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Scope: Pseudomonas aeruginosa, a ubiquitous opportunistic pathogen considered one of the paradigms of
antimicrobial resistance, is among the main causes of hospital-acquired and chronic infections associated
with significant morbidity and mortality. This growing threat results from the extraordinary capacity of
P. aeruginosa to develop antimicrobial resistance through chromosomal mutations, the increasing
prevalence of transferable resistance determinants (such as the carbapenemases and the extended-
spectrum b-lactamases), and the global expansion of epidemic lineages. The general objective of this
initiative is to provide a comprehensive update of P. aeruginosa resistance mechanisms, especially for the
extensively drug-resistant (XDR)/difficult-to-treat resistance (DTR) international high-risk epidemic
lineages, and how the recently approved b-lactams and b-lactam/b-lactamase inhibitor combinations
may affect resistance mechanisms and the definition of susceptibility profiles.
Methods: To address this challenge, the European Study Group for Antimicrobial Resistance Surveillance
(ESGARS) from the European Society of Clinical Microbiology and Infectious Diseases launched the
‘Improving Surveillance of Antibiotic-Resistant Pseudomonas aeruginosa in Europe (ISARPAE)’ initiative in
2022, supported by the Joint programming initiative on antimicrobial resistance network call and
included a panel of over 40 researchers from 18 European Countries. Thus, a ESGARS-ISARPAE position
paper was designed and the final version agreed after four rounds of revision and discussion by all panel
members.
Questions addressed in the position paper: To provide an update on (a) the emerging resistance mecha-
nisms to classical and novel anti-pseudomonal agents, with a particular focus on b-lactams, (b) the
susceptibility profiles associated with the most relevant b-lactam resistance mechanisms, (c) the impact
of the novel agents and resistance mechanisms on the definitions of resistance profiles, and (d) the
globally expanding XDR/DTR high-risk lineages and their association with transferable resistance
mechanisms.
Implication: The evidence presented herein can be used for coordinated epidemiological surveillance and
decision making at the European and global level. Antonio Oliver, Clin Microbiol Infect 2024;30:469
© 2023 The Authors. Published by Elsevier Ltd on behalf of European Society of Clinical Microbiology and

Infectious Diseases. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
Scope and context

Pseudomonas aeruginosa, a ubiquitous opportunistic pathogen
considered one of the paradigms of antimicrobial resistance, is
among the main causes of hospital-acquired and chronic infections
associated with significant morbidity and mortality [1]. Accord-
ingly, P. aeruginosa infections are estimated to be associated with
over 300 000 annual deaths and are at the top of the WHO priority
list for the need for research and development of new antibiotics
[2,3]. This growing threat results from the extraordinary capacity of
this pathogen to develop antimicrobial resistance through chro-
mosomal mutations and from the increasing prevalence of trans-
ferable resistance determinants, particularly those encoding
carbapenemases or extended-spectrum b-lactamases (ESBLs) [4,5].
Combinations of such mechanisms lead to concerning and complex
resistance profiles, defined by the European Centre for Disease
Prevention and Control (ECDC) and the Centers for Disease Control
and Prevention as multidrug-resistant (MDR), extensively drug-
resistant (XDR), and pandrug-resistant (PDR), whereas the Infec-
tious Diseases Society of America/National Institutes of Health
(IDSA/NIH) defines them as difficult-to-treat resistance (DTR) [6,7].
P. aeruginosa possesses a non-clonal epidemic population structure,
comprising a limited number of widespread lineages, selected from
a background of numerous rare and unrelated genotypes recom-
bined at high frequency [8]. In fact, several surveys have provided
evidence for the existence of XDR/DTR international high-risk
clonal lineages, which have disseminated in hospitals worldwide
[9e11]. Beyond classical molecular epidemiology analysis and
phenotypic assessment of resistance mechanisms, whole-genome
sequencing studies are providing pertinent information to eluci-
date the complex and evolving resistome of MDR/XDR/DTR
P. aeruginosa high-risk lineages [12e15].

The recent introduction of novel b-lactam/b-lactamase inhibitor
combinations (BLBLIs), such as ceftolozane/tazobactam,
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ceftazidime/avibactam, meropenem/vaborbactam or imipenem/
relebactam, and the siderophore-cephalosporin cefiderocol, has
contributed to mitigate, to some extent, the problem of XDR/DTR
P. aeruginosa [16e19]. These agents exhibit enhanced stability
against intrinsically and chromosomally encoded b-lactam resis-
tance mechanisms in P. aeruginosa, such as overexpression of the
AmpC b-lactamase encoding gene, overproduction of efflux pumps,
or inactivation of the OprD porin. However, they are not exempt
from resistance development through emerging mutational
mechanisms [20e24]. These include modification (quantitative or
qualitative) of AmpC hydrolytic activity or efflux pumps substrate
specificity, which were observed shortly after their introduction
into clinical practice. Moreover, BLBLIs are not currently effective
against the most potent transferable carbapenemases, particularly
class B or metallo-b-lactamases (MBLs) such as VIM, IMP, or NDM
enzymes [25]. Consequently, use of BLBLIs could lead to the selec-
tion of these concerning resistance mechanisms [26]. Besides the
approved options, several novel BLBLIs are undergoing clinical tri-
als [25]. These agents, such as aztreonam/avibactam, cefepime/
zidebactam, or cefepime/taniborbactam, promise additional ther-
apeutic choices and the ability to counteract already established
resistance mechanisms [17].

