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correction du DM sur les noyaux itérés

Partie I : Généralités
1. z € Keru® = vf(z) = 0 = u(uf(2)) = 0 = v (2) = 0 = » € Keru**1

5.

La suite Ker(u*); ey est donc croissante pour l'inclusion |.

y € Imuft! = Jz € B,y = u(2) = y = uF(u(z)) = y € Imu.

La suite Im(u*); ¢ est donc décroissante pour l'inclusion.

Dans F = R[X], pour u: P P, Keru* = R;,_1[X] et pour v : P+ XP, Imv* = {P,val(P) > k + 1}

. Si Im(wP) = Im(uPtt) alors soit y € Im(wPt) = 3z € B, y = vP(2) = uw(uP(x)) or uP(z) € ImuP donc

2’ uP(x) = uPT(2"), par conséquent y = u(uPT(z')) = uPT2(z’) € ImuP*2.
Ce qui entraine, avec la premiére inclusion établie dans la question 1 : Im uP*? = ImwP*! puis par récurrence

immeédiate : | pour tout j > p, Imu? = ImuP |

si KeruP = KeruP™! alors soit z € KeruP™? = uP™2(x) = 0 = u(z) € Keru?™ = u(z) € Kerv? = z €
Ker uPt!,
Ce qui entraine avec la premiére inclusion établie dans la question 1 : Ker uP*! = Ker uP*? puis par récurrence

immeédiate : ’ pour tout j > p, Keru/ = Ker up‘ .

(a) Remarque : L’hypothése de finitude de la dimension ne porte que sur Keru, par contre, on n’a pas

d’hypothese sur la dimension de F, ce qui fait qu’on ne pourra pas utiliser le théoréme du rang.
Montrons dans un premier temps que Ker u™ est de dimension finie.
Pour cela, nous allons établir le lemme suivant :

Soit u une application linéaire d’un espace vectoriel E dans un espace vectoriel F'. Si Ker v et Im u sont
de dimensions finies, alors E est de dimension finie.

Démonstration du lemme : En admettant ’existence d'un supplémentaire S de Kerwu dans E (qui est
garantie si on admet ’axiome du choix), le théoréme noyau/image nous dit que u induit un isomor-
phisme de S sur Im u, ce qui prouve que S est de dimension finie. On en déduit alors que £ = S ® Keru
est de dimension finie (puisqu’engendré par la concaténation d’une base de S et d’une base de Keru).

Montrons & présent que Ker u” est de dimension finie par récurrence.
L’hypothése est vérifiée pour n = 1.

Supposons qu’elle le soit également au rang n.

On remarque que x € Keru"™ = u""(2) = Op = u"(u(x)) = Og.

Par conséquent u(Ker u"*!) C Keru™ . On peut donc définir v = ul v € L(Keru" T Keru™).
| Ker u

Kerv = Keru N Ker u"! = Keru qui est de dimension finie.
De plus Imv C Ker u™ qui est également de dimension finie par hypothése de récurrence.
Donc Ker u™ est de dimension finie d’aprés le lemme.

Soit a présent S, un supplémentaire de Keru" dans Ker u" .

On a donc Keru"t! = S, @ Keru”. D’ou dim S,, = dim Ker «"*! — dim Ker u™ .
On a vu que u(Keru™*!) C Keru™, par conséquent, on a aussi u(S,) C Ker u™.

On peut donc définir w = uiéiemn € L(Sy, Keru").

Kerw =Kerun S, C Keru" NS, ={0g} .

Donc w est injective ce qui implique dim S,, = dimw(S,,) .

Montrons que Imw N Keru™ ! = {Og} .

Soit y € Imw, i.e. Jx € Sy, y = u(x) .

Or si y € Keru™ !, alors u" !(y) = v"(z) = Op = z € Keru™. Or Keru” et S, sont en somme
directe, par conséquent x = Op et y = u(x) = Op.

