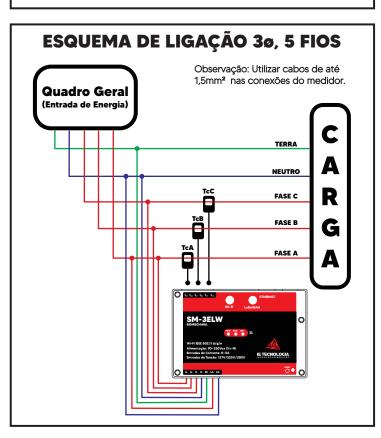
Medidor de Energia Trifásico Bidirecional SM-3ELW

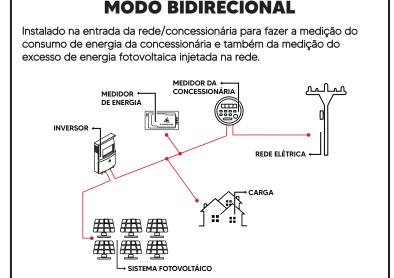
ESPECIFICAÇÕES DO MEDIDOR

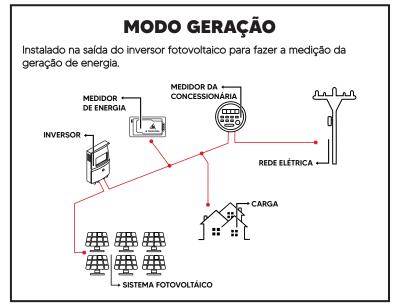
MODELO: MEDIDOR DE ENERGIA TRIFÁSICO BIDIRECIONAL SM-3ELW

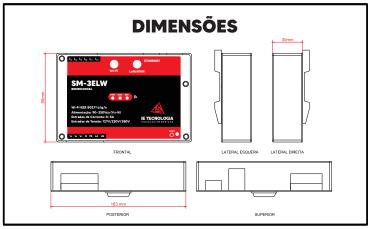
TENSÃO POR FASE: 127 Vca~220Vca

INTERFACE: WI-FI

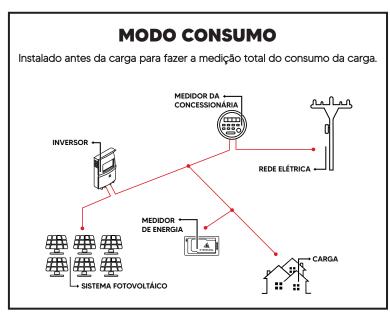

ENVIO DE DADOS PARA NUVEM: WI-FI, ETHERNET E LORAWAN


TRANSFORMADOR DE CORRENTE: 30~5000A/5A OBS: SAÍDA 5A


MONTAGEM: DIN 35MM


TIPO DE INSTALAÇÃO: RECOMENDADO NÃO INSTALAR DENTRO DE

UM QUADRO METÁLICO.



1. RESUMO: CHAVES DE ATIVAÇÃO E CONFIGURAÇÕES INICIAIS DO MEDIDOR

Ativação: ABP (Padrão, pode ser configurado OTAA via WebServer)

DevEUI: Localizado na caixa do medidor, ID único. Exemplo: 012345678a9bcdef

AppEUI: 6a222b603f2ed0ba (Padrão, pode ser alterado via WebServer)

AppKey: 6a222b603f2ed0ba433efb1005b44b1c (Padrão, pode ser alterado via WebServer)

DevAddr: Últimos 8 caracteres do DevEUI, vide caixa do medidor. Exemplo: 8a9bcdef

AppSKey: 6a222b603f2ed0ba433efb1005b44b1c (Padrão, pode ser alterado via WebServer) NwkSKey: 6a222b603f2ed0ba433efb1005b44b1c (Padrão, pode ser alterado via WebServer)

Banda: AU915 (Padrão)

Sub-Banda: 1 Sub-Banda (Padrão, canais de 0 a 7. Configurável via WebServer)

LoRaWAN: 1.0.3

Envio: 3 minutos (Padrão, configurável via WebServer ou Downlink)

Intervalo Aleatório: 120 segundos (Padrão, configurável via WebServer)

ADR: Desabilitado (Padrão, configurável via WebServer)

Rede Pública: Habilitado (Padrão)

Porta Uplink: 02 (Padrão)

Porta Downlink: 02 (Padrão)

Ao energizar o equipamento, ele iniciará automaticamente o envio de dados via LoRaWAN utilizando as configurações padrão (Ativação ABP). A única configuração necessária será ajustar a Razão de Transformação dos TC's de medição, o que é obrigatório (pode ser feito via WebServer ou Downlink). Também é necessário verificar se a ligação dos Transformadores de Corrente (TC's) está configurada corretamente para medição de consumo ou geração de energia.

