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2 correction du DM sur les noyaux itérés

Partie I : Généralités

1. x ∈ Keruk ⇒ uk(x) = 0 ⇒ u(uk(x)) = 0 ⇒ uk+1(x) = 0 ⇒ x ∈ Keruk+1.

La suite Ker(uk)k∈N est donc croissante pour l'inclusion .

y ∈ Imuk+1 ⇒ ∃x ∈ E, y = uk+1(x) ⇒ y = uk(u(x)) ⇒ y ∈ Imuk.

La suite Im(uk)k∈N est donc décroissante pour l'inclusion.

2. Dans E = R [X], pour u : P 7−→ P ′, Keruk = Rk−1[X] et pour v : P 7−→ XP, Im vk = {P, val(P ) ⩾ k + 1}
3. Si Im(up ) = Im(up+1 ) alors soit y ∈ Im(up+1) =⇒ ∃x ∈ E, y = up+1(x) = u(up(x)) or up(x) ∈ Imup donc

∃x′ , up(x) = up+1(x′), par conséquent y = u(up+1(x′)) = up+2(x′) ∈ Imup+2.
Ce qui entraîne, avec la première inclusion établie dans la question 1 : Imup+2 = Imup+1 puis par récurrence

immédiate : pour tout j ⩾ p, Imuj = Imup .

4. si Kerup = Kerup+1 alors soit x ∈ Kerup+2 ⇒ up+2(x) = 0 ⇒ u(x) ∈ Kerup+1 ⇒ u(x) ∈ Kerup ⇒ x ∈
Kerup+1.
Ce qui entraîne avec la première inclusion établie dans la question 1 : Kerup+1 = Kerup+2 puis par récurrence

immédiate : pour tout j ⩾ p, Keruj = Kerup .

5. (a) Remarque : L'hypothèse de �nitude de la dimension ne porte que sur Keru, par contre, on n'a pas
d'hypothèse sur la dimension de E, ce qui fait qu'on ne pourra pas utiliser le théorème du rang.
Montrons dans un premier temps que Kerun est de dimension �nie.
Pour cela, nous allons établir le lemme suivant :

Soit u une application linéaire d'un espace vectoriel E dans un espace vectoriel F . Si Keru et Imu sont
de dimensions �nies, alors E est de dimension �nie.

Démonstration du lemme : En admettant l'existence d'un supplémentaire S de Keru dans E (qui est
garantie si on admet l'axiome du choix), le théorème noyau/image nous dit que u induit un isomor-
phisme de S sur Imu, ce qui prouve que S est de dimension �nie. On en déduit alors que E = S⊕Keru
est de dimension �nie (puisqu'engendré par la concaténation d'une base de S et d'une base de Keru).

Montrons à présent que Kerun est de dimension �nie par récurrence.
L'hypothèse est véri�ée pour n = 1.
Supposons qu'elle le soit également au rang n.
On remarque que x ∈ Kerun+1 =⇒ un+1(x) = OE =⇒ un(u(x)) = OE .

Par conséquent u(Kerun+1) ⊂ Kerun . On peut donc dé�nir v = u
|Kerun

|Kerun+1 ∈ L(Kerun+1,Kerun).

Ker v = Keru ∩Kerun+1 = Keru qui est de dimension �nie.
De plus Im v ⊂ Kerun qui est également de dimension �nie par hypothèse de récurrence.
Donc Kerun est de dimension �nie d'après le lemme.

Soit à présent Sn un supplémentaire de Kerun dans Kerun+1.
On a donc Kerun+1 = Sn ⊕Kerun. D'où dimSn = dimKerun+1 − dimKerun .
On a vu que u(Kerun+1) ⊂ Kerun, par conséquent, on a aussi u(Sn) ⊂ Kerun.

On peut donc dé�nir w = u
|Kerun

|Sn
∈ L(Sn,Kerun).

Kerw = Keru ∩ Sn ⊂ Kerun ∩ Sn = {OE} .
Donc w est injective ce qui implique dimSn = dimw(Sn) .
Montrons que Imw ∩Kerun−1 = {OE} .
Soit y ∈ Imw, i.e. ∃x ∈ Sn, y = u(x) .
Or si y ∈ Kerun−1, alors un−1(y) = un(x) = OE =⇒ x ∈ Kerun. Or Kerun et Sn sont en somme
directe, par conséquent x = OE et y = u(x) = OE .
Donc Imw est un sev de Kerun en somme directe avec Kerun−1.
En terme de dimension, on obtient :

dim Imw + dimKerun−1 ⩽ dimKerun =⇒ dim Imw ⩽ dimKerun − dimKerun−1
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Ce qui donne �nalement dimKerun+1 − dimKerun ⩽ dimKerun − dimKerun−1 .