Donc Imw est un sev de Keru” en somme directe avec Ker u”~!.
En terme de dimension, on obtient :

dim Im w + dim Ker "' < dim Ker " = dim Im w < dim Ker " — dim Ker v "
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Ce qui donne finalement dim Ker v"*! — dim Ker 4" < dim Ker v” — dim Ker "~ ! .

En conclusion : | la suite de terme général (dim(Ker u™1) — dim(Ker u")) N est décroissante
ne

(b) La suite de terme général (dim(Ker u™*1) — dim(Ker u”)) N est décroissante et est positive d’aprés la
ne
question 1).

Le théoréme de la limite monotone nous dit alors que cette suite converge.

Par ailleurs, cette suite est a valeurs entiéres et nous savons grace a ’exercice 1 qu’une suite d’entiers
convergente est stationnaire.

Il existe donc N tel que dim(Keru"*!) — dim(Keru") = a, ¥n > N.

Par télescopage, on en déduit que dim Ker u” = na— Na+dim Ker u?, ¥n > N, ce qui donne le résultat.

(¢) Dans E = K[X], 'endomorphisme u : P — P® fournit un exemple ot I’on a égalité.

Partie IT : Cas de la dimension finie :

1.

. Posons v = u

Les dimensions des noyaux itérés vont en augmentant et sont des entiers compris entre 0 et n, qui est un
ensemble fini. La suite des dimensions est donc stationnaire.

De plus, les noyaux formant une suite croissante pour ’'inclusion, la stationnaritude de la suite des dimensions
implique celle des noyaux itérés.

Le méme raisonnement vaut pour les images itérées et leurs dimensions qui forment une suite décroissante.
D’aprés le théoréme du rang, licite ici car E est de dimension finie, si ¢a stationne pour les noyaux, ca
stationne pour les images et réciproquement.

Montrons que E=N® I .

Par construction, on a N = Keru” et I = Imu", donc par le théoréme du rang, dim N 4+ dim I = n.
Il reste & montrer que N NI = {Og}.

Soitz e NNI,z e N=u"(x) =0,z € [ = Jy € E,z =u"(y).

Dot u?"(y) = Op = y € Keru?” = Keru" = u"(y) = Op = 2 = Op .

. D’aprés la partie I, la suite des noyaux itérées est strictement croissante pour l'inclusion puis stationne &

partir du rang r.

Il en va de méme pour la suite des dimensions des noyaux itérés.

Or cette suite prend ses valeurs dans ’ensemble [0, n] qui est de cardinal n + 1.

L’ensemble dim Ker«?, ...dim Ker "t est de cardinal n + 2, donc d’aprés le principe des tiroirs, cher a
Johann Dirichlet, deux de ces entiers sont égaux. Notons les i et j avec 0 < ¢ < j < n+ 1. D’apreés la partie I,
la suite des noyaux itérés stationne au moins a partir de Keru?, ce qui prouve que le rang de stationnement

. Soitz € N=u"(z) =0=u"t(z) =u"(u(z)) = 0= u(xr) € N.

Soityel =y=u"(z)=uly) =u" (u(r)) = uly) € 1.
Par conséquent : ’ N et I sont stables par u ‘

N = KeruP donc (ul%)p =0.
|1

Posons v = upps c’est un endomorphisme de I d’aprés la question précédente.

Soit Kerv =INKeru C INKeru” = INN ={0g}

Donc v est injective, et comme c¢’est un endomorphisme d’un espace vectoriel de dimension finie, alors v est
bijective.

G et w = u'F
G = Yp-

Soit p I'indice de nilpotence de w.

On a F' = Kerw?P C Keru? C N.

Par ailleurs, v est bijective donc pour tout k € N, G = Imv* € Im«*, donc G C I.

En considérant les dimensions, les deux égalités ¥ = F & G et E = N @ I couplées aux deux inclusions
F C N et G C I entrainent nécessairement que | F' =N et que G =1 |

Partie III : Applications 1

1.