Se a potência está negativa, está em modo geração de energia. Caso a potência esteja positiva, está no modo consumo de energia (a potência pode ser verificada via WebServer ou telemetrias LoRaWAN).

2. VARIÁVEIS DO PAYLOAD (UPLINK)

Exemplo de Payload (hexadecimal) de telemetria do medidor SM-3ELW:

38ff31c77cff31f463ff3185a000088ac700087d4e000881cc2ed32ecd2edd01b6e101b6b001b 712000000000001c3c29d3c21

Variáveis que compõe o Payload de envio do medidor, seguido da quantidade de algarismos [nibbles] utilizados na representação, respectivamente:

código_payload[2] pa[8] pb[8] pc[8] qa[8] qb[8] qc[8] uarms[4] ubrms[4] ucrms[4] iarms[6] ibrms[6] icrms[6] ept_c[8] ept_g[8] pft[2] freq[2] tpsd[2]

Legenda:

<u>código payload (1° e 2° algarismo):</u> 1° algarismo (nibble) do payload: versão do equipamento SM-3ELW, fixo 0x**3**0. 2° algarismo: status da conexão WiFi, 0x0**8** para conectado e 0x0**0** para desconectado.

Exemplo: payload -> 38ff31 [...]

0x38 -> Telemetria do equipamento SM-3ELW;

0x38 -> Equipamento está conectado em uma rede WiFi naquele instante;

pa[8] (3° ao 10° algarismo): potência ativa da fase A, em watts, no instante, representada em complemento de 2, com duas casas decimais de precisão;

Exemplo: payload -> 38**ff31c77c**ff31f463ff3185a000088ac [...]

pa ->0xff31c77c -> complemento de 2 -> -135148.84 [W]

<u>pb[8] (11° ao 18° algarismo):</u> potência ativa da fase B, em watts, no instante, representada em complemento de 2, com duas casas decimais de precisão;

Exemplo: payload -> 38ff31c77cff31f463ff3185a000088ac [...]

pb ->0xff31f463 -> complemento de 2 -> -135033.89 [W]

<u>pc[8] (19° ao 26° algarismo):</u> potência ativa da fase C, em watts, no instante, representada em complemento de 2, com duas casas decimais de precisão;

Exemplo: payload -> 38ff31c77cff31f463**ff3185a0**00088ac [...]

pc ->0xff3185a0 -> complemento de 2 -> -135317.44 [W]

<u>qa[8] (27° ao 34° algarismo):</u> potência reativa da fase A, em VAr, no instante, representada em complemento de 2, com duas casas decimais de precisão;

Exemplo: payload -> 38ff31c77cff31f463ff3185a000088ac700087d4e000881cc [...]

qa ->0x00088ac7 -> complemento de 2 -> 5598.15 [VAr]

<u>qb[8] (35° ao 42° algarismo):</u> potência ativa da fase B, em VAr, no instante, representada em complemento de 2, com duas casas decimais de precisão;

Exemplo: payload -> 38ff31c77cff31f463ff3185a000088ac7**00087d4e**000881cc [...]

qb ->0x00087d4e -> complemento de 2 -> 5563.66 [VAr]

qc[8] (43° ao 50° algarismo): potência ativa da fase C, em VAr, no instante, representada em complemento de 2, com duas casas decimais de precisão;

Exemplo: payload -> 38ff31c77cff31f463ff3185a000088ac700087d4e**000881cc** [...]

gc ->0x000881cc -> complemento de 2 -> 5575.16 [VAr]

