
UPCISS

O-Level (M3-R5)
Programming and Problem

Solving Through Python

Language

Free Online Computer Classes on
YouTube Channel UPCISS

www.youtube.com/upciss

For free PDF Notes
Our Website: www.upcissyoutube.com

Video Tutorial
O-Level M3-R5 Full Video

Playlist Available on
YouTube Channel UPCISS

Copyright © 2022 UPCISS

www.upcissyoutube.com O level M3-R5

1

Introduction to Programming --------------------------- 2

Algorithms and Flowcharts ------------------------------- 9

Introduction to Python ----------------------------------- 18

Python Operators -- 28

Sequence Data Types ------------------------------------- 31

Python If ... Else --- 42

Python Functions --- 49

Python Scope -- 60

Python Modules -- 62

File Processing (Handling) ------------------------------- 71

NumPy Basics -- 80

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

2

Introduction to Programming
Before we understand what programming is, you must know what a computer is. A
computer is a device that can accept human instruction, processes it, and responds

to it or a computer is a computational device that is used to process the data under
the control of a computer program. Program is a sequence of instruction along with
data.

The basic components of a computer are:

 Input unit

 Central Processing Unit(CPU)

 Output unit

The CPU is further divided into three parts-

 Memory unit

 Control unit

 Arithmetic Logic unit

Most of us have heard that CPU is called the brain of our computer because it accepts
data, provides temporary memory space to it until it is stored (saved) on the hard

disk, performs logical operations on it and hence processes (here also means
converts) data into information. We all know that a computer consists of hardware

and software. Software is a set of programs that performs multiple tasks together.
An operating system is also software (system software) that helps humans to interact
with the computer system.

A program is a set of instructions given to a computer to perform a specific operation.
Or computer is a computational device that is used to process the data under the

control of a computer program. While executing the program, raw data is processed
into the desired output format. These computer programs are written in a

programming language which are high-level languages. High level languages are
nearly human languages that are more complex than the computer understandable

language which are called machine language, or low level language. So after knowing
the basics, we are ready to create a very simple and basic program. Like we have
different languages to communicate with each other, likewise, we have different

languages like C, C++, C#, Java, python, etc. to communicate with the computers.
The computer only understands binary language (the language of 0’s and 1’s) also

called machine-understandable language or low-level language but the programs we
are going to write are in a high-level language which is almost similar to human
language.

Problem

Step 1

Step 2

Step 3

Step 4

..

Variable

if

while

print

1001001

1000111

1011111

1000110

Solve

Algorithm Flowchart C, C++, Python, etc. Machine

Code

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

3

Basic Model of Computation

Problem definition:

A problem definition involves the clear identification of the problem in terms
of available input parameters and desired solution.

Approach towards solving the problem:

After a problem is identified, the user needs to implement a step-by-step
solution in terms of algorithms.

Graphical representation of problem solving sequence:

This step involves representing the steps of algorithm pictorially by using a
flowchart. Each component of the flowchart presents a definite process to solve the
problem.

Converting the sequence in a programming language:

Converting the graphical sequence of processes into a language that the user

and the computer can understand and use for problem solving is called programming.
After the program is compiled the user can obtain the desired solution for the problem
by executing the machine language version of the program.

Algorithm

A sequential solution of any program that written in human language, called
algorithm. Algorithm is first step of the solution process, after the analysis of
problem, programmer writes the algorithm of that problem.

It can be understood by taking an example of cooking a new recipe. To cook a new
recipe, one reads the instructions and steps and execute them one by one, in the

given sequence. The result thus obtained is the new dish cooked perfectly. Similarly,
algorithms help to do a task in programming to get the expected output.

The Algorithm designed are language-independent, i.e. they are just plain
instructions that can be implemented in any language, and yet the output will be the
same, as expected.

Characteristics of Algorithm:

 Clear and Unambiguous: Algorithm should be clear and unambiguous. Each
of its steps should be clear in all aspects and must lead to only one meaning.

 Well-Defined Inputs: If an algorithm says to take inputs, it should be well-

defined inputs.
 Well-Defined Outputs: The algorithm must clearly define what output will be

yielded and it should be well-defined as well.
 Finite-ness: The algorithm must be finite, i.e. it should not end up in an infinite

loops or similar.
 Feasible: The algorithm must be simple, generic and practical, such that it can

be executed upon with the available resources. It must not contain some future
technology, or anything.

 Language Independent: The Algorithm designed must be language-
independent, i.e. it must be just plain instructions that can be implemented in

any language, and yet the output will be same, as expected.

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

4

Advantages of Algorithms:

 It is easy to understand.
 Algorithm is a step-wise representation of a solution to a given problem.

 In Algorithm the problem is broken down into smaller pieces or steps hence, it
is easier for the programmer to convert it into an actual program.

Disadvantages of Algorithms:

 Writing an algorithm takes a long time so it is time-consuming.

 Branching and looping statements are difficult to show in Algorithms.

Example of Algorithm?

Algorithm for add two numbers entered by the user.

 Step 1: Start
 Step 2: Declare 3 variables num1, num2 and sum.

 Step 3: Read values num1 and num2.
 Step 4: Add num1 and num2 and assign the result to sum.

sum ← num1+num2

 Step 5: Print sum

 Step 6: Stop

Flowchart

Flowchart is a graphical representation of an algorithm. Programmers often use it

as a program-planning tool to solve a problem. It makes use of symbols which are
connected among them to indicate the flow of information and processing.

The process of drawing a flowchart for an algorithm is known as “flowcharting”.

Basic Symbols used in Flowchart Designs
 Terminal: The oval symbol indicates Start, Stop and Halt in a program’s

logic flow. A pause/halt is generally used in a program logic under some
error conditions. Terminal is the first and last symbols in the flowchart.

 Input/Output: A parallelogram denotes any function of input/output type.

Program instructions that take input from input devices and display output
on output devices are indicated with parallelogram in a flowchart.

 Processing: A box represents arithmetic instructions. All arithmetic
processes such as adding, subtracting, multiplication and division are

indicated by action or process symbol.

 Decision Diamond symbol represents a decision point. Decision based
operations such as yes/no question or true/false are indicated by diamond in

flowchart.

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

5

 Connectors: Whenever flowchart becomes complex or it spreads over more
than one page, it is useful to use connectors to avoid any confusions. It is

represented by a circle.

 Flow lines: Flow lines indicate the exact sequence in which instructions are
executed. Arrows represent the direction of flow of control and relationship

among different symbols of flowchart.

Advantages of Flowchart:
 Flowcharts are better way of communicating the logic of system.

 Flowcharts act as a guide for blueprint during program designed.
 Flowcharts helps in debugging process.

 With the help of flowcharts programs can be easily analyzed.
 It provides better documentation.

 Flowcharts serve as a good proper documentation.
Disadvantages of Flowchart:

 It is difficult to draw flowchart for large and complex programs.
 In this there is no standard to determine the amount of detail.

 Difficult to reproduce the flowcharts.
 It is very difficult to modify the Flowchart.

Example: Draw a flowchart to input two numbers from user and display
the larger of two numbers

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

6

Programming Language

As we know, to communicate with a person, we need a specific language, similarly
to communicate with computers, programmers also need a language is called

Programming language.
Before learning the programming language, let's understand what is language?

What is Language?

Language is a mode of communication that is used to share ideas, opinions with
each other. For example, if we want to teach someone, we need a language that

is understandable by both communicators.

What is a Programming Language?
A programming language is a computer language that is used by programmers
(developers) to communicate with computers. It is a set of instructions written

in any specific language (C, C++, Java, Python, etc.) to perform a specific task.
A programming language is mainly used to develop desktop applications,

websites, and mobile applications.

Characteristics of a programming Language
 A programming language must be simple, easy to learn and use, have good

readability, and be human recognizable.
 Abstraction is a must-have Characteristics for a programming language in

which the ability to define the complex structure and then its degree of
usability comes.

 A portable programming language is always preferred.
 Programming language’s efficiency must be high so that it can be easily

converted into a machine code and executed consumes little space in
memory.

 A programming language should be well structured and documented so that

it is suitable for application development.
 Necessary tools for the development, debugging, testing, and maintenance

of a program must be provided by a programming language.
 A programming language should provide a single environment known as

Integrated Development Environment (IDE).
 A programming language must be consistent in terms of syntax and

semantics.
Most Popular Programming Languages

 C
 Python

 C++
 Java

 SCALA
 C#

 R
 Ruby
 Go

 Swift
 JavaScript

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

7

Compilation

The compilation is a process of converting the source code into object code. It is
done with the help of the compiler or interpreter. The compiler checks the source

code for the syntactical or structural errors, and if the source code is error-free,
then it generates the object code.

Introduction of Compiler Design
The compiler is software that converts a program written in a high-level language

(Source Language) to low-level language (Object/Target/Machine Language).
 Cross Compiler that runs on a machine ‘A’ and produces a code for another

machine ‘B’. It is capable of creating code for a platform other than the one
on which the compiler is running.

 Source-to-source Compiler or transcompiler or transpiler is a compiler that
translates source code written in one programming language into the source
code of another programming language.

Language processing systems (using Compiler) –
We know a computer is a logical assembly of Software and Hardware. The hardware

knows a language that is hard for us to grasp, consequently, we tend to write
programs in a high-level language that is much less complicated for us to

comprehend and maintain in thoughts. Now, these programs go through a series of
transformations so that they can readily be used by machines. This is where language

procedure systems come in handy.
 High-Level Language – If a program contains #define or #include directives

such as #include or #define it is called HLL. They are closer to humans but
far from machines. These (#) tags are called preprocessor directives. They

direct the pre-processor about what to do.
 Pre-Processor – The pre-processor removes all the #include directives by

including the files called file inclusion and all the #define directives using
macro expansion. It performs file inclusion, augmentation, macro-processing,

etc.
 Assembly Language – It’s neither in binary form nor high level. It is an

intermediate state that is a combination of machine instructions and some
other useful data needed for execution.

 Assembler – For every platform (Hardware + OS) we will have an assembler.

They are not universal since for each platform we have one. The output of
the assembler is called an object file. Its translate assembly language to

machine code.
 Interpreter – An interpreter converts high-level language into low-level

machine language, just like a compiler. But they are different in the way they
read the input. The Compiler in one go reads the inputs, does the processing,

and executes the source code whereas the interpreter does the same line by
line. Compiler scans the entire program and translates it as a whole into

machine code whereas an interpreter translates the program one statement
at a time. Interpreted programs are usually slower with respect to compiled

ones.
 Relocatable Machine Code – It can be loaded at any point and can be run.

The address within the program will be in such a way that it will cooperate
with the program movement.

 Loader/Linker – It converts the relocatable code into absolute code and

tries to run the program resulting in a running program or an error message
(or sometimes both can happen). Linker loads a variety of object files into a

single file to make it executable. Then loader loads it in memory and executes
it.

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

8

 Differences between Testing and Debugging
Testing:
Testing is the process of verifying and validating that a software or application is bug

free, meets the technical requirements as guided by its design and development and
meets the user requirements effectively and efficiently with handling all the

exceptional and boundary cases.
Debugging:

Debugging is the process of fixing a bug in the software. It can defined as the
identifying, analyzing and removing errors. This activity begins after the software

fails to execute properly and concludes by solving the problem and successfully
testing the software. It is considered to be an extremely complex and tedious task

because errors need to be resolved at all stages of debugging.

Testing Debugging

Testing is the process to find bugs and errors. Debugging is the process to correct the bugs
found during testing.

It is the process to identify the failure of
implemented code.

It is the process to give the absolution to code
failure.

Testing is the display of errors. Debugging is a deductive process.

Testing is done by the tester. Debugging is done by either programmer or
developer.

There is no need of design knowledge in the
testing process.

Debugging can’t be done without proper design
knowledge.

Testing can be done by insider as well as
outsider.

Debugging is done only by insider. Outsider can’t
do debugging.

Testing can be manual or automated. Debugging is always manual. Debugging can’t be

automated.

It is based on different testing levels i.e. unit
testing, integration testing, system testing etc.

Debugging is based on different types of bugs.

Testing is a stage of software development life

cycle (SDLC).

Debugging is not an aspect of software

development life cycle, it occurs as a consequence
of testing.

Testing is composed of validation and
verification of software.

While debugging process seeks to match symptom
with cause, by that it leads to the error correction.

Testing is initiated after the code is written. Debugging commences with the execution of a
test case.

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

9

Algorithms and Flowcharts
Flow Chart Symbols

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

10

Let’s see the difference between algorithm and flow chart:

Algorithm Flowchart

Algorithm is step by step
procedure to solve the problem.

Flowchart is a diagram created by different
shapes to show the flow of data.

Algorithm is complex to
understand. Flowchart is easy to understand.

In algorithm plain text are used. In flowchart, symbols/shapes are used.

Algorithm is easy to debug. Flowchart it is hard to debug.

Algorithm is difficult to construct. Flowchart is simple to construct.

Algorithm does not follow any
rules. Flowchart follows rules to be constructed.

Algorithm is the pseudo code for
the program.

Flowchart is just graphical representation of
that logic.

Sequential processing algorithms and flowchart.

Algorithm for add two numbers entered by the user.
 Step 1: Start

 Step 2: Declare 3 variables num1, num2 and sum.
 Step 3: Read values num1 and num2.

 Step 4: Add num1 and num2 and assign the result to sum.
sum ← num1+num2

 Step 5: Print sum
 Step 6: Stop

Flowchart for add two numbers entered by the user.

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

11

Decision based processing algorithms and flowchart.

Algorithm for find the largest among three different numbers entered by the user.

 Step 1: Start

 Step 2: Declare variables a, b and c.
 Step 3: Read variables a, b and c.
 Step 4: If a>b

If a>c
 Print a is the largest number.

Else
 Print c is the largest number.

 Else
 If b> c

 Print b is the largest number.
 Else

 Print c is the largest number.
 Step 5: Stop

Flowchart for find the largest among three different numbers entered by the user.

Iterative processing algorithms and flowchart.

Algorithm for find the factorial of a number entered by the user.

 Step 1: Start
 Step 2: Declare variables num, fact and i.

 Step 3: Read value of num
 Step 4: initialize variables fact ←1, i ←1

 Step 5: Repeat the steps until i<=num
fact ← fact*i

i ← i+1

 Step 6: Print fact
 Step 7: Stop

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

12

Flowchart for find the factorial of a number entered by the user.

Some Examples of algorithm and flowchart

Algorithm and flowchart for exchanging values of two variables.

 Step 1: Start

 Step 2: Declare variables x, y and temp.

 Step 3: Read values x and y.

 Step 4: temp  x

 Step 5: x  y

 Step 6: y  temp

 Step 7: Display x & y

 Step 8: Stop

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

13

Algorithm and flowchart for summation of a set of numbers.

 Step 1: Start

 Step 2: Declare variables count, num and sum.

 Step 3: Read the value of num.

 Step 4: Initialize sum as 0 and count as 1.

 Step 5: If count>num (go to step 8)

 Step 6: sum = sum + count

 Step 7: count = count + 1 (go to step 5)

 Step 8: Print the value of sum

 Step 9: Stop

Algorithm for Decimal Base to Binary Base conversion.