En conclusion : la suite de terme général
(
dim(Kerun+1)− dim(Kerun)

)
n∈N

est décroissante

(b) La suite de terme général
(
dim(Kerun+1)−dim(Kerun)

)
n∈N

est décroissante et est positive d'après la

question 1).
Le théorème de la limite monotone nous dit alors que cette suite converge.
Par ailleurs, cette suite est à valeurs entières et nous savons grâce à l'exercice 1 qu'une suite d'entiers
convergente est stationnaire.
Il existe donc N tel que dim(Kerun+1)− dim(Kerun) = a, ∀n ⩾ N .
Par télescopage, on en déduit que dimKerun = na−Na+dimKeruN , ∀n ⩾ N , ce qui donne le résultat.

(c) Dans E = K [X], l'endomorphisme u : P 7−→ P (p) fournit un exemple où l'on a égalité.

Partie II : Cas de la dimension �nie :

1. Les dimensions des noyaux itérés vont en augmentant et sont des entiers compris entre 0 et n, qui est un
ensemble �ni. La suite des dimensions est donc stationnaire.
De plus, les noyaux formant une suite croissante pour l'inclusion, la stationnaritude de la suite des dimensions
implique celle des noyaux itérés.
Le même raisonnement vaut pour les images itérées et leurs dimensions qui forment une suite décroissante.
D'après le théorème du rang, licite ici car E est de dimension �nie, si ça stationne pour les noyaux, ça
stationne pour les images et réciproquement.

Montrons que E = N ⊕ I .
Par construction, on a N = Kerur et I = Imur, donc par le théorème du rang, dimN + dim I = n.
Il reste à montrer que N ∩ I = {OE}.
Soit x ∈ N ∩ I, x ∈ N =⇒ ur(x) = 0, x ∈ I =⇒ ∃y ∈ E, x = ur(y).
D'où u2r(y) = OE =⇒ y ∈ Keru2r = Kerur =⇒ ur(y) = OE =⇒ x = OE .

2. D'après la partie I, la suite des noyaux itérées est strictement croissante pour l'inclusion puis stationne à
partir du rang r.
Il en va de même pour la suite des dimensions des noyaux itérés.
Or cette suite prend ses valeurs dans l'ensemble [[0, n]] qui est de cardinal n+ 1.
L'ensemble dimKeru0, ...dimKerun+1 est de cardinal n + 2, donc d'après le principe des tiroirs, cher à
Johann Dirichlet, deux de ces entiers sont égaux. Notons les i et j avec 0 ⩽ i < j ⩽ n+1. D'après la partie I,
la suite des noyaux itérés stationne au moins à partir de Kerui, ce qui prouve que le rang de stationnement
r véri�e r ⩽ n .

3. Soit x ∈ N ⇒ ur(x) = 0 ⇒ ur+1(x) = ur(u(x)) = 0 ⇒ u(x) ∈ N .
Soit y ∈ I ⇒ y = ur(x) ⇒ u(y) = ur(u(x)) ⇒ u(y) ∈ I.

Par conséquent : N et I sont stables par u .

4. N = Kerup donc
(
u
|N
|N

)p
= 0 .

Posons v = u
|I
|I , c'est un endomorphisme de I d'après la question précédente.

Soit Ker v = I ∩Keru ⊂ I ∩Kerur = I ∩N = {OE}
Donc v est injective, et comme c'est un endomorphisme d'un espace vectoriel de dimension �nie, alors v est
bijective.

5. Posons v = u
|G
|G et w = u

|F
|F .

Soit p l'indice de nilpotence de w.
On a F = Kerwp ⊂ Kerup ⊂ N .
Par ailleurs, v est bijective donc pour tout k ∈ N, G = Im vk ⊂ Imuk, donc G ⊂ I.
En considérant les dimensions, les deux égalités E = F ⊕ G et E = N ⊕ I couplées aux deux inclusions
F ⊂ N et G ⊂ I entraînent nécessairement que F = N et que G = I .