<u>uarms[4] (51° ao 54° algarismo):</u> tensão da fase A, em volts, no instante, representada em complemento de 2, com duas casas decimais de precisão;

Exemplo: payload -> 38ff31c77cff31f463ff3185a000088ac700087d4e000881cc**2ed3**2ecd2edd[...]

uarms ->0x2ed3 -> complemento de 2 -> 119.87 [V]

<u>ubrms[4] (55° ao 58° algarismo):</u> tensão da fase B, em volts, no instante, representada em complemento de 2, com duas casas decimais de precisão;

Exemplo: payload -> 38ff31c77cff31f463ff3185a000088ac700087d4e000881cc2ed32ecd2edd [...]

ubrms ->0x2ecd -> complemento de 2 -> 119.81 [V]

<u>ucrms[4] (59° ao 62° algarismo):</u> tensão da fase C, em volts, no instante, representada em complemento de 2, com duas casas decimais de precisão;

Exemplo: payload -> 38ff31c77cff31f463ff3185a000088ac700087d4e000881cc2ed32ecd2edd [...]

ucrms ->0x2edd -> complemento de 2 -> 119.97 [V]

<u>iarms[6] (63° ao 68° algarismo):</u> corrente da fase A, em amperes, no instante, representada em complemento de 2, com duas casas decimais de precisão;

Exemplo: payload -> 38ff31c77cff31f463ff3185a000088ac700087d4e000881cc2ed32ecd2edd**01b6e1**01b6b00

1b712[...]

iarms ->0x01b6e1 -> complemento de 2 -> 1123.53 [A]

<u>ibrms[6] (69° ao 74° algarismo):</u> corrente da fase B, em amperes, no instante, representada em complemento de 2, com duas casas decimais de precisão;

Exemplo: payload -> 38ff31c77cff31f463ff3185a000088ac700087d4e000881cc2ed32ecd2edd01b6e1**01b6b0**0 1b712 [...]

ibrms ->0x**01b6b0** -> complemento de 2 -> 1123.04 [A]

<u>icrms[6] (75° ao 80° algarismo):</u> corrente da fase C, em amperes, no instante, representada em complemento de 2, com duas casas decimais de precisão;

Exemplo: payload -> 38ff31c77cff31f463ff3185a000088ac700087d4e000881cc2ed32ecd2edd01b6e101b6b0**0 1b712** [...]

icrms ->0x**01b712** -> complemento de 2 -> 1124.02 [A]

<u>ept_c[8] (81° ao 88° algarismo):</u> consumo total de energia ativa, em kWh, no instante, representada em complemento de 2, com duas casas decimais de precisão;

Exemplo: payload -> 38ff31c77cff31f463ff3185a000088ac700087d4e000881cc2ed32ecd2edd01b6e101b6b0 01b712**0000000**0001c3c29d3c21

ept_c ->0x00000000 -> complemento de 2 -> 0.0 [kWh]

<u>ept g[8] (89° ao 96° algarismo):</u> geração total de energia ativa, em kWh, no instante, representada em complemento de 2, com duas casas decimais de precisão;

Exemplo: payload -> 38ff31c77cff31f463ff3185a000088ac700087d4e000881cc2ed32ecd2edd01b6e101b6b0 01b7120000000000000c3c29d3c21

ept_g ->0x**0001c3c2** -> complemento de 2 -> 1156.50 [kWh]

pft[2] (97° ao 98° algarismo): fator de potência total, unitário, no instante, representada em complemento de 2, com duas casas decimais de precisão;

Exemplo: payload -> 38ff31c77cff31f463ff3185a000088ac700087d4e000881cc2ed32ecd2edd01b6e101b6b0 01b71200000000001c3c2**9d**3c21

pft ->0x9d -> complemento de 2 -> -0.99

<u>freq[2] (99° ao 100° algarismo):</u> frequência da rede, em Hertz, no instante, representada em complemento de 2, sem nenhuma casa decimal de precisão;

Exemplo: payload -> 38ff31c77cff31f463ff3185a000088ac700087d4e000881cc2ed32ecd2edd01b6e101b6b0 01b71200000000001c3c29d**3c**21

freq ->0x3c -> complemento de 2 -> 60 Hz

<u>freq[2] (101° ao 102° algarismo):</u> temperatura do equipamento, em C, no instante, representada em complemento de 2, sem nenhuma casa decimal de precisão;