1. Store the remainder when the number is divided by 2 in an array.

2. Divide the number by 2
3. Repeat the above two steps until the number is greater than zero.

4. Print the array in reverse order now.
For Example:

If the decimal number is 10.
 Step 1: Remainder when 10 is divided by 2 is zero. (Therefore, arr[0] = 0.)

 Step 2: Divide 10 by 2. New number is 10/2 = 5.

 Step 3: Remainder when 5 is divided by 2 is 1. (Therefore, arr[1] = 1.)

 Step 4: Divide 5 by 2. New number is 5/2 = 2.

 Step 5: Remainder when 2 is divided by 2 is zero. (Therefore, arr[2] = 0.)

 Step 6: Divide 2 by 2. New number is 2/2 = 1.

 Step 7: Remainder when 1 is divided by 2 is 1. (Therefore, arr[3] = 1.)

 Step 8: Divide 1 by 2. New number is 1/2 = 0.

 Step 9: Since number becomes = 0. Print the array in reverse order.

Therefore the equivalent binary number is 1010.

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

14

Algorithm and flowchart for reversing digits of an integer.

 Step 1: Start

 Step 2: Read the value of num.

 Step 3: rev_num = 0

 Step 4: if num=0 (go to step 8)

 Step 5: last_digit = num%10

 Step 6: rev_num=rev_num * 10 + last_digit

 Step 7: num = num / 10 (go to step 4)

 Step 8: Print rev_num

 Step 9: Stop

Algorithm and flowchart for GCD (Greatest Common Divisor) or HCF (Highest Common

Factor) of two numbers.
 Step 1: Start

 Step 2: Read n1, n2

 Step 3: If n1=n2

Then go to step 5

 Step 4: If n1>n2

n1  n1- n2 go to step 3

 else

 n2  n2 – n1 go to step 3

 Step 5: Print n1

 Step 6: Stop

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

15

Algorithm and flowchart for Test whether a number is prime or not.

Step 1: Start

Step 2: Read num from user

Step 3: Initialize variables rem1, i2

Step 4: If num<=1 // any number less than 1 is not a prime number

 Display num is not a prime number

 Go to step 7

Step 5: Repeat the steps until i<num/2+1

 If remainder of number divide i equals to 0,

 Set rem=0

 Go to step 6

 i  i+1

Step 6: If rem=0

 Display num is not prime number

 Else

 Display num is prime number

Step 7: Stop

Algorithm and flowchart for factorial computation.

Step 1: Start

Step 2: Read num from user

Step 3: Initialize variables i1, fact1

Step 4: Repeat this step until i<=num

 fact  fact*i

 i  i+1

Step 5: Display fact

Step 6: Stop

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

16

Algorithm and flowchart for Fibonacci sequence.

Step 1: Start

Step 2: Declare variable x, y, i, feb_seq, num

Step 3: Read num from user

Step 4: Initialize variable x0, y1 and i2

Step 5: Print x and y

Step 6: Repeat until i<=num:

 Step 6.1: feb_seq =x + y

 Step 6.2: print feb_seq

 Step 6.3: x = y, y = feb_seq

 Step 6.4: i = i + 1

Step 7: Stop

Algorithm and flowchart for Find largest number in an array.

Step 1: Start

Step 2: input the array element as arr.

Step 3: Initialize large  arr[0] and i  1

Step 4: Repeat this step until i < size of arr

 If arr[i] > large

 large  arr[i]

 i  i+1

Step 5: print large

Step 6: Stop

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

17

Algorithm and flowchart for Reverse order of elements of an array.

Step 1: Start

Step 2: Read arr

Step 3: Place the two pointers (let start and end) at the start and end of the array.

Step 4: Swap arr[start] and arr[end] using temp variable.

Step 5: Increment start and decrement end with 1

Step 6: If start reached to the start >= end, then terminate otherwise repeat from

step 4 and step 5.

Step 7: Display arr

Step 8: Stop

Algorithm and flowchart for Tower of Hanoi.

Step 1: Start

Step 2: Let the three towers be the source, dest, aux.

Step 3: Read the number of disks, n from the user.

Step 4: If n=0 go to step 9

Step 5: Move n-1 disks from source to aux.

Step 6: Move nth disk from source to dest.

Step 7: Move n-1 disks from aux to dest.

Step 8: Repeat Steps 5 to 7, by decrementing n by 1.

Step 9: Stop

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

18

Introduction to Python
What is Python?

Python is a popular programming language. It was created by Guido van Rossum,
and released in 1991.
It is used for:

 web development (server-side),
 software development,

 mathematics,
 System scripting.

What can Python do?

 Python can be used on a server to create web applications.

 Python can be used alongside software to create workflows.

 Python can connect to database systems. It can also read and modify files.
 Python can be used to handle big data and perform complex mathematics.
 Python can be used for rapid prototyping, or for production-ready software

development.

Why Python?

 Python works on different platforms (Windows, Mac, Linux, Raspberry Pi,

etc).
 Python has a simple syntax similar to the English language.

 Python has syntax that allows developers to write programs with fewer lines
than some other programming languages.

 Python runs on an interpreter system, meaning that code can be executed as
soon as it is written. This means that prototyping can be very quick.

 Python can be treated in a procedural way, an object-orientated way or a
functional way.

Good to know

 The most recent major version of Python is Python 3, which we shall be using

in this tutorial. However, Python 2, although not being updated with anything
other than security updates, is still quite popular.

 In this tutorial Python will be written in a text editor. It is possible to write
Python in an Integrated Development Environment, such as Thonny,

Pycharm, Netbeans or Eclipse which are particularly useful when managing
larger collections of Python files.

Python Syntax compared to other programming languages

 Python was designed for readability, and has some similarities to the English

language with influence from mathematics.
 Python uses new lines to complete a command, as opposed to other

programming languages which often use semicolons or parentheses.
 Python relies on indentation, using whitespace, to define scope; such as the

scope of loops, functions and classes. Other programming languages often
use curly-brackets for this purpose.

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

19

The Python Command Line

To test a short amount of code in python sometimes it is quickest and easiest not
to write the code in a file. This is made possible because Python can be run as a

command line itself.

Type the following on the Windows, Mac or Linux command line:

From there you can write any python, including our hello world example from

earlier in the tutorial:

Which will write "Hello, World!" in the command line:

Whenever you are done in the python command line, you can simply type the
following to quit the python command line interface:

Python Virtual Machine (PVM)
Python Virtual Machine (PVM) is a program which provides programming

environment. The role of PVM is to convert the byte code instructions into machine

code so the computer can execute those machine code instructions and display the

output.

Interpreter converts the byte code into machine code and sends that machine code

to the computer processor for execution.

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

20

Python Variables
Creating Variables

Variables are containers for storing data values.

Unlike other programming languages, Python has no command for declaring a
variable.

A variable is created the moment you first assign a value to it.

Example

x = 5
y = "John"
print(x)
print(y)

Variables do not need to be declared with any particular type and can even change
type after they have been set.

Example

x = 4 # x is of type int
x = "Sally" # x is now of type str
print(x)

String variables can be declared either by using single or double quotes:

Example

x = "John"
is the same as
x = 'John'

Variable Names

A variable can have a short name (like x and y) or a more descriptive name (age,

carname, total_volume). Rules for Python variables:

 A variable name must start with a letter or the underscore character
 A variable name cannot start with a number

 A variable name can only contain alpha-numeric characters and underscores
(A-z, 0-9, and _)

 Variable names are case-sensitive (age, Age and AGE are three different
variables)

Remember that variable names are case-sensitive

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

21

Assign Value to Multiple Variables

Python allows you to assign values to multiple variables in one line:

Example

x, y, z = "Orange", "Banana", "Cherry"
print(x)
print(y)
print(z)

And you can assign the same value to multiple variables in one line:

Example

x = y = z = "Orange"
print(x)
print(y)
print(z)

Output Variables

The Python print statement is often used to output variables.

To combine both text and a variable, Python uses the + character:

Example

x = "awesome"
print("Python is " + x)

You can also use the + character to add a variable to another variable:

Example

x = "Python is "
y = "awesome"
z = x + y
print(z)

For numbers, the + character works as a mathematical operator:

Example

x = 5
y = 10
print(x + y)

If you try to combine a string and a number, Python will give you an error:

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

22

Example

x = 5
y = "John"
print(x + y)

Python Comments

Comments can be used to explain Python code.

Comments can be used to make the code more readable.

Comments can be used to prevent execution when testing code.

Creating a Comment

Comments starts with a #, and Python will ignore them:

Example

#This is a comment

print("Hello, World!")

Comments can be placed at the end of a line, and Python will ignore the rest of the

line:

Example

print("Hello, World!") #This is a comment

Comments does not have to be text to explain the code, it can also be used to
prevent Python from executing code: Comment shortcut key = ctrl+/

Example

#print("Hello, World!")

print("Cheers, Mate!")

Multi Line Comments

Python does not really have a syntax for multi line comments.

To add a multiline comment you could insert a # for each line:

Example

#This is a comment

#written in

#more than just one line

print("Hello, World!")

Or, not quite as intended, you can use a multiline string.

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

23

Since Python will ignore string literals that are not assigned to a variable, you can
add a multiline string (triple quotes) in your code, and place you comment inside it:

Example

"""

This is a comment

written in

more than just one line

"""

print("Hello, World!")

As long as the string is not assigned to a variable, Python will read the code, but
then ignore it, and you have made a multiline comment.

Python Numbers

Python Numbers

There are three numeric types in Python:

 int

 float
 complex

Variables of numeric types are created when you assign a value to them:

Example

x = 1 # int
y = 2.8 # float
z = 1j # complex
print(type(x))
print(type(y))
print(type(z))

To verify the type of any object in Python, use the type() function:

Int

Int, or integer, is a whole number, positive or negative, without decimals, of
unlimited length.

Example Integers:

x = 1
y = 35656222554887711
z = -3255522

Float

Float, or "floating point number" is a number, positive or negative, containing one
or more decimals.

Example- Floats:

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

24

x = 1.10
y = 1.0
z = -35.59
i = 35e3
j = 12E4
k = -87.7e100
Float can also be scientific numbers with an "e" to indicate the power of 10.

Complex
Complex numbers are written with a "j" as the imaginary part:

Example Complex:

x = 3+5j
y = 5j
z = -5j

Type Conversion

You can convert from one type to another with the int(), float(),

and complex() methods:

Example Convert from one type to another:

x = 1 # int
y = 2.8 # float
z = 1j # complex

#convert from int to float:
a = float(x)

#convert from float to int:
b = int(y)

#convert from int to complex:
c = complex(x)

print(a)
print(b)
print(c)

print(type(a))
print(type(b))
print(type(c))

Note: You cannot convert complex numbers into another number type.

Python Strings

String Literals

String literals in python are surrounded by either single quotation marks, or double
quotation marks.

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

25

'hello' is the same as "hello".

You can display a string literal with the print() function:

Example

print("Hello")
print('Hello')

Python constants

Sometimes, you may want to store values in variables. But you don’t want to

change these values throughout the execution of the program.

To do it in other programming languages, you can use constants. The constants

like variables but their values don’t change during the program executes.

The bad news is that Python doesn’t support constants.

To work around this, you use all capital letters to name a variable to indicate that

the variable should be treated as a constant. For example:

MY_PHONE_NUMBER = 9100000000

When encountering variables like these, you should not change their values. These

variables are constant by convention, not by rules.

Assign String to a Variable

Assigning a string to a variable is done with the variable name followed by an equal
sign and the string:

Example

a = "Hello"

print(a)

Multiline Strings

You can assign a multiline string to a variable by using three quotes:

Example You can use three double quotes:

a = """Lorem ipsum dolor sit amet,

consectetur adipiscing elit,

sed do eiusmod tempor incididunt

ut labore et dolore magna aliqua."""

print(a)

Or three single quotes:

Example

a = '''Lorem ipsum dolor sit amet,

consectetur adipiscing elit,

sed do eiusmod tempor incididunt

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

26

ut labore et dolore magna aliqua.'''

print(a)

Note: in the result, the line breaks are inserted at the same position as in the

code.

Strings are Arrays

Like many other popular programming languages, strings in Python are arrays of
bytes representing Unicode characters.

However, Python does not have a character data type, a single character is simply

a string with a length of 1. Square brackets can be used to access elements of the
string.

Example

Get the character at position 1 (remember that the first character has the position 0):

a = "Hello, World!"
print(a[1]) # returns "e"

Example

Substring. Get the characters from position 2 to position 5 (5 position not included):

b = "Hello, World!"

print(b[2:5]) # returns "llo"

print(b[2:5:2]) # returns "lo"
print(b[::-1]) # returns "!dlroW ,olleH"

Example The strip() method removes any whitespace from the beginning or the end:

a = " Hello, World! "

print(a.strip()) # returns "Hello, World!"

print(a.lstrip()) # returns "Hello, World! " Removes any whitespace from the beginning.

print(a.rstrip()) # returns " Hello, World!" Removes any whitespace from the end.

Example The len() method returns the length of a string:

a = "Hello, World!"

print(len(a)) # returns 13

Example The lower() method returns the string in lower case:

a = "Hello, World!"

print(a.lower())# returns "hello, world!"

Example The upper() method returns the string in upper case:

a = "Hello, World!"

print(a.upper())# returns "HELLO, WORLD!"

Example The title() Converts the first character of each word to upper case:

a = "hello, world!"

print(a.title())# returns "Hello, World!"

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

27

Example The count() Returns the number of times a specified value occurs in a string:

a = "hello, world!"

print(a.count("l")) # returns 3

Example The find() Searches the string for a specified value and returns the position of

where it was found:

a = "Hello, World!"

print(a.find("l")) # returns 2

print(a.find("l",4)) # returns 10

Example The replace() method replaces a string with another string:

a = "Hello, World!"

print(a.replace("H", "J")) # returns "Jello, World!"

Example The split() method splits the string into substrings if it finds instances of the

separator:

a = "Hello, World!"

print(a.split(",")) # returns ['Hello', ' World!']

String Format

As we learned in the Python Variables chapter, we cannot combine strings and
numbers like this:

Example

age = 36

txt = "My name is John, I am " + age

print(txt) # returns error

But we can combine strings and numbers by using the format() method!

The format() method takes the passed arguments, formats them, and places them

in the string where the placeholders {} are:

Example Use the format() method to insert numbers into strings:

age = 36

txt = "My name is John, and I am {}"

print(txt.format(age)) # returns "My name is John, and I am 36"

The format() method takes unlimited number of arguments, and are placed into the

respective placeholders:

Example

quantity = 3

itemno = 567

price = 49.95

myorder = "I want {} pieces of item {} for {} dollars."
print(myorder.format(quantity, itemno, price))

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

28

You can use index numbers {0} to be sure the arguments are placed in the correct

placeholders:

Example

quantity = 3

itemno = 567

price = 49.95

myorder = "I want to pay {2} dollars for {0} pieces of item {1}."

print(myorder.format(quantity, itemno, price))

returns "I want to pay 49.95 dollars for 3 pieces of item 567."

Example

quantity = 3

itemno = 567

price = 49.95

print(f"I want to pay {price} dollars for {quantity} pieces of item {itemno}.")
returns "I want to pay 49.95 dollars for 3 pieces of item 567."

Note: All string methods returns new values. They do not change the original

string, because string are immutable in python.

Python Operators

Operators are used to perform operations on variables and values.