Partie III : Applications 1

1. Keru ⊂ Keru2 d'où dimKeru ⩽ dimKeru2.
D'après I.5.a) dimKeru2 − dimKeru ⩽ dimKeru− dimKeru0



d'où
dimKeru ⩽ dimKeru2 ⩽ 2 dimKeru

2. Imu2 = Keru3 =⇒ u5 = 0L(E) =⇒ u4 ◦ u = 0L(E) =⇒ Imu ⊂ Keru4.
Soit x ∈ Keru4 =⇒ u(x) ∈ Keru3 = Imu2 donc il existe x′ ∈ E, u(x) = u2(x′)
Donc x− u(x′) ∈ Keru ⊂ Keru3 = Imu2 donc il existe x′′ ∈ E, x− u(x′) = u2(x′′) .
Finalement, x = u(x′) + u2(x′′) ∈ Imu .

Conclusion Imu = Keru4 .

Partie IV : Applications à un endomorphisme nilpotent

1. ⇒ est évident.
⇐ : Soit (e1, ..., en) une base de E. Pour tout ei, ∃ ki ∈ N, uki(ei) = 0E .
Posons k = max(k1, ..., kn), qui existe car un nombre �ni d'entiers admet un plus grand élément.
On a alors uk(ei) = 0E pour tout i ∈ [[1, n]] et par linéarité, uk = 0L(E).

Conclusion : u est nilpotente.

2. Ce résultat n'est pas vrai en dimension in�nie avec par exemple E = R [X] et u : P 7−→ P ′.

3. On a vu dans la partie I que

(∗) : {0E} = Keru0 ⊂ Keru ⊂ Keru2 ⊂ ... ⊂ Kerup = E

et que de plus, si l'une de ces inégalités est une égalité, alors la suite stationne à partir de là. Par conséquent,
par minimalité de p tel que Kerup = Kerup+1, on en déduit que les inclusions de (*) sont toutes strictes.

4. Partons de Gp ⊕Kerup−1 = E .
Comme, Kerup−1 = Gp−1 ⊕ Kerup−2, on a - par associativité de la somme directe - Gp ⊕ Gp−1 ⊕ Kerup−2

et ainsi de suite.
Comme, en �n de chaîne, on a G1 ⊕Keru0 = Keru ce qui revient à G1 = Keru, on obtient
E = G1 ⊕G2 ⊕ ...⊕Gp

5. Par le théorème de recollement, on obtient une base de E en recollant une base B1 de G1, ..., une base Bp de
Gp.
Les vecteurs de G1 sont dans Keru donc leurs image par u sont nulles.
Les vecteurs de G2 sont dans Keru2 mais pas dans Keru, leurs images par u sont donc dans Keru et sont
donc combinaisons linéaires des vecteurs de B1.
Les vecteurs de G3 sont dans Keru3 mais pas dans Keru2, leurs images par u sont donc dans Keru2 et sont
donc combinaisons linéaires des vecteurs de B2, etc ...
Par conséquent, la matrice de u dans cette base est triangulaire supérieure stricte par blocs

A =



0 A1 0 . . . 0

0 A2
. . .

. . .
. . . 0

0 An−1

0


donc triangulaire supérieure stricte.

6. dimKeru = 1.
D'après III.1) , 1 ⩽ dimKeru2 ⩽ 2.
Donc dimKeru2 = 1 ou 2. Si dimKeru2 = 1 alors par égalité des dimensions et l'inclusion établie dans la
partie I, on obtient Keru = Keru2 puis Keru = Kerup = E ce qui est impossible (si dimE ⩾ 2).
Donc dimKeru2 = 2.
D'après I.5.a), on a dimKeru3 − dimKeru2 ⩽ dimKeru2 − dimKeru = 1.
Donc dimKeru3 = 2 ou 3. Si dimKeru3 = 2 alors, par le même raisonnement que précédemment, Keru2 =
Keru3 et la suite stationne à partir de 2, ce qui contredit la nilpotence de u si dimE ⩾ 3.

En itérant ce raisonnement, on obtient que ∀k ∈ [[0, n]], dimKeruk = k .



7. Si dimKeru = 1, alors dimKerun−1 = n− 1 et dimKerun = n = dimE d'après la question précédente, ce
qui prouve que u est nilpotente d'indice n.
Réciproquement, si u est nilpotente d'indice n, la strictitude des inclusions

{0E} = Keru0 ⊂ Keru ⊂ Keru2 ⊂ ... ⊂ Kerun = E

implique celle des dimensions. On a donc une suite de n+1 entiers strictement croissante qui prennent leurs
valeurs dans [[0, n]], ce qui impose dimKeruk = k et en particulier dimKeru = 1.

En conclusion : p = n ⇐⇒ dimKeru = 1 .