Exemplo: payload -> 38ff31c77cff31f463ff3185a000088ac700087d4e000881cc2ed32ecd2edd01b6e101b6b0

01b712000000000001c3c29d3c21

tpsd ->0x21 -> complemento de 2 -> 33 C

3. ALTERAR INTERVALO DE TEMPO ENTRE ENVIOS (UPLINK)

Exemplo de Payload de Downlink para alterar intervalo de envio de dados do medidor SM-3ELW para 180 segundos (enviado a partir do Gateway/Network Server LoRaWAN) :

Confirmed: FPort: 2
HEX BASE64 JSON
01180f
Enqueue

Figura 1: Exemplo de configuração de Downlink de alteração do tempo de envio.

Explicação: O comando '01 18 Of', enviado na porta 2, indica:

'01' = Código para troca de intervalo de tempo de envio (Uplink);

'18 Of' = Tempo, de 180 segundos (decimal), para alterar intervalo de tempo de envio (Uplink), somado ao 'f' no final para indicar final da palavra.

OBS: Tempo mínimo: 30 segundos ('01 03 0f'), tempo máximo: 86400 segundos ('01 86 40 0f').

Considerando as características de um dispositivo Classe C LoRaWAN (se configurado corretamente), a configuração via Downlink será recebida pelo medidor SM-LA imediatamente após o envio.

4. ALTERAR RAZÃO DOS TRANSFORMADORES DE CORRENTE

Exemplo de Payload de Downlink para alterar razão dos transformadores de corrente do medidor SM-3ELW para 40 (TC 200A/5A) (enviado a partir do Gateway/Network Server LoRaWAN):

Confirmed: FPort: 2
HEX BASE64 JSON
16040f
Enqueue

Figura 2: Exemplo de envio de Downlink de alteração do tempo de envio.

Explicação: O comando '16 04 0f', enviado na porta 2, indica:

'16' = Código para alterar a razão dos transformadores de corrente;

'04 Of' = Razão do TC é 40, somado ao 'f' no final para indicar final da palavra.

OBS: Razão mínima: 1 ('16 00 1f'), razão máxima: 2000 ('16 02 00 0f').

Considerando as características de um dispositivo Classe C LoRaWAN (se configurado corretamente), a configuração via Downlink será recebida pelo medidor SM-LA imediatamente após o envio.

CONFIGURAÇÃO DO WI-FI

PASSO 1: Energizar o equipamento e buscar no seu dispositivo (celular/notebook/tablet) o Wi-fi criado pelo SM-3ELW e conectar nessa rede.

OBS: Com os dados móveis ou 4G DESLIGADO.

- PASSO 2: Abra um navegador web e digite o IP 192.168.4.1 e a página inicial será aberta.
- PASSO 3: Clique em ACESSAR SISTEMA e digite o usuário e a senha (admin/admin).
- PASSO 4: No ícone REDE vá em ATUALIZAR e procure a rede Wi-fi local que o medidor deve ser conectado, clique sobre ela, digite a senha da sua internet e após isso vá em SALVAR.
 OBS: A rede deve ser superior a 60% do sinal.
- PASSO 5: O medidor irá reiniciar e o LED AZUL ficará ligado direto, indicando que o medidor conectou na REDE.
- **PASSO 6:** Clique no botão, onde está exibindo o endereço de IP. Será aberta uma página no navegador web com o endereço de IP configurado.
- PASSO 7: Conecte na sua rede Wi-fi (RESIDÊNCIA).

 DETALHE: O Acesso agora será somente por este IP e nesta rede WIFI. SALVE ESSE IP.
- PASSO 8: No ícone configurações, encontre RAZÃO do TC, configure a razão. Exemplo: 200A/5A = 40
- **PASSO 9:** Teste todas as fases com uma carga superior a 1000W e com a GERAÇÃO DESLIGADA. Caso a potência fique negativa inverta os fios da conexão dos TCs no medidor.