Python divides the operators in the following groups:

 Arithmetic operators
 Assignment operators

 Comparison operators
 Logical operators
 Identity operators

 Membership operators
 Bitwise operators

Python Arithmetic Operators

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

29

Arithmetic operators are used with numeric values to perform common
mathematical operations:

Operator Name Example Try it

+ Addition x + y

- Subtraction x - y

* Multiplication x * y

/ Division x / y

% Modulus x % y

** Exponentiation x ** y

// Floor division x // y

Python Assignment Operators

Assignment operators are used to assign values to variables:

Operator Example Same As Try it

= x = 5 x = 5

+= x += 3 x = x + 3

-= x -= 3 x = x - 3

*= x *= 3 x = x * 3

/= x /= 3 x = x / 3

%= x %= 3 x = x % 3

//= x //= 3 x = x // 3

**= x **= 3 x = x ** 3

&= x &= 3 x = x & 3

|= x |= 3 x = x | 3

^= x ^= 3 x = x ^ 3

>>= x >>= 3 x = x >> 3

<<= x <<= 3 x = x << 3

Python Comparison Operators

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

30

Comparison operators are used to compare two values:

Operator Name Example Try it

== Equal x == y

!= Not equal x != y

> Greater than x > y

< Less than x < y

>= Greater than or equal to x >= y

<= Less than or equal to x <= y

Python Logical Operators

Logical operators are used to combine conditional statements:

Operator Description Example Try it

and Returns True if both statements

are true

x < 5 and x <

10

or Returns True if one of the

statements is true

x < 5 or x < 4

not Reverse the result, returns False

if the result is true

not(x < 5 and x

< 10)

Python Identity Operators

Identity operators are used to compare the objects, not if they are equal, but if
they are actually the same object, with the same memory location:

Operator Description Example Try it

is Returns true if both variables are

the same object

x is y

is not Returns true if both variables are

not the same object

x is not y

Python Membership Operators

Membership operators are used to test if a sequence is presented in an object:

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

31

Operator Description Example Try it

in Returns True if a sequence with the

specified value is present in the object

x in y

not in Returns True if a sequence with the

specified value is not present in the

object

x not in y

Python Bitwise Operators

Bitwise operators are used to compare (binary) numbers:

Operator Name Description

& AND Sets each bit to 1 if both bits are 1

| OR Sets each bit to 1 if one of two bits is 1

 ^ XOR Sets each bit to 1 if only one of two bits is 1

~ NOT Inverts all the bits

<< Zero fill

left shift

Shift left by pushing zeros in from the right and let the

leftmost bits fall off

>> Signed

right shift

Shift right by pushing copies of the leftmost bit in from

the left, and let the rightmost bits fall off

Sequence Data Types
Python Collections (Arrays)

There are four collection data types in the Python programming language:

 List is a collection which is ordered and changeable. Allows duplicate

members.
 Tuple is a collection which is ordered and unchangeable. Allows duplicate

members.
 Set is a collection which is unordered and unindexed. No duplicate members.
 Dictionary is a collection which is unordered, changeable and indexed. No

duplicate members.
When choosing a collection type, it is useful to understand the properties of that

type. Choosing the right type for a particular data set could mean retention of
meaning, and, it could mean an increase in efficiency or security.

Python List

A list is a collection which is ordered and changeable. In Python lists are written

with square brackets.

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

32

Example Create a List:

thislist = ["apple", "banana", "cherry"]

print(thislist) # returns ['apple', 'banana', 'cherry']

Access Items

You access the list items by referring to the index number:

Example Print the second item of the list:

thislist = ["apple", "banana", "cherry"]

print(thislist[1]) # returns banana

Change Item Value

To change the value of a specific item, refer to the index number:

Example Change the second item:

thislist = ["apple", "banana", "cherry"]

thislist[1] = "grapes"
print(thislist) # returns ['apple', 'grapes', 'cherry']

Loop through a List

You can loop through the list items by using a for loop:

Example Print all items in the list, one by one:

thislist = ["apple", "banana", "cherry"]

for x in thislist:

 print(x)

Check if Item Exists

To determine if a specified item is present in a list use the in keyword:

Example Check if "apple" is present in the list:

thislist = ["apple", "banana", "cherry"]

if "apple" in thislist:

 print("Yes, 'apple' is in the fruits list")

List Length

To determine how many items a list has, use the len() method:

Example Print the number of items in the list:

thislist = ["apple", "banana", "cherry"]

print(len(thislist)) # returns 3

Add Items

To add an item to the end of the list, use the append() method:

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

33

Example Using the append() method to append an item:

thislist = ["apple", "banana", "cherry"]

thislist.append("orange")

print(thislist) # returns ['apple', 'banana', 'cherry', 'orange']

To add an item at the specified index, use the insert() method:

Example Insert an item as the second position:

thislist = ["apple", "banana", "cherry"]

thislist.insert(1, "orange")

print(thislist) # returns ['apple', 'orange', 'banana', 'cherry']

Remove Item

There are several methods to remove items from a list:

Example The remove() method removes the specified item:

thislist = ["apple", "banana", "cherry"]

thislist.remove("banana")

print(thislist) # returns ['apple', 'cherry']

Example The pop() method removes the specified index, (or the last item if index is not

specified):

thislist = ["apple", "banana", "cherry"]

thislist.pop()

print(thislist) # returns ['apple', 'banana']

Example The del keyword removes the specified index:

thislist = ["apple", "banana", "cherry"]

del thislist[0]

print(thislist) # returns ['banana', 'cherry']

Example The del keyword can also delete the list completely:

thislist = ["apple", "banana", "cherry"]

del thislist

Example The clear() method empties the list:

thislist = ["apple", "banana", "cherry"]

thislist.clear()

print(thislist) # returns []

Copy a List

You cannot copy a list simply by typing list2 = list1, because: list2 will only

be a reference to list1, and changes made in list1 will automatically also be

made in list2.

There are ways to make a copy, one way is to use the built-in List method copy().

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

34

Example Make a copy of a list with the copy() method:

thislist = ["apple", "banana", "cherry"]

mylist = thislist.copy()

print(mylist) # returns ['apple', 'banana', 'cherry']

Another way to make a copy is to use the built-in method list().

Example Make a copy of a list with the list() method:

thislist = ["apple", "banana", "cherry"]

mylist = list(thislist)

print(mylist) # returns ['apple', 'banana', 'cherry']

The list() Constructor

It is also possible to use the list() constructor to make a new list.

Example Using the list() constructor to make a List:

thislist = list(("apple", "banana", "cherry")) # note the double round-brackets

print(thislist) # returns ['apple', 'banana', 'cherry']

List Methods

Python has a set of built-in methods that you can use on lists/arrays.

Method Description

append() Adds an element at the end of the list

clear() Removes all the elements from the list

copy() Returns a copy of the list

count() Returns the number of elements with the specified value

extend() Add the elements of a list (or any iterable), to the end of

the current list

index() Returns the index of the first element with the specified
value

insert() Adds an element at the specified position

pop() Removes the element at the specified position

http://www.upcissyoutube.com/
https://www.w3schools.com/python/ref_list_append.asp
https://www.w3schools.com/python/ref_list_clear.asp
https://www.w3schools.com/python/ref_list_copy.asp
https://www.w3schools.com/python/ref_list_count.asp
https://www.w3schools.com/python/ref_list_extend.asp
https://www.w3schools.com/python/ref_list_index.asp
https://www.w3schools.com/python/ref_list_insert.asp
https://www.w3schools.com/python/ref_list_pop.asp

www.upcissyoutube.com O level M3-R5

35

remove() Removes the first item with the specified value

reverse() Reverses the order of the list

sort() Sorts the list

Python Tuple

A tuple is a collection which is ordered and unchangeable. In Python tuples are

written with round brackets.

Example Create a Tuple:

thistuple = ("apple", "banana", "cherry")

print(thistuple) # returns ('apple', 'banana', 'cherry')

Access Tuple Items

You can access tuple items by referring to the index number, inside square
brackets:

Example Return the item in position 1:

thistuple = ("apple", "banana", "cherry")

print(thistuple[1]) # returns banana

Change Tuple Values

Once a tuple is created, you cannot change its values. Tuples are unchangeable.

Loop through a Tuple

You can loop through the tuple items by using a for loop.

Example Iterate through the items and print the values:

thistuple = ("apple", "banana", "cherry")

for x in thistuple:

 print(x)

Check if Item Exists

To determine if a specified item is present in a tuple use the in keyword:

Example Check if "apple" is present in the tuple:

thistuple = ("apple", "banana", "cherry")

if "apple" in thistuple:
 print("Yes, 'apple' is in the fruits tuple")

Tuple Length

http://www.upcissyoutube.com/
https://www.w3schools.com/python/ref_list_remove.asp
https://www.w3schools.com/python/ref_list_reverse.asp
https://www.w3schools.com/python/ref_list_sort.asp

www.upcissyoutube.com O level M3-R5

36

To determine how many items a tuple has, use the len() method:

Example Print the number of items in the tuple:

thistuple = ("apple", "banana", "cherry")

print(len(thistuple)) # returns 3

Add Items

Once a tuple is created, you cannot add items to it. Tuples are unchangeable.

Example You cannot add items to a tuple:

thistuple = ("apple", "banana", "cherry")

thistuple[3] = "orange" # This will raise an error

print(thistuple)

Remove Items

Note: You cannot remove items in a tuple.

Tuples are unchangeable, so you cannot remove items from it, but you can delete
the tuple completely:

Example The del keyword can delete the tuple completely:

thistuple = ("apple", "banana", "cherry")

del thistuple

The tuple() Constructor

It is also possible to use the tuple() constructor to make a tuple.

Example Using the tuple() method to make a tuple:

thistuple = tuple(("apple", "banana", "cherry")) # note the double round-

brackets

print(thistuple)

Python Sets

A set is a collection which is unordered and unindexed. In Python sets are written

with curly brackets.

Example Create a Set:

thisset = {"apple", "banana", "cherry"}

print(thisset) # returns {'cherry', 'banana', 'apple'}

Note: Sets are unordered, so you cannot be sure in which order the items will appear.

Access Items
You cannot access items in a set by referring to an index, since sets are unordered

the items has no index.

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

37

But you can loop through the set items using a for loop, or ask if a specified value

is present in a set, by using the in keyword.

Example Loop through the set, and print the values:

thisset = {"apple", "banana", "cherry"}

for x in thisset:

 print(x)

Example Check if "banana" is present in the set:

thisset = {"apple", "banana", "cherry"}

print("banana" in thisset)

Change Items

Once a set is created, you cannot change its items, but you can add new items.

Add Items
To add one item to a set use the add() method.

To add more than one item to a set use the update() method.

Example Add an item to a set, using the add() method:

thisset = {"apple", "banana", "cherry"}

thisset.add("orange")

print(thisset) # returns {'apple', 'cherry', 'orange', 'banana'}

Example Add multiple items to a set, using the update() method:

thisset = {"apple", "banana", "cherry"}

thisset.update(["orange", "mango", "grapes"])

print(thisset) # returns {'apple', 'grapes', 'orange', 'banana', 'mango', 'cherry'}

Get the Length of a Set

To determine how many items a set has, use the len() method.

Example Get the number of items in a set:

thisset = {"apple", "banana", "cherry"}

print(len(thisset)) # returns 3

Remove Item

To remove an item in a set, use the remove(), or the discard() method.

Example Remove "banana" by using the remove() method:

thisset = {"apple", "banana", "cherry"}

thisset.remove("banana")

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

38

print(thisset) # returns {'cherry', 'apple'}

Example Remove "banana" by using the discard() method:

thisset = {"apple", "banana", "cherry"}

thisset.discard("banana")

print(thisset) # returns {'cherry', 'apple'}

You can also use the pop(), method to remove an item, but this method will

remove the last item. Remember that sets are unordered, so you will not know
what item that gets removed.

The return value of the pop() method is the removed item.

Example Remove the last item by using the pop() method:

thisset = {"apple", "banana", "cherry"}

x = thisset.pop()

print(x) # returns apple

print(thisset) # returns {'cherry', 'banana'}

Note: Sets are unordered, so when using the pop() method, you will not know

which item that gets removed.

Example The clear() method empties the set:

thisset = {"apple", "banana", "cherry"}

thisset.clear()

print(thisset) # returns set()

Example The del keyword will delete the set completely:

thisset = {"apple", "banana", "cherry"}

del thisset

The set() Constructor

It is also possible to use the set() constructor to make a set.

Example Using the set() constructor to make a set:

thisset = set(("apple", "banana", "cherry")) # note the double round-brackets

print(thisset)

Python Dictionaries

A dictionary is a collection which is unordered, changeable and indexed. In Python
dictionaries are written with curly brackets, and they have keys and values.

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

39

Example Create and print a dictionary:

thisdict = {

 "brand": "Ford",

 "model": "Mustang",

 "year": 1964

}
print(thisdict) # returns {'brand': 'Ford', 'model': 'Mustang', 'year': 1964}

Accessing Items

You can access the items of a dictionary by referring to its key name, inside square
brackets:

Example Get the value of the "model" key:

x = thisdict["model"]

There is also a method called get() that will give you the same result:

Example Get the value of the "model" key:

x = thisdict.get("model")

Change Values

You can change the value of a specific item by referring to its key name:

Example Change the "year" to 2018:

thisdict = {

 "brand": "Ford",

 "model": "Mustang",

 "year": 1964

}

thisdict["year"]=2019 # returns {'brand': 'Ford', 'model': 'Mustang', 'year':

2019}

Loop Through a Dictionary
You can loop through a dictionary by using a for loop.

When looping through a dictionary, the return value are the keys of the dictionary,
but there are methods to return the values as well.

Example Print all key names in the dictionary, one by one:

for x in thisdict:

 print(x)

Example Print all values in the dictionary, one by one:

for x in thisdict:

 print(thisdict[x])

Example You can also use the values() function to return values of a dictionary:

for x in thisdict.values():
 print(x)

Example Loop through both keys and values, by using the items() function:

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

40

for x, y in thisdict.items():

 print(x, y)

Check if Key Exists

To determine if a specified key is present in a dictionary use the in keyword:

Example Check if "model" is present in the dictionary:

thisdict = {

 "brand": "Ford",

 "model": "Mustang",

 "year": 1964
}

if "model" in thisdict:

 print("Yes, 'model' is one of the keys in the thisdict dictionary")

Dictionary Length

To determine how many items (key-value pairs) a dictionary has, use
the len() method.

Example Print the number of items in the dictionary:

print(len(thisdict))

Adding Items

Adding an item to the dictionary is done by using a new index key and assigning a
value to it:

Example

thisdict = {

 "brand": "Ford",

 "model": "Mustang",

 "year": 1964

}

thisdict["color"] = "red"

print(thisdict)

Removing Items

There are several methods to remove items from a dictionary:

Example The pop() method removes the item with the specified key name:

thisdict = {

 "brand": "Ford",

 "model": "Mustang",

 "year": 1964

}

thisdict.pop("model")

print(thisdict)

Example The popitem() method removes the last inserted item (in versions before 3.7, a

random item is removed instead):

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

41

thisdict = {

 "brand": "Ford",

 "model": "Mustang",

 "year": 1964

}

thisdict.popitem()

print(thisdict)

Example The del keyword removes the item with the specified key name:

thisdict = {

 "brand": "Ford",

 "model": "Mustang",

 "year": 1964

}

del thisdict["model"]

print(thisdict)

Example The del keyword can also delete the dictionary completely:

thisdict = {

 "brand": "Ford",
 "model": "Mustang",

 "year": 1964

}

del thisdict

Example The clear() keyword empties the dictionary:

thisdict = {

 "brand": "Ford",

 "model": "Mustang",

 "year": 1964

}

thisdict.clear()

print(thisdict)

Copy a Dictionary

You cannot copy a dictionary simply by typing dict2 = dict1, because: dict2 will

only be a reference to dict1, and changes made in dict1 will automatically also be

made in dict2.