Keru C Keru? d’on dim Ker v < dim Ker u2.
D’aprés 1.5.a) dim Ker u? — dim Ker u < dim Ker u — dim Ker u°



d’ou
dim Ker v < dim Ker u? < 2dim Keru

2. Imu? = Keru® = u® = Ogpy = utou = Og(p) = Imu C Ker u?.
Soit = € Keru* = u(r) € Keru® = Imu? donc il existe 2’ € E,u(z) = u?(z')
Donc x — u(2’) € Keru C Keru® = Imu? donc il existe 2" € B,z — u(z') = u?(z") .
Finalement, z = u(z’) + v?(z") € Imu .

4 ‘

Conclusion ’ Imu = Keru

Partie IV : Applications & un endomorphisme nilpotent

1. est évident.
: Soit (eq, ..., e,) une base de E. Pour tout e;, 3k; € N, uFi(e;) = 0.
Posons k = max(kq, ..., k), qui existe car un nombre fini d’entiers admet un plus grand élément.
On a alors u¥(e;) = O pour tout i € [1,n] et par linéarité, u* = 07).

Conclusion : ’u est nilpotente. ‘

2. Ce résultat n’est pas vrai en dimension infinie avec par exemple E = R [X] et u: P — P’.

3. On a vu dans la partie I que
(¥) : {0g} = Keru® ¢ Keru C Keru? C ... C Keru? = F

et que de plus, si l'une de ces inégalités est une égalité, alors la suite stationne a partir de la. Par conséquent,
par minimalité de p tel que Keru? = Ker uP™!, on en déduit que les inclusions de (*) sont toutes strictes.

4. Partons de Gp ® Keru?™! = F .
Comme, KeruP~! = G,_; ® KeruP™2, on a - par associativité de la somme directe - G, & Gp_1 ® Ker uP—2
et ainsi de suite.

Comme, en fin de chaine, on a G1 @ Keru® = Keru ce qui revient & G = Keru, on obtient
E:Gl@GQEBEBGp

5. Par le théoréme de recollement, on obtient une base de E en recollant une base By de G1, ..., une base B, de
Gp.
Les vecteurs de GGy sont dans Keru donc leurs image par u sont nulles.
Les vecteurs de G sont dans Keru? mais pas dans Keru, leurs images par u sont donc dans Keru et sont
donc combinaisons linéaires des vecteurs de Bj.
Les vecteurs de G3 sont dans Ker u? mais pas dans Keru?, leurs images par u sont donc dans Ker u? et sont
donc combinaisons linéaires des vecteurs de Ba, etc ...
Par conséquent, la matrice de v dans cette base est triangulaire supérieure stricte par blocs

0|A1| O |... 0
0 | Ay
A= 0
0 Anfl
0

donc triangulaire supérieure stricte.

6. dim Keru = 1.
D’apres I11.1) , 1 < dim Keru? < 2.
Donc dimKeru? = 1 ou 2. Si dim Keru? = 1 alors par égalité des dimensions et I'inclusion établie dans la
partie I, on obtient Ker u = Keru? puis Keru = Keru? = E ce qui est impossible (si dim E > 2).
Donc dim Ker u? = 2.
D’aprés I.5.a), on a dim Ker u? — dim Ker u? < dim Ker u? — dim Keru = 1.
Donc dim Ker u? = 2 ou 3. Si dim Ker u? = 2 alors, par le méme raisonnement que précédemment, Ker u? =
Keru? et la suite stationne & partir de 2, ce qui contredit la nilpotence de u si dim E > 3.

En itérant ce raisonnement, on obtient que |Vk € [0,n], dim Keru® = k|.




7. Si dimKeru = 1, alors dimKeru”~! = n — 1 et dimKeru"” = n = dim E d’aprés la question précédente, ce
qui prouve que u est nilpotente d’indice n.
Réciproquement, si u est nilpotente d’indice n, la strictitude des inclusions

{0g} = Keru® c Keru C Keru? C ... C Keru" = E

implique celle des dimensions. On a donc une suite de n + 1 entiers strictement croissante qui prennent leurs
valeurs dans [0,n], ce qui impose dim Ker u* = k et en particulier dim Keru = 1.

En conclusion : ’p =n <= dimKeru=1 ‘ .




