

a2ij =

n∑
i=1

a2ii =⇒
n∑

i=1

n∑
j=1,j ̸=i

a2ij = 0, tous les coefficients non diagonaux de A sont donc nuls et on en

déduit que A est une matrice diagonale.
Réciproquement, toute matrice diagonale est à diagonale propre.
Les matrices symétriques réelles à diagonale propre sont donc les matrices diagonales.
13. (a) A est antisymétrique, donc tous ses éléments diagonaux sont nuls et comme elle est à diagonale propre, son

polynôme caractéristique est scindé et toutes ses valeurs propres sont nulles. On a donc χA(X) = Xn et par
le TCHeu An = 0.(

ATA
)n

= (−AA)n = (−1)nA2n = 0 .D’où
(
ATA

)n
= 0 .

(b) ATA est une matrice réelle symétrique donc elle est diagonalisable.(
ATA

)n
= 0 donc toutes les valeurs propres de ATA sont nulles. On en déduit ATA = 0

(c) De ce qui précède, on déduit que tr
(
ATA

)
= 0 donc

n∑
i=1

n∑
j=1

a2ij = 0. A est donc la matrice nulle.



6 DIMENSION MAXIMALE D’UN ESPACE VECTORIEL INCLUS DANS
En

14. Soit F un sous-espace vectoriel de Mn(R) tel que l’on ait F ⊂ En.
De la question 15., on déduit F ∩ An = {0}. Donc dimF + dimAn = dim (F +An) ⩽ dimMn(R) = n2

On en déduit dimF ⩽ n2 − dimAn = n2 − n(n− 1)

2
=

n(n+ 1)

2
d’où dimF ⩽

n(n+ 1)

2
.

Le sous-espace des matrices triangulaires supérieures est de dimension
n(n+ 1)

2
et il est inclus dans En

La dimension maximale d’un sous-espace vectoriel F de Mn(R) vérifiant F ⊂ En est donc
n(n+ 1)

2
.

16. On prend pour F l’ensemble des matrices M de la forme M =

(
A B
0 C

)
avec A ∈ M1(R), B ∈ M1,n−1(R)

et C ∈ Mn−1(R) triangulaire inférieure.

M =



m11 m12 · · · · · · m1n

0 m22 0 · · · 0
... m32 m33

. . .
...

...
...

. . . 0
0 mn2 · · · · · · mnn


L’ensemble de ces matrices est un sous-espace vectoriel de Mn(R) de dimension n(n+1)

2 qui n’est pas constitué
uniquement de matrices triangulaires.

Les matrices A et C sont à diagonale propre et d’après ce que l’on a vu dans la question 8., on en déduit que M
est à diagonale propre et que donc F ⊂ En.

On a déterminé un sous-espace vectoriel F de Mn(R) vérifiant F ⊂ En, de dimension maximale mais tel que F ne
soit pas constitué uniquement de matrices triangulaires.
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