There are ways to make a copy, one way is to use the built-in Dictionary
method copy().

Example Make a copy of a dictionary with the copy() method:

thisdict = {

 "brand": "Ford",

 "model": "Mustang",

 "year": 1964
}

mydict = thisdict.copy()

print(mydict)

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

42

Another way to make a copy is to use the built-in method dict().

Example Make a copy of a dictionary with the dict() method:

thisdict = {

 "brand": "Ford",

 "model": "Mustang",

 "year": 1964

}

mydict = dict(thisdict)

print(mydict)

The dict() Constructor

It is also possible to use the dict() constructor to make a new dictionary:

Example

thisdict = dict(brand="Ford", model="Mustang", year=1964)

note that keywords are not string literals

note the use of equals rather than colon for the assignment

print(thisdict)

Python If ... Else
Python Conditions and If statements

Python supports the usual logical conditions from mathematics:

 Equals: a == b

 Not Equals: a != b

 Less than: a < b

 Less than or equal to: a <= b

 Greater than: a > b

 Greater than or equal to: a >= b

These conditions can be used in several ways, most commonly in "if statements"

and loops.

An "if statement" is written by using the if keyword.

Example If statement:

a = 33

b = 200

if b > a:

 print("b is greater than a")

In this example we use two variables, a and b, which are used as part of the if

statement to test whether b is greater than a. As a is 33, and b is 200, we know

that 200 is greater than 33, and so we print to screen that "b is greater than a".

Indentation

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

43

Python relies on indentation, using whitespace, to define scope in the code. Other
programming languages often use curly-brackets for this purpose.

Example If statement, without indentation (will raise an error):

a = 33

b = 200

if b > a:

print("b is greater than a") # you will get an error

Elif

The elif keyword is pythons way of saying "if the previous conditions were not

true, then try this condition".

Example

a = 33
b = 33

if b > a:
 print("b is greater than a")

elif a == b:

 print("a and b are equal")

In this example a is equal to b, so the first condition is not true, but

the elif condition is true, so we print to screen that "a and b are equal".

Else

The else keyword catches anything which isn't caught by the preceding conditions.

Example

a = 200

b = 33

if b > a:

 print("b is greater than a")

elif a == b:

 print("a and b are equal")

else:
 print("a is greater than b")

In this example a is greater than b, so the first condition is not true, also

the elif condition is not true, so we go to the else condition and print to screen

that "a is greater than b".

You can also have an else without the elif:

Example

a = 200

b = 33
if b > a:

 print("b is greater than a")

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

44

else:

 print("b is not greater than a")

Short Hand If

If you have only one statement to execute, you can put it on the same line as the if
statement.

Example One line if statement:

if a > b: print("a is greater than b")

Short Hand If ... Else

If you have only one statement to execute, one for if, and one for else, you can put
it all on the same line:

Example One line if else statement:

print("A") if a > b else print("B")

You can also have multiple else statements on the same line:

Example One line if else statement, with 3 conditions:

print("A") if a > b else print("=") if a == b else print("B")

And

The and keyword is a logical operator, and is used to combine conditional

statements:

Example Test if a is greater than b, AND if c is greater than a:

if a > b and c > a:

 print("Both conditions are True")

Or

The or keyword is a logical operator, and is used to combine conditional

statements:

Example Test if a is greater than b, OR if a is greater than c:

if a > b or a > c:

 print("At least one of the conditions is True")

Python While Loops

Python has two primitive loop commands:

 while loops

 for loops

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

45

The while Loop

With the while loop we can execute a set of statements as long as a condition is

true.

Example Print i as long as i is less than 6:

i = 1

while i < 6:

 print(i)

 i += 1

Note: remember to increment i, or else the loop will continue forever.

The while loop requires relevant variables to be ready, in this example we need to

define an indexing variable, i, which we set to 1.

The break Statement

With the break statement we can stop the loop even if the while condition is true:

Example Exit the loop when i is 3:

i = 1
while i < 6:

 print(i)

 if i == 3:

 break

 i += 1

The continue Statement

With the continue statement we can stop the current iteration, and continue with

the next:

Example Continue to the next iteration if i is 3:

i = 0

while i < 6:

 i += 1
 if i == 3:

 continue

 print(i)

Python for Loops

A for loop is used for iterating over a sequence (that is either a list, a tuple, a

dictionary, a set, or a string).

This is less like the for keyword in other programming languages, and works more

like an iterator method as found in other object-orientated programming

languages.

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

46

With the for loop we can execute a set of statements, once for each item in a list,

tuple, set etc.

Example Print each fruit in a fruit list:

fruits = ["apple", "banana", "cherry"]

for x in fruits:

 print(x)

The for loop does not require an indexing variable to set beforehand.

Looping Through a String

Even strings are iterable objects, they contain a sequence of characters:

Example Loop through the letters in the word "banana":

for x in "banana":

 print(x)

The break Statement

With the break statement we can stop the loop before it has looped through all the

items:

Example Exit the loop when x is "banana":

fruits = ["apple", "banana", "cherry"]

for x in fruits:

 print(x)
 if x == "banana":

 break

Example Exit the loop when x is "banana", but this time the break comes before the print:

fruits = ["apple", "banana", "cherry"]

for x in fruits:

 if x == "banana":

 break

 print(x)

The continue Statement

With the continue statement we can stop the current iteration of the loop, and

continue with the next:

Example Do not print banana:

fruits = ["apple", "banana", "cherry"]

for x in fruits:
 if x == "banana":

 continue

 print(x)

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

47

The range() Function

To loop through a set of code a specified number of times, we can use

the range() function,

The range() function returns a sequence of numbers, starting from 0 by default,

and increments by 1 (by default), and ends at a specified number.

Example Using the range() function:

for x in range(6):

 print(x)

Note that range(6) is not the values of 0 to 6, but the values 0 to 5.

The range() function defaults to 0 as a starting value, however it is possible to

specify the starting value by adding a parameter: range(2, 6), which means

values from 2 to 6 (but not including 6):

Example Using the start parameter:

for x in range(2, 6):

 print(x)

The range() function defaults to increment the sequence by 1, however it is

possible to specify the increment value by adding a third parameter: range(2,
30, 3):

Example Increment the sequence with 3 (default is 1):

for x in range(2, 30, 3):

 print(x)

Else in For Loop

The else keyword in a for loop specifies a block of code to be executed when the

loop is finished:

Example Print all numbers from 0 to 5, and print a message when the loop has ended:

for x in range(6):

 print(x)

else:
 print("Finally finished!")

Nested Loops

A nested loop is a loop inside a loop.

The "inner loop" will be executed one time for each iteration of the "outer loop":

Example Print each adjective for every fruit:

adj = ["red", "big", "tasty"]

fruits = ["apple", "banana", "cherry"]

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

48

for x in adj:

 for y in fruits:

 print(x, y)

Python Keywords

Python has a set of keywords that are reserved words that cannot be used as
variable names, function names, or any other identifiers:

Method Description

and A logical operator

as To create an alias

assert For debugging

break To break out of a loop

class To define a class

continue To continue to the next iteration of a loop

def To define a function

del To delete an object

elif Used in conditional statements, same as else if

else Used in conditional statements

except Used with exceptions, what to do when an exception occurs

False Boolean value, result of comparison operations

finally Used with exceptions, a block of code that will be executed

no matter if there is an exception or not

for To create a for loop

from To import specific parts of a module

global To declare a global variable

if To make a conditional statement

import To import a module

in To check if a value is present in a list, tuple, etc.

is To test if two variables are equal

lambda To create an anonymous function

None Represents a null value

nonlocal To declare a non-local variable

not A logical operator

or A logical operator

pass A null statement, a statement that will do nothing

raise To raise an exception

return To exit a function and return a value

True Boolean value, result of comparison operations

try To make a try...except statement

while To create a while loop

with Used to simplify exception handling

yield To end a function, returns a generator

http://www.upcissyoutube.com/
https://www.w3schools.com/python/ref_keyword_and.asp
https://www.w3schools.com/python/ref_keyword_as.asp
https://www.w3schools.com/python/ref_keyword_assert.asp
https://www.w3schools.com/python/ref_keyword_break.asp
https://www.w3schools.com/python/ref_keyword_class.asp
https://www.w3schools.com/python/ref_keyword_continue.asp
https://www.w3schools.com/python/ref_keyword_def.asp
https://www.w3schools.com/python/ref_keyword_del.asp
https://www.w3schools.com/python/ref_keyword_elif.asp
https://www.w3schools.com/python/ref_keyword_else.asp
https://www.w3schools.com/python/ref_keyword_except.asp
https://www.w3schools.com/python/ref_keyword_false.asp
https://www.w3schools.com/python/ref_keyword_finally.asp
https://www.w3schools.com/python/ref_keyword_for.asp
https://www.w3schools.com/python/ref_keyword_from.asp
https://www.w3schools.com/python/ref_keyword_global.asp
https://www.w3schools.com/python/ref_keyword_if.asp
https://www.w3schools.com/python/ref_keyword_import.asp
https://www.w3schools.com/python/ref_keyword_in.asp
https://www.w3schools.com/python/ref_keyword_is.asp
https://www.w3schools.com/python/ref_keyword_lambda.asp
https://www.w3schools.com/python/ref_keyword_none.asp
https://www.w3schools.com/python/ref_keyword_nonlocal.asp
https://www.w3schools.com/python/ref_keyword_not.asp
https://www.w3schools.com/python/ref_keyword_or.asp
https://www.w3schools.com/python/ref_keyword_pass.asp
https://www.w3schools.com/python/ref_keyword_raise.asp
https://www.w3schools.com/python/ref_keyword_return.asp
https://www.w3schools.com/python/ref_keyword_true.asp
https://www.w3schools.com/python/ref_keyword_try.asp
https://www.w3schools.com/python/ref_keyword_while.asp

www.upcissyoutube.com O level M3-R5

49

Python Functions

A function is a block of code which only runs when it is called.

You can pass data, known as parameters, into a function.

A function can return data as a result.

Creating a Function

In Python a function is defined using the def keyword:

Example

def my_function():

 print("Hello from a function")

Calling a Function

To call a function, use the function name followed by parenthesis:

Example

def my_function():
 print("Hello from a function")

my_function()

Parameters

Information can be passed to functions as parameter.

Parameters are specified after the function name, inside the parentheses. You can

add as many parameters as you want, just separate them with a comma.

The following example has a function with one parameter (fname). When the
function is called, we pass along a first name, which is used inside the function to

print the full name:

Example

def my_function(fname):

 print(fname + " Refsnes")

my_function("Emil")

my_function("Tobias")

my_function("Linus")

Default Parameter Value

The following example shows how to use a default parameter value.

If we call the function without parameter, it uses the default value:

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

50

Example

def my_function(country = "Norway"):

 print("I am from " + country)

my_function("Sweden")

my_function("India")

my_function()

my_function("Brazil")

Passing a List as a Parameter

You can send any data types of parameter to a function (string, number, list,
dictionary etc.), and it will be treated as the same data type inside the function.

E.g. if you send a List as a parameter, it will still be a List when it reaches the

function:

Example

def my_function(food):

 for x in food:

 print(x)

fruits = ["apple", "banana", "cherry"]

my_function(fruits)

Return Values

To let a function return a value, use the return statement:

Example

def my_function(x):
 return 5 * x

print(my_function(3))

print(my_function(5))

print(my_function(9))

Recursion

Python also accepts function recursion, which means a defined function can call
itself.

Recursion is a common mathematical and programming concept. It means that a
function calls itself. This has the benefit of meaning that you can loop through data

to reach a result.
The developer should be very careful with recursion as it can be quite easy to slip

into writing a function which never terminates, or one that uses excess amounts of
memory or processor power. However, when written correctly recursion can be a

very efficient and mathematically-elegant approach to programming.

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

51

Python Lambda

A lambda function is a small anonymous function.

A lambda function can take any number of arguments, but can only have one
expression.

Syntax
lambda arguments : expression

The expression is executed and the result is returned:

Example A lambda function that adds 10 to the number passed in as an argument, and print

the result:

x = lambda a : a + 10

print(x(5))

Lambda functions can take any number of arguments:

Example

A lambda function that multiplies argument a with argument b and print the result:

x = lambda a, b : a * b
print(x(5, 6))

Example A lambda function that sums argument a, b, and c and print the result:

x = lambda a, b, c : a + b + c

print(x(5, 6, 2))

Why Use Lambda Functions?

The power of lambda is better shown when you use them as an anonymous
function inside another function.

Say you have a function definition that takes one argument, and that argument will
be multiplied with an unknown number:

def myfunc(n):

 return lambda a : a * n

Use that function definition to make a function that always doubles the number you
send in:

Example

def myfunc(n):

 return lambda a : a * n

mydoubler = myfunc(2)

print(mydoubler(11))

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

52

Or, use the same function definition to make a function that always triples the
number you send in:

Example

def myfunc(n):

 return lambda a : a * n

mytripler = myfunc(3)

print(mytripler(11))

Or, use the same function definition to make both functions, in the same program:

Example

def myfunc(n):

 return lambda a : a * n

mydoubler = myfunc(2)

mytripler = myfunc(3)

print(mydoubler(11))

print(mytripler(11))

Use lambda functions when an anonymous function is required for a short period of
time.

Python Classes and Objects

Python is an object oriented programming language.

Almost everything in Python is an object, with its properties and methods.

A Class is like an object constructor, or a "blueprint" for creating objects.

Create a Class

To create a class, use the keyword class:

Example Create a class named MyClass, with a property named x:

class MyClass:

 x = 5

Create Object

Now we can use the class named myClass to create objects:

Example Create an object named p1, and print the value of x:

p1 = MyClass()

print(p1.x)

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

53

The __init__() Function

The examples above are classes and objects in their simplest form, and are not
really useful in real life applications.

To understand the meaning of classes we have to understand the built-in __init__()
function.

All classes have a function called __init__(), which is always executed when the

class is being initiated.

Use the __init__() function to assign values to object properties, or other
operations that are necessary to do when the object is being created:

Example Create a class named Person, use the __init__() function to assign values for name

and age:

class Person:

 def __init__(self, name, age):

 self.name = name

 self.age = age

p1 = Person("John", 36)

print(p1.name)

print(p1.age)

Note: The __init__() function is called automatically every time the class is being

used to create a new object.

Object Methods

Objects can also contain methods. Methods in objects are functions that belong to
the object.

Let us create a method in the Person class:

Example

Insert a function that prints a greeting, and execute it on the p1 object:

class Person:
 def __init__(self, name, age):

 self.name = name

 self.age = age

 def myfunc(self):

 print("Hello my name is " + self.name)

p1 = Person("John", 36)

p1.myfunc()

Note: The self parameter is a reference to the current instance of the class, and

is used to access variables that belong to the class.