DADOS SALVOS NA MEMÓRIA

Todo dia é criado um novo arquivo de texto no formato .txt com uma atualização a cada 30 minutos. O consumo é acumulativo e às demais grandezas são instantâneas.

itrms = Corrente total

pfa = Fator de Potência da fase A

pfb = Fator de Potência da fase B

pfc = Fator de Potência da fase C

pga = Ângulo entre tesão e corrente da fase A

pft = Fator de Potência total

Aonde: DD é o dia, MM o mês e YY o ano.

Os dados são salvos separados pelo delimitador ":", com o seguinte padrão:

hora: minuto: segundo : pa : pb : pc : pt : qa : qb :qc : qt : sa : sb : sc : st : uarms : ubrms : ucrms: iarms : ibrms : icrms : itrms : pfa : pfb : pfc : pft: pga : pgb : pgc : freq : epa_c : epb_c : epc_c : ept_c : epa_g : epb_g : epc_g : ept_g : eqa_c : eqb_c : eqc_c : eqt_c : eqa_g : eqb_g : eqc_g : eqt_g : yuaub : yuauc : yubuc : tpsd

LEGENDA

pc = Potência ativa da fase C
pt = Potência ativa total
qa = Potência reativa da fase A
qb = Potência reativa da fase B
qc = Potência reativa da fase C
qt = Potência reativa total
sa = Potência aparente da fase A
sb = Potência aparente da fase B
sc = Potência aparente da fase C
st = Potência aparente total
uarms = Tensão RMS da fase A
ubrms = Tensão RMS da fase B
ucrms = Tensão RMS da fase C

iarms = Corrente da fase A

ibrms = Corrente da fase B

icrms = Corrente da fase C

pa = Potência ativa da fase A

pb = Potência ativa da fase B

pgb = Ângulo entre tesão e corrente da fase B pgc = Ângulo entre tesão e corrente da fase C freq = Frequência da rede epa_c = Consumo acumulado de energia ativa na fase A epb_c = Consumo acumulado de energia ativa na fase B epc_c = Consumo acumulado de energia ativa na fase C ept_c = Consumo acumulado de energia ativa Total epa_g = Geração acumulada de energia ativa na fase A epb_g = Geração acumulada de energia ativa na fase B epc_g = Geração acumulada de energia ativa na fase C ept_g = Geração acumulada de energia ativa Total eqa_c = Consumo acumulado de energia reativa na fase A

eqb_c = Consumo acumulado de energia reativa na fase B eqc_c = Consumo acumulado de energia reativa na fase C eqt_c = Consumo acumulado de energia reativa Total eqa_g = Geração acumulada de energia reativa na fase A eqb_g = Geração acumulada de energia reativa na fase B eqc_g = Geração acumulada de energia reativa na fase B eqt_g = Geração acumulada de energia reativa Total yuaub = Ângulo entre as tensões da fase A e B yuauc = Ângulo entre as tensões da fase B e C yubuc = Ângulo entre as tensões da fase B e C tpsd = Temperatura do Equipamento.

NUVEM

Habilitar: transmissão: Ao dar um "check" será habilitada a funcionalidade de transmissão para o servidor.

Tipos de envio: O Equipamento possui 2 métodos de transmissão (Padrão e Nuvem IE), no método padrão é possível realizar transmissão HTTP (POST e GET) e MQTT, já o método "Nuvem IE", realiza a transmissão instantânea para o serviço de nuvem da IE Tecnologia, sendo necessário apenas informar o Token para transmissão.

ID: Identificação do Equipamento, utilizada para identificar o dispositivo de transmissão.

IP do Servidor: Se o serviço for local, informe o IP local do dispositivo que irá receber a transmissão "localhost" ou informe o endereço do serviço que ira receber os dados. Exemplo: no endereço 192.168.0.100:80/api/insert.php o IP é 192.168.0.100

Caminho: O caminho que o equipamento deve buscar dentro do IP do servidor. Exemplo: no endereço 192.168.0.100:80/api/insert.php o caminho é /api/insert.php

Porta: A porta de acesso ao servidor. No endereço acima a porta é 80.

Intervalo de transmissão e atualização do consumo: Tempo de disparo para o serviço.