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

54

The self Parameter

The self parameter is a reference to the current instance of the class, and is used

to access variables that belongs to the class.

It does not have to be named self , you can call it whatever you like, but it has to

be the first parameter of any function in the class:

Example Use the words mysillyobject and abc instead of self:

class Person:

 def __init__(mysillyobject, name, age):
 mysillyobject.name = name

 mysillyobject.age = age

 def myfunc(abc):

 print("Hello my name is " + abc.name)

p1 = Person("John", 36)

p1.myfunc()

Modify Object Properties

You can modify properties on objects like this:

Example Set the age of p1 to 40:

p1.age = 40

Delete Object Properties

You can delete properties on objects by using the del keyword:

Example Delete the age property from the p1 object:

del p1.age

Delete Objects

You can delete objects by using the del keyword:

Example Delete the p1 object:

del p1

Python Inheritance

Inheritance allows us to define a class that inherits all the methods and properties
from another class.

Parent class is the class being inherited from, also called base class.

Child class is the class that inherits from another class, also called derived class.

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

55

Create a Parent Class

Any class can be a parent class, so the syntax is the same as creating any other
class:

Example Create a class named Person, with firstname and lastname properties, and

a printname method:

class Person:

 def __init__(self, fname, lname):

 self.firstname = fname

 self.lastname = lname

 def printname(self):

 print(self.firstname, self.lastname)

#Use the Person class to create an object, and then execute the printname

method:

x = Person("John", "Doe")

x.printname()

Create a Child Class

To create a class that inherits the functionality from another class, send the parent
class as a parameter when creating the child class:

Example Create a class named Student, which will inherit the properties and methods from

the Person class:

class Student(Person):

 pass

Note: Use the pass keyword when you do not want to add any other properties or

methods to the class.

Now the Student class has the same properties and methods as the Person class.

Example Use the Student class to create an object, and then execute the printname method:

x = Student("Mike", "Olsen")

x.printname()

Add the __init__() Function

So far we have created a child class that inherits the properties and methods from
it's parent.

We want to add the __init__() function to the child class (instead of

the pass keyword).

Note: The __init__() function is called automatically every time the class is being

used to create a new object.

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

56

Example Add the __init__() function to the Student class:

class Student(Person):

 def __init__(self, fname, lname):

 #add properties etc.

When you add the __init__() function, the child class will no longer inherit the

parent's __init__() function.

Note: The child's __init__() function overrides the inheritance of the

parent's __init__() function.

To keep the inheritance of the parent's __init__() function, add a call to the

parent's __init__() function:

Example

class Student(Person):

 def __init__(self, fname, lname):

 Person.__init__(self, fname, lname)

Now we have successfully added the __init__() function, and kept the inheritance

of the parent class, and we are ready to add functionality in
the __init__() function.

Use the super() Function

Python also have a super() function that will make the child class inherit all the

methods and properties from it's parent:

Example

class Student(Person):

 def __init__(self, fname, lname):

 super().__init__(fname, lname)

By using the super() function, you do not have to use the name of the parent

element, it will automatically inherit the methods and properties from it's parent.

Add Properties

Example Add a property called graduationyear to the Student class:

class Student(Person):

 def __init__(self, fname, lname):

 super().__init__(fname, lname)

 self.graduationyear = 2019

In the example below, the year 2019 should be a variable, and passed into

the Student class when creating student objects. To do so, add another parameter

in the __init__() function:

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

57

Example Add a year parameter, and pass the correct year when creating objects:

class Student(Person):

 def __init__(self, fname, lname, year):

 super().__init__(fname, lname)

 self.graduationyear = year

x = Student("Mike", "Olsen", 2019)

Add Methods

Example Add a method called welcome to the Student class:

class Student(Person):

 def __init__(self, fname, lname, year):

 super().__init__(fname, lname)

 self.graduationyear = year

 def welcome(self):

 print("Welcome", self.firstname, self.lastname, "to the class of",

self.graduationyear)

If you add a method in the child class with the same name as a function in the
parent class, the inheritance of the parent method will be overridden.

Python Iterators

An iterator is an object that contains a countable number of values.

An iterator is an object that can be iterated upon, meaning that you can traverse

through all the values.

Technically, in Python, an iterator is an object which implements the iterator

protocol, which consist of the methods __iter__() and __next__().

Iterator vs Iterable

Lists, tuples, dictionaries, and sets are all iterable objects. They are
iterable containers which you can get an iterator from.

All these objects have a iter() method which is used to get an iterator:

Example Return an iterator from a tuple, and print each value:

mytuple = ("apple", "banana", "cherry")

myit = iter(mytuple)

print(next(myit))

print(next(myit))

print(next(myit))

Even strings are iterable objects, and can return an iterator:

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

58

Example Strings are also iterable objects, containing a sequence of characters:

mystr = "banana"

myit = iter(mystr)

print(next(myit))

print(next(myit))
print(next(myit))

print(next(myit))

print(next(myit))

print(next(myit))

Looping Through an Iterator

We can also use a for loop to iterate through an iterable object:

Example Iterate the values of a tuple:

mytuple = ("apple", "banana", "cherry")

for x in mytuple:

 print(x)

Example Iterate the characters of a string:

mystr = "banana"

for x in mystr:

 print(x)

The for loop actually creates an iterator object and executes the next() method for

each loop.

Create an Iterator

To create an object/class as an iterator you have to implement the
methods __iter__() and __next__() to your object.

As you have learned in the Python Classes/Objects chapter, all classes have a

function called __init__(), which allows you do some initializing when the object

is being created.

The __iter__() method acts similar, you can do operations (initializing etc.), but

must always return the iterator object itself.

The __next__() method also allows you to do operations, and must return the next

item in the sequence.

http://www.upcissyoutube.com/
https://www.w3schools.com/python/python_classes.asp

www.upcissyoutube.com O level M3-R5

59

Example Create an iterator that returns numbers, starting with 1, and each sequence will

increase by one (returning 1,2,3,4,5 etc.):

class MyNumbers:

 def __iter__(self):

 self.a = 1

 return self

 def __next__(self):

 x = self.a

 self.a += 1

 return x

myclass = MyNumbers()
myiter = iter(myclass)

print(next(myiter))

print(next(myiter))

print(next(myiter))

print(next(myiter))

print(next(myiter))

Stop Iteration

The example above would continue forever if you had enough next() statements, or
if it was used in a for loop.

To prevent the iteration to go on forever, we can use
the StopIteration statement.

In the __next__() method, we can add a terminating condition to raise an error if

the iteration is done a specified number of times:

Example Stop after 20 iterations:

class MyNumbers:

 def __iter__(self):
 self.a = 1

 return self

 def __next__(self):

 if self.a <= 20:

 x = self.a

 self.a += 1

 return x

 else:

 raise StopIteration

myclass = MyNumbers()
myiter = iter(myclass)

for x in myiter:

 print(x)

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

60

Python Scope

A variable is only available from inside the region it is created. This is called scope.

Local Scope

A variable created inside a function belongs to the local scope of that function, and
can only be used inside that function.

Example A variable created inside a function is available inside that function:

def myfunc():

 x = 300

 print(x)

myfunc()

Function Inside Function

As explained in the example above, the variable x is not available outside the

function, but it is available for any function inside the function:

Example The local variable can be accessed from a function within the function:

def myfunc():

 x = 300

 def myinnerfunc():

 print(x)

 myinnerfunc()

myfunc()

Global Scope

A variable created in the main body of the Python code is a global variable and
belongs to the global scope.

Global variables are available from within any scope, global and local.

Example A variable created outside of a function is global and can be used by anyone:

x = 300

def myfunc():

 print(x)

myfunc()

print(x)

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

61

Naming Variables

If you operate with the same variable name inside and outside of a function,
Python will treat them as two separate variables, one available in the global scope

(outside the function) and one available in the local scope (inside the function):

Example The function will print the local x, and then the code will print the global x:

x = 300

def myfunc():

 x = 200

 print(x)

myfunc()

print(x)

Global Keyword

If you need to create a global variable, but are stuck in the local scope, you can

use the global keyword.

The global keyword makes the variable global.

Example If you use the global keyword, the variable belongs to the global scope:

def myfunc():

 global x

 x = 300

myfunc()

print(x)

Also, use the global keyword if you want to make a change to a global variable

inside a function.

Example To change the value of a global variable inside a function, refer to the variable by

using the global keyword:

x = 300

def myfunc():

 global x

 x = 200

myfunc()

print(x)

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

62

Python Modules
What is a Module?

Consider a module to be the same as a code library.

A file containing a set of functions you want to include in your application.

Create a Module

To create a module just save the code you want in a file with the file
extension .py:

Example Save this code in a file named mymodule.py

def greeting(name):

 print("Hello, " + name)

Use a Module

Now we can use the module we just created, by using the import statement:

Example Import the module named mymodule, and call the greeting function:

import mymodule

mymodule.greeting("Jonathan")

Note: When using a function from a module, use the

syntax: module_name.function_name.

Variables in Module

The module can contain functions, as already described, but also variables of all

types (arrays, dictionaries, objects etc):

Example Save this code in the file mymodule.py

person1 = {

 "name": "John",

 "age": 36,

 "country": "Norway"

}

Example Import the module named mymodule, and access the person1 dictionary:

import mymodule

a = mymodule.person1["age"]

print(a)

Naming a Module
You can name the module file whatever you like, but it must have the file

extension .py

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

63

Re-naming a Module
You can create an alias when you import a module, by using the as keyword:

Example Create an alias for mymodule called mx:

import mymodule as mx

a = mx.person1["age"]

print(a)

Built-in Modules

There are several built-in modules in Python, which you can import whenever you
like.

Example Import and use the platform module:

import platform

x = platform.system()

print(x)

Using the dir() Function

There is a built-in function to list all the function names (or variable names) in a
module. The dir() function:

Example List all the defined names belonging to the platform module:

import platform

x = dir(platform)

print(x)

Note: The dir() function can be used on all modules, also the ones you create

yourself.

Import from Module

You can choose to import only parts from a module, by using the from keyword.

Example The module named mymodule has one function and one dictionary:

def greeting(name):

 print("Hello, " + name)

person1 = {

 "name": "John",

 "age": 36,
 "country": "Norway"

}

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

64

Example Import only the person1 dictionary from the module:

from mymodule import person1

print (person1["age"])

Reloading modules

reload() reloads a previously imported module. This is useful if you have edited
the module source file using an external editor and want to try out the new version

without leaving the Python interpreter. The return value is the module object.

Note: The argument should be a module which has been successfully imported.

Usage:

For Python2.x

 reload(module)

For above 2.x and <=Python3.3
import imp

imp.reload(module)

For >=Python3.4
import importlib

importlib.reload(module)

Scope of Object and Names
 The scope refers to the region in the program code where variables and

names are accessible.
 It also determines the visibility and lifetime of a variable in the program

code.
 Assigning a value, defining a function or class (using def or class) or

importing module operation creates a name and its place in the code defines
its scope.

 The names or objects which are accessible are called in-scope.
 The names or objects which are not accessible are called out-of-scope.

 The Python scope concept follows the LEGB (Local, Enclosing, Global and
built-in) rule.

 The scope concept helps to avoid the name collision and use of global names
across the programs.

Names and Objects in Python
 Python is a dynamically types language, so when we assign the value to the

variable for the first time, it creates the variable. Others names or objects

come in existence as given:

Operation Statement

Assignment X=value

Import Operation import module

Function definitions def fun()

Arguments in the function def fun(x1, x2 , x3)

Class definition class abc :

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

65

 Python uses the location of the name assignment or definition to associate it
with a scope.

 If a variable assigned value in the function, it has a local scope.
 If a variable assigned value at the top level and outside all the functions, it

has a global scope.

Python Scope Vs Namespace

 The scope of a variables and objects are related to the concept of the
namespace.

 The scope determines the visibility of the names and objects in the program.
 A namespace is a collection of names.
 In python, scopes are implemented as dictionaries that maps names to

objects. These dictionaries are called namespaces.
 The dictionaries have the names as key and the objects as value.

 A strings, lists, functions, etc everything in Python is an object.

Searching a name in the Namespace

 Whenever we use a name, such as a variable or a function name, Python
searches through different scope levels (or namespaces) to determine

whether the name exists or not.
 If the name exists, then we always get the first occurrence of it.

 Otherwise, we get an error.

Types of namespace

 Built-in Namespace It includes functions and exception names that are
built-in in the python.

 Global Namespace It includes the names from the modules that are
imported in the code. It lasts till the end of program.

 Local Namespace It includes the names defined in the function. It is
created when the function is called and ends when the value returned.

LEGB Rule for Python Scope

 The LEGB stands for Local, Enclosing, Global and Built-in.
 Python resolves names using the LEGB rules.

 The LEGB rule is a kind of name lookup procedure, which determines the
order in which Python looks up names.

 For example, if we access a name, then Python will look that name up
sequentially in the local, enclosing, global, and built-in scope.

Local (or function) scope
 It is the code block or body of any Python function or lambda expression.

 This Python scope contains the names that you define inside the function.
 These names will only be visible from the code of the function.

 It’s created at function call, not at function definition, so we have as many
different local scopes as function calls.

 It is applicable if we call the same function multiple times, or recursively.
 Each call will result in a new local scope being created.

Enclosing (or nonlocal) scope
 It is a special scope that only exists for nested functions.
 If the local scope is an inner or nested function, then the enclosing scope is

the scope of the outer or enclosing function.
 This scope contains the names that you define in the enclosing function.

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

66

 The names in the enclosing scope are visible from the code of the inner and
enclosing functions.

Global (or module) scope

 It is the top-most scope in a Python program, script, or module.
 This scope contains all of the names that are defined at the top level of a

program or a module.
 Names in this Python scope are visible from everywhere in your code.

Built-in scope
 It is a special scope which is created or loaded at script run or opens an

interactive session.
 This scope contains names such as keywords, functions, exceptions, and

other attributes that are built into Python.
 Names in this scope are also available from everywhere in your code.

Example

var1 = 5 #var1 is in the global namespace

def ABC():
var2 = 6 # var2 is in the local namespace

def XYZ():
var3 = 7 # var3 is in the nested local namespace

 In this example, the var1 is declared in the global namespace because it is
not enclosed inside any function. So it is accessible everywhere in the script.

 var2 is inside the ABC(). So, it can be accessed only inside the ABC() and
outside the function, it no longer exists.

 var3 also has a local scope, the function is nested and we can use var3 only
inside XYZ().

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

67

Python Date time

Python Dates

A date in Python is not a data type of its own, but we can import a module

named datetime to work with dates as date objects.

Example Import the datetime module and display the current date:

import datetime

x = datetime.datetime.now()

print(x)

Date Output

When we execute the code from the example above the result will be:

2019-09-24 15:35:35.403417

The date contains year, month, day, hour, minute, second, and microsecond.

The datetime module has many methods to return information about the date

object.

Here are a few examples, you will learn more about them later in this chapter:

Example Return the year and name of weekday:

import datetime

x = datetime.datetime.now()

print(x.year)

print(x.strftime("%A"))

Creating Date Objects

To create a date, we can use the datetime() class (constructor) of the datetime module.

The datetime() class requires three parameters to create a date: year, month,

day.

Example Create a date object:

import datetime

x = datetime.datetime(2020, 5, 17)

print(x)

The datetime() class also takes parameters for time and timezone (hour, minute,

second, microsecond, tzone), but they are optional, and has a default value of 0,

(None for timezone).

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

68

The strftime() Method

The datetime object has a method for formatting date objects into readable

strings.

The method is called strftime(), and takes one parameter, format, to specify the

format of the returned string:

Example Display the name of the month:

import datetime

x = datetime.datetime(2018, 6, 1)

print(x.strftime("%B"))

A reference of all the legal format codes:

Directive Description Example

%a Weekday, short version Wed

%A Weekday, full version Wednesday

%w Weekday as a number 0-6, 0 is Sunday 3

%d Day of month 01-31 31

%b Month name, short version Dec

%B Month name, full version December

%m Month as a number 01-12 12

%y Year, short version, without century 18

%Y Year, full version 2018

%H Hour 00-23 17

%I Hour 00-12 05

%p AM/PM PM

%M Minute 00-59 41

%S Second 00-59 08

%f Microsecond 000000-999999 548513

%z UTC offset +0100

%Z Timezone CST

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

69

%j Day number of year 001-366 365

%U Week number of year, Sunday as the first

day of week, 00-53

52

%W Week number of year, Monday as the first

day of week, 00-53

52

%c Local version of date and time Mon Dec 31 17:41:00

2018

%x Local version of date 12/31/18

%X Local version of time 17:41:00

%% A % character %

Python Try Except

The try block lets you test a block of code for errors.

The except block lets you handle the error.

The else block lets you execute code when there is no error.

The finally block lets you execute code, regardless of the result of the try- and

except blocks.

Exception Handling

When an error occurs, or exception as we call it, Python will normally stop and

generate an error message.

These exceptions can be handled using the try statement:

Example The try block will generate an exception, because x is not defined:

try:

 print(x)

except:
 print("An exception occurred")

Since the try block raises an error, the except block will be executed.

Without the try block, the program will crash and raise an error:

Example This statement will raise an error, because x is not defined:

print(x)

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

70

Many Exceptions

You can define as many exception blocks as you want, e.g. if you want to execute a

special block of code for a special kind of error:

Example Print one message if the try block raises a NameError and another for other errors:

try:

 print(x)

except NameError:

 print("Variable x is not defined")

except:

 print("Something else went wrong")

Else

You can use the else keyword to define a block of code to be executed if no errors

were raised:

Example In this example, the try block does not generate any error:

try:

 print("Hello")

except:

 print("Something went wrong")

else:

 print("Nothing went wrong")

Finally

The finally block, if specified, will be executed regardless if the try block raises an

error or not.

Example

try:

 print(x)

except:

 print("Something went wrong")

finally:
 print("The 'try except' is finished")

This can be useful to close objects and clean up resources:

Example Try to open and write to a file that is not writable:

try:

 f = open("demofile.txt")

 try:

 f.write("Lorum Ipsum")

 except:

 print("Something went wrong when writing to the file")

 finally:

 f.close()

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

71

except:
 print("Something went wrong when opening the file")

The program can continue, without leaving the file object open.

Raise an exception

As a Python developer you can choose to throw an exception if a condition occurs.

To throw (or raise) an exception, use the raise keyword.

Example Raise an error and stop the program if x is lower than 0:

x = -1

if x < 0:
 raise Exception("Sorry, no numbers below zero")

The raise keyword is used to raise an exception.

You can define what kind of error to raise, and the text to print to the user.

Example Raise a TypeError if x is not an integer:

x = "hello"

if not type(x) is int:
 raise TypeError("Only integers are allowed")

File Processing (Handling)

Python too supports file handling and allows users to handle files i.e., to read
and write files, along with many other file handling options, to operate on files.
The concept of file handling has stretched over various other languages, but the

implementation is either complicated or lengthy, but like other concepts of
Python, this concept here is also easy and short. Python treats file differently as

text or binary and this is important. Each line of code includes a sequence of
characters and they form text file. Each line of a file is terminated with a special

character, called the EOL or End of Line characters like comma {,} or newline
character. It ends the current line and tells the interpreter a new one has

begun. Let’s start with Reading and Writing files.

File Handling

The key function for working with files in Python is the open() function.

The open() function takes two parameters; filename, and mode.

There are four different methods (modes) for opening a file:

"r" - Read - Default value. Opens a file for reading, error if the file does not exist

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

72

"a" - Append - Opens a file for appending, creates the file if it does not exist

"w" - Write - Opens a file for writing, creates the file if it does not exist

"x" - Create - Creates the specified file, returns an error if the file exists

"r+" To read and write data into the file. The previous data in the file will not be deleted

"w+" To write and read data. It will override existing data

"a+" To append and read data from the file. It won’t override existing data

In addition you can specify if the file should be handled as binary or text mode

"t" - Text - Default value. Text mode

"b" - Binary - Binary mode (e.g. images)

Syntax

To open a file for reading it is enough to specify the name of the file:

f = open("demofile.txt")

The code above is the same as:

f = open("demofile.txt", "rt")

Because "r" for read, and "t" for text are the default values, you do not need to

specify them.

Note: Make sure the file exists, or else you will get an error.

Python File Open

Assume we have the following file, located in the same folder as Python:

demofile.txt

Hello! Welcome to demofile.txt

This file is for testing purposes.

Good Luck!

To open the file, use the built-in open() function.

The open() function returns a file object, which has a read() method for reading

the content of the file:

Example

f = open("demofile.txt", "r")

print(f.read())

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

73

If the file is located in a different location, you will have to specify the file path, like

this:

Example Open a file on a different location:

f = open("D:\\myfiles\welcome.txt", "r")

print(f.read())

Read Only Parts of the File

By default the read() method returns the whole text, but you can also specify how

many characters you want to return:

Example Return the 5 first characters of the file:

f = open("demofile.txt", "r")

print(f.read(5))

Read Lines

You can return one line by using the readline() method:

Example Read one line of the file:

f = open("demofile.txt", "r")

print(f.readline())

By calling readline() two times, you can read the two first lines:

Example Read two lines of the file:

f = open("demofile.txt", "r")

print(f.readline())
print(f.readline())

By looping through the lines of the file, you can read the whole file, line by line:

Example Loop through the file line by line:

f = open("demofile.txt", "r")

for x in f:

 print(x)

Example

Return all lines in the file, as a list where each line is an item in the list object:

f = open("demofile.txt", "r")

print(f.readlines())

Close Files

It is a good practice to always close the file when you are done with it.

Example Close the file when you are finish with it:

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

74

f = open("demofile.txt", "r")

print(f.readline())

f.close()

Note: You should always close your files, in some cases, due to buffering, changes

made to a file may not show until you close the file.

Python File Write

Write to an Existing File

To write to an existing file, you must add a parameter to the open() function:

"a" - Append - will append to the end of the file

"w" - Write - will overwrite any existing content

Example Open the file "demofile2.txt" and append content to the file:

f = open("demofile2.txt", "a")

f.write("Now the file has more content!")

f.close()

#open and read the file after the appending:

f = open("demofile2.txt", "r")

print(f.read())

Example Open the file "demofile3.txt" and overwrite the content:

f = open("demofile3.txt", "w")

f.write("Woops! I have deleted the content!")

f.close()

#open and read the file after the appending:

f = open("demofile3.txt", "r")
print(f.read())

Note: the "w" method will overwrite the entire file.

Create a New File

To create a new file in Python, use the open() method, with one of the following

parameters:

"x" - Create - will create a file, returns an error if the file exist

"a" - Append - will create a file if the specified file does not exist

"w" - Write - will create a file if the specified file does not exist

Example Create a file called "myfile.txt":

f = open("myfile.txt", "x")

Result: a new empty file is created!

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

75

Example Create a new file if it does not exist:

f = open("myfile.txt", "w")

Python Delete File

To delete a file, you must import the OS module, and run its os.remove() function:

Example Remove the file "demofile.txt":

import os

os.remove("demofile.txt")

Check if File exist:

To avoid getting an error, you might want to check if the file exists before you try

to delete it:

Example Check if file exists, then delete it:

import os

if os.path.exists("demofile.txt"):

 os.remove("demofile.txt")

else:
 print("The file does not exist")

Delete Folder

To delete an entire folder, use the os.rmdir() method:

Example Remove the folder "myfolder":

import os

os.rmdir("myfolder")

Note: You can only remove empty folders.

With statement

with statement in Python is used in exception handling to make the code cleaner
and much more readable. It simplifies the management of common resources like

file streams. Unlike the above implementations, there is no need to
call file.close() when using with statement. The with statement itself ensures
proper acquisition and release of resources.

Syntax: with open filename as file:

Program to show various ways to

read data from a file.

L = ["This is Delhi \n", "This is Paris \n", "This is London \n"]

Creating a file

with open("myfile.txt", "w") as file1:
 # Writing data to a file

 file1.write("Hello \n")
 file1.writelines(L)

 file1.close() # to change file access modes

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

76

with open("myfile.txt", "r+") as file1:

 # Reading form a file
 print(file1.read())

Output:
Hello
This is Delhi
This is Paris
This is London

Python File tell() Method

Example Find the current file position:

f = open("demofile.txt", "r")

print(f.tell())

Definition and Usage

The tell() method returns the current file position in a file stream.

Tip: You can change the current file position with the seek method.

Python File seek() Method

Example Change the current file position to 4, and return the rest of the line:

f = open("demofile.txt", "r")

f.seek(4)
print(f.readline())

Definition and Usage

The seek() method sets the current file position in a file stream.

The seek() method also returns the new postion.

Command Line Arguments

The arguments that are given after the name of the program in the command line
shell of the operating system are known as Command Line Arguments. Python
provides various ways of dealing with these types of arguments. The three most

common are:

 Using sys.argv

 Using getopt module

 Using argparse module

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

77

Using sys.argv

The sys module provides functions and variables used to manipulate different parts

of the Python runtime environment. This module provides access to some variables
used or maintained by the interpreter and to functions that interact strongly with

the interpreter.
One such variable is sys.argv which is a simple list structure. It’s main purpose are:

 It is a list of command line arguments.
 len(sys.argv) provides the number of command line arguments.

 sys.argv[0] is the name of the current Python script.

Example Let’s suppose there is a Python script for adding two numbers and the numbers

are passed as command-line arguments.

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

78

Using getopt module

Python getopt module is similar to the getopt() function of C. Unlike sys module getopt

module extends the separation of the input string by parameter validation. It allows

both short, and long options including a value assignment. However, this module

requires the use of the sys module to process input data properly. To use getopt

module, it is required to remove the first element from the list of command-line

arguments.

Syntax: getopt.getopt(args, options, [long_options])

Parameters:

args: List of arguments to be passed.

options: String of option letters that the script want to recognize. Options that

require an argument should be followed by a colon (:).

long_options: List of string with the name of long options. Options that require

arguments should be followed by an equal sign (=).

Return Type: Returns value consisting of two elements: the first is a list of (option,

value) pairs. The second is the list of program arguments left after the option list

was stripped.

Example

http://www.upcissyoutube.com/
https://www.geeksforgeeks.org/getopt-function-in-c-to-parse-command-line-arguments/

www.upcissyoutube.com O level M3-R5

79

Using argparse module

Using argparse module is a better option than the above two options as it provides

a lot of options such as positional arguments, default value for arguments, help

message, specifying data type of argument etc.

Note: As a default optional argument, it includes -h, along with its long version –

help.

Example 1: Basic use of argparse module.

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

80

Example 2: Adding description to the help message.

NumPy Basics
What is NumPy?

NumPy is a Python library used for working with arrays.

It also has functions for working in domain of linear algebra, fourier transform, and

matrices.

NumPy was created in 2005 by Travis Oliphant. It is an open source project and

you can use it freely.

NumPy stands for Numerical Python.

Why Use NumPy?
In Python we have lists that serve the purpose of arrays, but they are slow to

process.

NumPy aims to provide an array object that is up to 50x faster than traditional

Python lists.

The array object in NumPy is called ndarray, it provides a lot of supporting functions

that make working with ndarray very easy.

Arrays are very frequently used in data science, where speed and resources are

very important.

Data Science: is a branch of computer science where we study how to store, use

and analyze data for deriving information from it.

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

81

Why is NumPy Faster than Lists?
NumPy arrays are stored at one continuous place in memory unlike lists, so

processes can access and manipulate them very efficiently.

This behavior is called locality of reference in computer science.

This is the main reason why NumPy is faster than lists. Also it is optimized to work

with latest CPU architectures.

Which Language is NumPy written in?
NumPy is a Python library and is written partially in Python, but most of the parts

that require fast computation are written in C or C++.

Installation of NumPy

If you have Python and PIP already installed on a system, then installation of

NumPy is very easy.

Install it using this command:

C:\Users\Your Name>pip install numpy

If this command fails, then use a python distribution that already has NumPy

installed like, Anaconda, Spyder etc.

Import NumPy
Once NumPy is installed, import it in your applications by adding

the import keyword:

import numpy

Now NumPy is imported and ready to use.

Example

import numpy

arr = numpy.array([1, 2, 3, 4, 5])

print(arr)

NumPy as np

NumPy is usually imported under the np alias.

alias: In Python alias are an alternate name for referring to the same thing.

Create an alias with the as keyword while importing:

import numpy as np

Now the NumPy package can be referred to as np instead of numpy.

Example

import numpy as np

arr = np.array([1, 2, 3, 4, 5])

print(arr)

Checking NumPy Version
The version string is stored under __version__ attribute.

Example

import numpy as np

print(np.__version__)

http://www.upcissyoutube.com/
https://www.w3schools.com/python/default.asp
https://www.w3schools.com/python/python_pip.asp

www.upcissyoutube.com O level M3-R5

82

NumPy Creating Arrays

Create a NumPy ndarray Object

NumPy is used to work with arrays. The array object in NumPy is called ndarray.

We can create a NumPy ndarray object by using the array() function.

Example

import numpy as np

arr = np.array([1, 2, 3, 4, 5])

print(arr)

print(type(arr))

type(): This built-in Python function tells us the type of the object passed to it.

Like in above code it shows that arr is numpy.ndarray type.

To create an ndarray, we can pass a list, tuple or any array-like object into

the array() method, and it will be converted into an ndarray:

Example Use a tuple to create a NumPy array:

import numpy as np

arr = np.array((1, 2, 3, 4, 5))

print(arr)

Dimensions in Arrays
A dimension in arrays is one level of array depth (nested arrays).

Nested array: are arrays that have arrays as their elements.

0-D Arrays
0-D arrays, or Scalars, are the elements in an array. Each value in an array is a 0-

D array.

Example Create a 0-D array with value 42

import numpy as np

arr = np.array(42)

print(arr)

1-D Arrays
An array that has 0-D arrays as its elements is called uni-dimensional or 1-D array.

These are the most common and basic arrays.

Example Create a 1-D array containing the values 1,2,3,4,5:

import numpy as np

arr = np.array([1, 2, 3, 4, 5])

print(arr)

2-D Arrays
An array that has 1-D arrays as its elements is called a 2-D array.

These are often used to represent matrix or 2nd order tensors.

NumPy has a whole sub module dedicated towards matrix operations

called numpy.mat

Example Create a 2-D array containing two arrays with the values 1,2,3 and 4,5,6:

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

83

import numpy as np

arr = np.array([[1, 2, 3], [4, 5, 6]])

print(arr)

3-D arrays
An array that has 2-D arrays (matrices) as its elements is called 3-D array.

These are often used to represent a 3rd order tensor.

Example Create a 3-D array with two 2-D arrays, both containing two arrays with the values

1,2,3 and 4,5,6:

import numpy as np

arr = np.array([[[1, 2, 3], [4, 5, 6]], [[1, 2, 3], [4, 5, 6]]])

print(arr)

Check Number of Dimensions?
NumPy Arrays provides the ndim attribute that returns an integer that tells us how

many dimensions the array have.

Example Check how many dimensions the arrays have:

import numpy as np

a = np.array(42)

b = np.array([1, 2, 3, 4, 5])

c = np.array([[1, 2, 3], [4, 5, 6]])

d = np.array([[[1, 2, 3], [4, 5, 6]], [[1, 2, 3], [4, 5, 6]]])

print(a.ndim)

print(b.ndim)

print(c.ndim)

print(d.ndim)

Higher Dimensional Arrays

An array can have any number of dimensions.

When the array is created, you can define the number of dimensions by using

the ndmin argument.

Example Create an array with 5 dimensions and verify that it has 5 dimensions:

import numpy as np

arr = np.array([1, 2, 3, 4], ndmin=5)

print(arr)

print('number of dimensions :', arr.ndim)

In this array the innermost dimension (5th dim) has 4 elements, the 4th dim has 1

element that is the vector, the 3rd dim has 1 element that is the matrix with the

vector, the 2nd dim has 1 element that is 3D array and 1st dim has 1 element that

is a 4D array.

NumPy Array Indexing

Access Array Elements
Array indexing is the same as accessing an array element.

You can access an array element by referring to its index number.

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

84

The indexes in NumPy arrays start with 0, meaning that the first element has index

0, and the second has index 1 etc.

Example Get the first element from the following array:

import numpy as np

arr = np.array([1, 2, 3, 4])

print(arr[0])

Example Get the second element from the following array.

import numpy as np

arr = np.array([1, 2, 3, 4])

print(arr[1])

Example Get third and fourth elements from the following array and add them.

import numpy as np

arr = np.array([1, 2, 3, 4])

print(arr[2] + arr[3])

Access 2-D Arrays
To access elements from 2-D arrays we can use comma separated integers

representing the dimension and the index of the element.

Think of 2-D arrays like a table with rows and columns, where the row represents

the dimension and the index represents the column.

Example Access the element on the first row, second column:

import numpy as np

arr = np.array([[1,2,3,4,5], [6,7,8,9,10]])

print('2nd element on 1st row: ', arr[0, 1])

Example Access the element on the 2nd row, 5th column:

import numpy as np

arr = np.array([[1,2,3,4,5], [6,7,8,9,10]])

print('5th element on 2nd row: ', arr[1, 4])

Access 3-D Arrays

To access elements from 3-D arrays we can use comma separated integers

representing the dimensions and the index of the element.

Example Access the third element of the second array of the first array:

import numpy as np

arr = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]])

print(arr[0, 1, 2])

Example Explained

arr[0, 1, 2] prints the value 6.

And this is why:

The first number represents the first dimension, which contains two arrays:

[[1, 2, 3], [4, 5, 6]]

and:

[[7, 8, 9], [10, 11, 12]]

Since we selected 0, we are left with the first array:

[[1, 2, 3], [4, 5, 6]]

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

85

The second number represents the second dimension, which also contains two

arrays:

[1, 2, 3]

and:

[4, 5, 6]

Since we selected 1, we are left with the second array:

[4, 5, 6]

The third number represents the third dimension, which contains three values:

4

5

6

Since we selected 2, we end up with the third value:

6

Negative Indexing
Use negative indexing to access an array from the end.

Example Print the last element from the 2nd dim:

import numpy as np

arr = np.array([[1,2,3,4,5], [6,7,8,9,10]])

print('Last element from 2nd dim: ', arr[1, -1])

NumPy Array Slicing

Slicing arrays

Slicing in python means taking elements from one given index to another given

index.

We pass slice instead of index like this: [start:end].

We can also define the step, like this: [start:end:step].

If we don't pass start its considered 0

If we don't pass end its considered length of array in that dimension

If we don't pass step its considered 1

Example Slice elements from index 1 to index 5 from the following array:

import numpy as np

arr = np.array([1, 2, 3, 4, 5, 6, 7])

print(arr[1:5])

Note: The result includes the start index, but excludes the end index.

Example Slice elements from index 4 to the end of the array:

import numpy as np

arr = np.array([1, 2, 3, 4, 5, 6, 7])

print(arr[4:])

Example Slice elements from the beginning to index 4 (not included):

import numpy as np

arr = np.array([1, 2, 3, 4, 5, 6, 7])

print(arr[:4])

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

86

Negative Slicing
Use the minus operator to refer to an index from the end:

Example Slice from the index 3 from the end to index 1 from the end:

import numpy as np

arr = np.array([1, 2, 3, 4, 5, 6, 7])

print(arr[-3:-1])

STEP
Use the step value to determine the step of the slicing:

Example Return every other element from index 1 to index 5:

import numpy as np

arr = np.array([1, 2, 3, 4, 5, 6, 7])

print(arr[1:5:2])

Example Return every other element from the entire array:

import numpy as np

arr = np.array([1, 2, 3, 4, 5, 6, 7])

print(arr[::2])

Slicing 2-D Arrays

Example From the second element, slice elements from index 1 to index 4 (not included):

import numpy as np

arr = np.array([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]])

print(arr[1, 1:4])

Note: Remember that second element has index 1.

Example From both elements, return index 2:

import numpy as np

arr = np.array([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]])

print(arr[0:2, 2])

Example From both elements, slice index 1 to index 4 (not included), this will return a 2-D

array:

import numpy as np

arr = np.array([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]])

print(arr[0:2, 1:4])

NumPy Data Types

Data Types in Python

By default Python have these data types:

 strings - used to represent text data, the text is given under quote marks.

e.g. "ABCD"

 integer - used to represent integer numbers. e.g. -1, -2, -3

 float - used to represent real numbers. e.g. 1.2, 42.42

 boolean - used to represent True or False.

 complex - used to represent complex numbers. e.g. 1.0 + 2.0j, 1.5 + 2.5j

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

87

Data Types in NumPy
NumPy has some extra data types, and refer to data types with one character,

like i for integers, u for unsigned integers etc.

Below is a list of all data types in NumPy and the characters used to represent

them.

 i - integer

 b - boolean

 u - unsigned integer

 f - float

 c - complex float

 m - timedelta

 M - datetime

 O - object

 S - string

 U - unicode string

 V - fixed chunk of memory for other type (void)

Checking the Data Type of an Array
The NumPy array object has a property called dtype that returns the data type of

the array:

Example Get the data type of an array object:

import numpy as np

arr = np.array([1, 2, 3, 4])

print(arr.dtype)

Example Get the data type of an array containing strings:

import numpy as np

arr = np.array(['apple', 'banana', 'cherry'])

print(arr.dtype)

Creating Arrays with a Defined Data Type

We use the array() function to create arrays, this function can take an optional

argument: dtype that allows us to define the expected data type of the array

elements:

Example Create an array with data type string:

import numpy as np

arr = np.array([1, 2, 3, 4], dtype='S')

print(arr)

print(arr.dtype)

For i, u, f, S and U we can define size as well.

Example Create an array with data type 4 bytes integer:

import numpy as np

arr = np.array([1, 2, 3, 4], dtype='i4')

print(arr)

print(arr.dtype)

What if a Value Can Not Be Converted?

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

88

If a type is given in which elements can't be casted then NumPy will raise a

ValueError.

ValueError: In Python ValueError is raised when the type of passed argument to a

function is unexpected/incorrect.

Example A non-integer string like 'a' cannot be converted to integer (will raise an error):

import numpy as np

arr = np.array(['a', '2', '3'], dtype='i')

Converting Data Type on Existing Arrays

The best way to change the data type of an existing array, is to make a copy of the

array with the astype() method.

The astype() function creates a copy of the array, and allows you to specify the data

type as a parameter.

The data type can be specified using a string, like 'f' for float, 'i' for integer etc.

or you can use the data type directly like float for float and int for integer.

Example Change data type from float to integer by using 'i' as parameter value:

import numpy as np

arr = np.array([1.1, 2.1, 3.1])

newarr = arr.astype('i')

print(newarr)

print(newarr.dtype)

Example Change data type from float to integer by using int as parameter value:

import numpy as np

arr = np.array([1.1, 2.1, 3.1])

newarr = arr.astype(int)

print(newarr)

print(newarr.dtype)

Example Change data type from integer to boolean:

import numpy as np

arr = np.array([1, 0, 3])

newarr = arr.astype(bool)

print(newarr)

print(newarr.dtype)

NumPy Array Copy vs View

The Difference between Copy and View

The main difference between a copy and a view of an array is that the copy is a

new array, and the view is just a view of the original array.

The copy owns the data and any changes made to the copy will not affect original

array, and any changes made to the original array will not affect the copy.

The view does not own the data and any changes made to the view will affect the

original array, and any changes made to the original array will affect the view.

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

89

COPY:

Example Make a copy, change the original array, and display both arrays:

import numpy as np

arr = np.array([1, 2, 3, 4, 5])

x = arr.copy()

arr[0] = 42

print(arr)

print(x)

The copy SHOULD NOT be affected by the changes made to the original array.

VIEW:

Example Make a view, change the original array, and display both arrays:

import numpy as np

arr = np.array([1, 2, 3, 4, 5])

x = arr.view()

arr[0] = 42

print(arr)

print(x)

The view SHOULD be affected by the changes made to the original array.

Make Changes in the VIEW:

Example Make a view, change the view, and display both arrays:

import numpy as np

arr = np.array([1, 2, 3, 4, 5])

x = arr.view()

x[0] = 31

print(arr)

print(x)

The original array SHOULD be affected by the changes made to the view.

Check if Array Owns its Data

As mentioned above, copies owns the data, and views does not own the data, but

how can we check this?

Every NumPy array has the attribute base that returns None if the array owns the

data.

Otherwise, the base attribute refers to the original object.

Example Print the value of the base attribute to check if an array owns it's data or not:

import numpy as np

arr = np.array([1, 2, 3, 4, 5])

x = arr.copy()

y = arr.view()

print(x.base)

print(y.base)

The copy returns none.

The view returns the original array.

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

90

NumPy Array Shape
Shape of an Array

The shape of an array is the number of elements in each dimension.

Get the Shape of an Array
NumPy arrays have an attribute called shape that returns a tuple with each index

having the number of corresponding elements.

Example Print the shape of a 2-D array:

import numpy as np

arr = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])

print(arr.shape)

The example above returns (2, 4), which means that the array has 2 dimensions,

where the first dimension has 2 elements and the second has 4.

Example Create an array with 5 dimensions using ndmin using a vector with values 1,2,3,4

and verify that last dimension has value 4:

import numpy as np

arr = np.array([1, 2, 3, 4], ndmin=5)

print(arr)

print('shape of array :', arr.shape)

What does the shape tuple represent?

Integers at every index tells about the number of elements the corresponding

dimension has.

In the example above at index-4 we have value 4, so we can say that 5th (4 + 1

th) dimension has 4 elements.

NumPy Array Reshaping
Reshaping arrays

Reshaping means changing the shape of an array.

The shape of an array is the number of elements in each dimension.

By reshaping we can add or remove dimensions or change number of elements in

each dimension.

Reshape From 1-D to 2-D

Example Convert the following 1-D array with 12 elements into a 2-D array. The outermost

dimension will have 4 arrays, each with 3 elements:

import numpy as np

arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])

newarr = arr.reshape(4, 3)

print(newarr)

Reshape From 1-D to 3-D

Example Convert the following 1-D array with 12 elements into a 3-D array. The outermost

dimension will have 2 arrays that contains 3 arrays, each with 2 elements:

import numpy as np

arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])

newarr = arr.reshape(2, 3, 2)

print(newarr)

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

91

Can We Reshape Into any Shape?
Yes, as long as the elements required for reshaping are equal in both shapes.

We can reshape an 8 elements 1D array into 4 elements in 2 rows 2D array but we

cannot reshape it into a 3 elements 3 rows 2D array as that would require 3x3 = 9

elements.

Example Try converting 1D array with 8 elements to a 2D array with 3 elements in each

dimension (will raise an error):

import numpy as np

arr = np.array([1, 2, 3, 4, 5, 6, 7, 8])

newarr = arr.reshape(3, 3)

print(newarr)

Returns Copy or View?

Example Check if the returned array is a copy or a view:

import numpy as np

arr = np.array([1, 2, 3, 4, 5, 6, 7, 8])

print(arr.reshape(2, 4).base)

The example above returns the original array, so it is a view.

Unknown Dimension
You are allowed to have one "unknown" dimension.

Meaning that you do not have to specify an exact number for one of the dimensions

in the reshape method.

Pass -1 as the value, and NumPy will calculate this number for you.

Example Convert 1D array with 8 elements to 3D array with 2x2 elements:

import numpy as np

arr = np.array([1, 2, 3, 4, 5, 6, 7, 8])

newarr = arr.reshape(2, 2, -1)

print(newarr)

Note: We can not pass -1 to more than one dimension.

Flattening the arrays

Flattening array means converting a multidimensional array into a 1D array.

We can use reshape(-1) to do this.

Example Convert the array into a 1D array:

import numpy as np

arr = np.array([[1, 2, 3], [4, 5, 6]])

newarr = arr.reshape(-1)

print(newarr)

Note: There are a lot of functions for changing the shapes of arrays in

numpy flatten, ravel and also for rearranging the

elements rot90, flip, fliplr, flipud etc. These fall under Intermediate to Advanced

section of numpy.

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

92

NumPy Array Iterating
Iterating means going through elements one by one.

As we deal with multi-dimensional arrays in numpy, we can do this using

basic for loop of python.

If we iterate on a 1-D array it will go through each element one by one.

Example Iterate on the elements of the following 1-D array:

import numpy as np

arr = np.array([1, 2, 3])

for x in arr:

 print(x)

Iterating 2-D Arrays
In a 2-D array it will go through all the rows.

Example Iterate on the elements of the following 2-D array:

import numpy as np

arr = np.array([[1, 2, 3], [4, 5, 6]])

for x in arr:

 print(x)

If we iterate on a n-D array it will go through n-1th dimension one by one.

To return the actual values, the scalars, we have to iterate the arrays in each

dimension.

Example Iterate on each scalar element of the 2-D array:

import numpy as np

arr = np.array([[1, 2, 3], [4, 5, 6]])

for x in arr:

 for y in x:

 print(y)

Iterating 3-D Arrays

In a 3-D array it will go through all the 2-D arrays.

Example Iterate on the elements of the following 3-D array:

import numpy as np

arr = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]])

for x in arr:

 print(x)

To return the actual values, the scalars, we have to iterate the arrays in each

dimension.

Example Iterate down to the scalars:

import numpy as np

arr = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]])

for x in arr:

 for y in x:

 for z in y:

 print(z)

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

93

Iterating Arrays Using nditer()
The function nditer() is a helping function that can be used from very basic to

very advanced iterations. It solves some basic issues which we face in iteration,

lets go through it with examples.

Iterating on Each Scalar Element

In basic for loops, iterating through each scalar of an array we need to

use n for loops which can be difficult to write for arrays with very high

dimensionality.

Example Iterate through the following 3-D array:

import numpy as np

arr = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])

for x in np.nditer(arr):

 print(x)

Iterating Array With Different Data Types

We can use op_dtypes argument and pass it the expected datatype to change the

datatype of elements while iterating.

NumPy does not change the data type of the element in-place (where the element

is in array) so it needs some other space to perform this action, that extra space is

called buffer, and in order to enable it in nditer() we pass flags=['buffered'].

Example Iterate through the array as a string:

import numpy as np

arr = np.array([1, 2, 3])

for x in np.nditer(arr, flags=['buffered'], op_dtypes=['S']):

 print(x)

Iterating With Different Step Size

We can use filtering and followed by iteration.

Example Iterate through every scalar element of the 2D array skipping 1 element:

import numpy as np

arr = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])

for x in np.nditer(arr[:, ::2]):

 print(x)

Enumerated Iteration Using ndenumerate()

Enumeration means mentioning sequence number of somethings one by one.

Sometimes we require corresponding index of the element while iterating,

the ndenumerate() method can be used for those usecases.

Example Enumerate on following 1D arrays elements:

import numpy as np

arr = np.array([1, 2, 3])

for idx, x in np.ndenumerate(arr):

 print(idx, x)

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

94

Example Enumerate on following 2D array's elements:

import numpy as np

arr = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])

for idx, x in np.ndenumerate(arr):

 print(idx, x)

NumPy Joining Array

Joining means putting contents of two or more arrays in a single array.

In SQL we join tables based on a key, whereas in NumPy we join arrays by axes.

We pass a sequence of arrays that we want to join to the concatenate() function,

along with the axis. If axis is not explicitly passed, it is taken as 0.

Example Join two arrays

import numpy as np

arr1 = np.array([1, 2, 3])

arr2 = np.array([4, 5, 6])

arr = np.concatenate((arr1, arr2))

print(arr)

Example Join two 2-D arrays along rows (axis=1):

import numpy as np

arr1 = np.array([[1, 2], [3, 4]])

arr2 = np.array([[5, 6], [7, 8]])

arr = np.concatenate((arr1, arr2), axis=1)

print(arr)

Joining Arrays Using Stack Functions

Stacking is same as concatenation, the only difference is that stacking is done

along a new axis.

We can concatenate two 1-D arrays along the second axis which would result in

putting them one over the other, ie. stacking.

We pass a sequence of arrays that we want to join to the stack() method along

with the axis. If axis is not explicitly passed it is taken as 0.

Example

import numpy as np

arr1 = np.array([1, 2, 3])

arr2 = np.array([4, 5, 6])

arr = np.stack((arr1, arr2), axis=1)

print(arr)

Stacking Along Rows

NumPy provides a helper function: hstack() to stack along rows.

Example

import numpy as np

arr1 = np.array([1, 2, 3])

arr2 = np.array([4, 5, 6])

arr = np.hstack((arr1, arr2))

print(arr)

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

95

Stacking Along Columns
NumPy provides a helper function: vstack() to stack along columns.

Example

import numpy as np

arr1 = np.array([1, 2, 3])

arr2 = np.array([4, 5, 6])

arr = np.vstack((arr1, arr2))

print(arr)

Stacking along Height (depth)
NumPy provides a helper function: dstack() to stack along height, which is the

same as depth.

Example

import numpy as np

arr1 = np.array([1, 2, 3])

arr2 = np.array([4, 5, 6])

arr = np.dstack((arr1, arr2))

print(arr)

NumPy Splitting Array

Splitting is reverse operation of Joining.

Joining merges multiple arrays into one and Splitting breaks one array into

multiple.

We use array_split() for splitting arrays, we pass it the array we want to split

and the number of splits.

Example Split the array in 3 parts:

import numpy as np

arr = np.array([1, 2, 3, 4, 5, 6])

newarr = np.array_split(arr, 3)

print(newarr)

Note: The return value is an array containing three arrays.

If the array has less elements than required, it will adjust from the end accordingly.

Example Split the array in 4 parts:

import numpy as np

arr = np.array([1, 2, 3, 4, 5, 6])

newarr = np.array_split(arr, 4)

print(newarr)

Note: We also have the method split() available but it will not adjust the

elements when elements are less in source array for splitting like in example

above, array_split() worked properly but split() would fail.

Split into Arrays
The return value of the array_split() method is an array containing each of the

split as an array.

If you split an array into 3 arrays, you can access them from the result just like any

array element:

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

96

Example Access the splitted arrays:

import numpy as np

arr = np.array([1, 2, 3, 4, 5, 6])

newarr = np.array_split(arr, 3)

print(newarr[0])

print(newarr[1])

print(newarr[2])

Splitting 2-D Arrays
Use the same syntax when splitting 2-D arrays.

Use the array_split() method, pass in the array you want to split and the number

of splits you want to do.

Example Split the 2-D array into three 2-D arrays.

import numpy as np

arr = np.array([[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12]])

newarr = np.array_split(arr, 3)

print(newarr)

The example above returns three 2-D arrays.

Let's look at another example, this time each element in the 2-D arrays contains 3

elements.

Example Split the 2-D array into three 2-D arrays.

import numpy as np

arr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12], [13, 14, 15],

[16, 17, 18]])

newarr = np.array_split(arr, 3)

print(newarr)

The example above returns three 2-D arrays.

In addition, you can specify which axis you want to do the split around.

The example below also returns three 2-D arrays, but they are split along the row

(axis=1).

Example Split the 2-D array into three 2-D arrays along rows.

import numpy as np

arr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12], [13, 14, 15],

[16, 17, 18]])

newarr = np.array_split(arr, 3, axis=1)

print(newarr)

An alternate solution is using hsplit() opposite of hstack()

Example Use the hsplit() method to split the 2-D array into three 2-D arrays along rows.

import numpy as np

arr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12], [13, 14, 15],

[16, 17, 18]])

newarr = np.hsplit(arr, 3)

print(newarr)

Note: Similar alternates to vstack() and dstack() are available

as vsplit() and dsplit().

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

97

NumPy Searching Arrays
You can search an array for a certain value, and return the indexes that get a

match.

To search an array, use the where() method.

Example Find the indexes where the value is 4:

import numpy as np

arr = np.array([1, 2, 3, 4, 5, 4, 4])

x = np.where(arr == 4)

print(x)

The example above will return a tuple: (array([3, 5, 6],)

Which means that the value 4 is present at index 3, 5, and 6.

Example Find the indexes where the values are even:

import numpy as np

arr = np.array([1, 2, 3, 4, 5, 6, 7, 8])

x = np.where(arr%2 == 0)

print(x)

Example Find the indexes where the values are odd:

import numpy as np

arr = np.array([1, 2, 3, 4, 5, 6, 7, 8])

x = np.where(arr%2 == 1)

print(x)

Search Sorted

There is a method called searchsorted() which performs a binary search in the

array, and returns the index where the specified value would be inserted to

maintain the search order.

The searchsorted() method is assumed to be used on sorted arrays.

Example Find the indexes where the value 7 should be inserted:

import numpy as np

arr = np.array([6, 7, 8, 9])

x = np.searchsorted(arr, 7)

print(x)

Example explained: The number 7 should be inserted on index 1 to remain the sort

order.

The method starts the search from the left and returns the first index where the

number 7 is no longer larger than the next value.

Search from the Right Side
By default the left most index is returned, but we can give side='right' to return

the right most index instead.

Example Find the indexes where the value 7 should be inserted, starting from the right:

import numpy as np

arr = np.array([6, 7, 8, 9])

x = np.searchsorted(arr, 7, side='right')

print(x)

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

98

Example explained: The number 7 should be inserted on index 2 to remain the sort

order.

The method starts the search from the right and returns the first index where the

number 7 is no longer less than the next value.

Multiple Values
To search for more than one value, use an array with the specified values.

Example Find the indexes where the values 2, 4, and 6 should be inserted:

import numpy as np

arr = np.array([1, 3, 5, 7])

x = np.searchsorted(arr, [2, 4, 6])

print(x)

NumPy Sorting Arrays
Sorting means putting elements in an ordered sequence.

Ordered sequence is any sequence that has an order corresponding to elements,

like numeric or alphabetical, ascending or descending.

The NumPy ndarray object has a function called sort(), that will sort a specified

array.

Example Sort the array:

import numpy as np

arr = np.array([3, 2, 0, 1])

print(np.sort(arr))

Note: This method returns a copy of the array, leaving the original array

unchanged.

You can also sort arrays of strings, or any other data type:

Example Sort the array alphabetically:

import numpy as np

arr = np.array(['banana', 'cherry', 'apple'])

print(np.sort(arr))

Example Sort a boolean array:

import numpy as np

arr = np.array([True, False, True])

print(np.sort(arr))

Sorting a 2-D Array

If you use the sort() method on a 2-D array, both arrays will be sorted:

Example Sort a 2-D array:

import numpy as np

arr = np.array([[3, 2, 4], [5, 0, 1]])

print(np.sort(arr))

NumPy Filter Array

Getting some elements out of an existing array and creating a new array out of

them is called filtering.

In NumPy, you filter an array using a boolean index list.

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

99

A boolean index list is a list of booleans corresponding to indexes in the array.

If the value at an index is True that element is contained in the filtered array, if the

value at that index is False that element is excluded from the filtered array.

Example Create an array from the elements on index 0 and 2:

import numpy as np

arr = np.array([41, 42, 43, 44])

x = [True, False, True, False]

newarr = arr[x]

print(newarr)

The example above will return [41, 43], why?

Because the new filter contains only the values where the filter array had the

value True, in this case, index 0 and 2.

Creating the Filter Array

In the example above we hard-coded the True and False values, but the common

use is to create a filter array based on conditions.

Example Create a filter array that will return only values higher than 42:

import numpy as np

arr = np.array([41, 42, 43, 44])

Create an empty list

filter_arr = []

go through each element in arr

for element in arr:

 # if the element is higher than 42, set the value to True, otherwise False:

 if element > 42:

 filter_arr.append(True)

 else:

 filter_arr.append(False)

newarr = arr[filter_arr]

print(filter_arr)

print(newarr)

Example Create a filter array that will return only even elements from the original array:

import numpy as np

arr = np.array([1, 2, 3, 4, 5, 6, 7])

Create an empty list

filter_arr = []

go through each element in arr

for element in arr:

 # if the element is completely divisble by 2, set the value to True,

otherwise False

 if element % 2 == 0:

 filter_arr.append(True)

 else:

 filter_arr.append(False)

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

100

newarr = arr[filter_arr]

print(filter_arr)

print(newarr)

Creating Filter Directly From Array
The above example is quite a common task in NumPy and NumPy provides a nice

way to tackle it.

We can directly substitute the array instead of the iterable variable in our condition

and it will work just as we expect it to.

Example Create a filter array that will return only values higher than 42:

import numpy as np

arr = np.array([41, 42, 43, 44])

filter_arr = arr > 42

newarr = arr[filter_arr]

print(filter_arr)

print(newarr)

Example Create a filter array that will return only even elements from the original array:

import numpy as np

arr = np.array([1, 2, 3, 4, 5, 6, 7])

filter_arr = arr % 2 == 0

newarr = arr[filter_arr]

print(filter_arr)

print(newarr)

Array from Numerical Ranges

numpy.arange() in Python

The arange([start,] stop[, step,][, dtype]) : Returns an array with evenly spaced
elements as per the interval. The interval mentioned is half-opened i.e. [Start, Stop)

Parameters :
start : [optional] start of interval range. By default start = 0

stop : end of interval range
step : [optional] step size of interval. By default step size = 1,
For any output out, this is the distance between two adjacent values,

out[i+1] - out[i].
dtype : type of output array

Example:
import numpy as np

print("A\n", np.arange(4).reshape(2, 2), "\n")

print("A\n", np.arange(4, 10), "\n")

print("A\n", np.arange(4, 20, 3), "\n")

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

101

numpy.eye() in Python
numpy.eye(R, C = None, k = 0, dtype = type <‘float’>) : –The eye tool returns

a 2-D array with 1’s as the diagonal and 0’s elsewhere. The diagonal can be main,
upper, or lower depending on the optional parameter k. A positive k is for the upper

diagonal, a negative k is for the lower, and a 0 k (default) is for the main diagonal.
Parameters :

R : Number of rows
C : [optional] Number of columns; By default M = N

k : [int, optional, 0 by default]
 Diagonal we require; k>0 means diagonal above main diagonal or vice
versa.

dtype : [optional, float(by Default)] Data type of returned array.

Example:
import numpy as np

2x2 matrix with 1's on main diagonal

b = np.eye(2, dtype = float)

print("Matrix b : \n", b)

matrix with R=4 C=5 and 1 on diagonal

below main diagonal

a = np.eye(4, 5, k = -1)

print("\nMatrix a : \n", a)

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

102

Related to Python

eval() Function

Definition and Usage

The eval() function evaluates the specified expression, if the expression is a legal

Python statement, it will be executed.

x='input("Entar a number: ")'

y=eval(eval(x))

print(y)

print(type(y))

Entar a number: 6
6

<class 'int'>

swapcase() Method

Definition and Usage

The swapcase() method returns a string where all the upper case letters are lower

case and vice versa.

x='upciss'

p=x.swapcase()

print(p)

UPCISS

String join() Method

Definition and Usage

The join() method takes all items in an iterable and joins them into one string.

A string must be specified as the separator.

l=['welcome','to','upciss']

msg=' '.join(l)

print(msg)

welcome to upciss

String partition() Method

Definition and Usage

The partition() method searches for a specified string, and splits the string into a

tuple containing three elements.

The first element contains the part before the specified string.

The second element contains the specified string.

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

103

The third element contains the part after the string.

l='welcome to upciss youtube channel'

msg=l.partition('upciss')

print(msg)

('welcome to ', 'upciss', ' youtube channel')

islower(), isupper(), istitle(), isspace(), isalpha(), isdigit(), isalnum()

All Function return the Boolean value True/False.

l='Welcome To Upciss Youtube Channel'

msg=l.islower()

print(msg)

False

startswith(), endswith()

l='welcome to upciss'

msg=l.startswith('welcome')

print(msg)

True
 ceil, floor, trunc function

import math

k=45.1

print(math.ceil(k)) #return 46 integer not greater than k

k=45.59

print(math.floor(k)) #return 45 integer greater than or equal to k

k=45.59

print(math.trunc(k)) #return 45 simply remove the decimals

 DocString

def add(a,b):

 """add 2 number and print with f String method"""

 print(f'Total : {a+b}')

add(4,5) # return 9

print(add.__doc__) # return add 2 number and print with f String method

http://www.upcissyoutube.com/

www.upcissyoutube.com O level M3-R5

104

It takes a lot of hard work to make notes, so if you can pay some fee 50, 100,

200 rupees which you think is reasonable, if you are able to Thank you...

नोट्स बनाने में बहुत मेहनत लगी है , इसललए यलि आप कुछ शुल्क 50,100, 200 रूपए जो

आपको उलित लगता है pay कर सकते है, अगर आप सक्षम है तो, धन्यवाि ।

http://www.upcissyoutube.com/