The introduction of novel BLBLIs is therefore significantly
broadening the range of treatment options for XDR/DTR
P. aeruginosa infections [17,25]. However, this expansion will also
have a major impact on antimicrobial resistance epidemiology,
including both novel and existing mutation-driven resistance
mechanisms, transferable resistance determinants and epidemic
high-risk clonal lineages. A comprehensive understanding of
P. aeruginosa resistance mechanisms and susceptibility profiles,
especially of the XDR/DTR high-risk lineages, and how these
promising novel agents may affect resistance mechanisms and, in
turn, the definition of resistance profiles, is needed to have a
common ground and may help to anticipate and coordinate
epidemiological information in the future.

Questions addressed in the position paper

To address this challenge, the European Study Group for Anti-
microbial Resistance Surveillance (ESGARS) from the European
Society of Clinical Microbiology and Infectious Diseases (ESCMID)
launched the ‘Improving Surveillance of Antibiotic-Resistant Pseu-
domonas aeruginosa in Europe’ (ISARPAE) initiative in 2022, sup-
ported by the Joint programming initiative on antimicrobial
resistance (JPIAMR) network. Thus, this position document from
the ESGARS-ISARPAE Group aimed to provide an update on (a) the
emerging resistance mechanisms to classical and novel anti-
pseudomonal agents, with a particular focus on b-lactams, (b) the
susceptibility profiles associated with the most relevant b-lactam
resistance mechanisms, (c) the impact of the novel agents and
resistance mechanisms on the definitions of resistance profiles, and
(d) the globally expanding XDR/DTR high-risk lineages and their
association with transferable b-lactamases.

Methods

All ESGARS-ESCMID members were contacted and invited to
participate in the ISARPAE initiative, according to their interest and
experience in the topic. This resulted in the generation of a panel of
over 40 researchers from 18 European countries in June 2022. The
panel agreed the above objectives to be addressed in the position
paper and AO and ERM prepared a first draft of the documented
after extensive literature review helped by other panel members. In
July 2023, the first draft of the document was sent to all ISARPAE
members for revision and specific contributions, leading to a
second draft version that was extensively revised and discussed
during an ISARPAE hybrid (onsite/online) meeting that took place
at Hospital Son Espases-IdISBa (Mallorca, Spain) on 8 September
2023. The third resulting draft was then sent for review by panel
members and final version of the document was approved on 6
October 2023.

Emerging resistance mechanisms to classical and novel anti-
pseudomonal agents and associated susceptibility profiles

Table 1 shows the main categories and agents showing anti-
pseudomonal activity, including those recently introduced and
those that will be clinically available in the next few years, and
presents the respective mutation-driven and horizontally acquired
resistance mechanisms. On the other hand, Fig. 1 shows the sus-
ceptibility profiles associated with the most relevant b-lactam
resistance mechanisms in P. aeruginosa.

Pseudomonas aeruginosa b-lactam resistome

Pseudomonas aeruginosa is intrinsically resistant to amino-
penicillins, alone and combined with clavulanic acid, as well as to
most of the older cephalosporins, notably including the third-
generation cephalosporin cefotaxime, because of the production
of an inducible AmpC b-lactamase [27]. Moreover, AmpC plays a
major role in the basal resistance level (MIC) of P. aeruginosa to the
potent AmpC inducer imipenem. On the other hand, the constitu-
tive of expression of the efflux pump MexAB-OprM plays a major
role in the basal resistance level to most other b-lactams except
imipenem.

The most frequent mutation-driven resistance mechanism to
classical anti-pseudomonal penicillins (such as piperacillin) and
cephalosporins (such as ceftazidime or cefepime) is the over-
production of the chromosomal cephalosporinase AmpC, involving
a large number of genes belonging to cell-wall recycling regulatory
pathways [28]. Notably, among these genes, the mutational inac-
tivation of dacB, encoding the non-essential penicillin-binding
protein (PBP) PBP4 and ampD, encoding a N-acetyl-muramyl-L-
alanine amidase, have been found to be the most frequent cause of
derepressed ampC gene expression, and subsequent broad-
spectrum b-lactam resistance [29,30]. In addition, specific point
mutations causing a conformational change in the transcriptional
regulator AmpR, leading to ampC upregulation and resistance to
broad-spectrum b-lactams, have been noted among clinical strains.
These mutations include the D135N amino acid replacement,
described in several species [28] and the G154R mutation linked to
the disseminated MDR/XDR ST175 high-risk lineage [14]. Mutation
of several other genes, including those encoding amidases
(AmpDh2 and AmpDh3), PBPs, such as PBP5 or PBP7, lytic trans-
glycosylases, MPL, or NuoN, has also been shown to enhance ampC
expression, either alone or in combination with other mutations.
Nevertheless, their impact on b-lactam resistance among clinical
strains still needs to be further analysed [28].

In addition to ampC overexpression, recent studies have
revealed that increased levels of b-lactam resistance, involving the
novel BLBLIs ceftolozane/tazobactam and ceftazidime/avibactam,
may result from mutations leading to the modification of the cat-
alytic centre of AmpC, currently mainly occurring in (up to 10%e
15%) patients treated with these agents [20,31e33]. Additional
studies identified diverse AmpC variants associated with high-level
resistance to BLBLIs, including the above-mentioned ceftolozane/
tazobactam and ceftazidime/avibactam, in a small proportion
(around 1%) of clinical P. aeruginosa isolates [34]. Over 500 variants
of those AmpC enzymes, also called Pseudomonas-derived cepha-
losporinases (PDC), have been described so far, including those



Table 1
Main resistance mechanisms to classical and novel antibiotics in Pseudomonas aeruginosa

Anti-pseudomonal categories Anti-pseudomonal
agents

Main mutational resistance
mechanisms

Alternative mutational
resistance mechanisms

Mutational resistance
on horizontally acquired
determinants

Horizontally acquired resistance mechanisms

Penicillins þ b-lactamase
inhibitors

Piperacillin/tazobactam AmpC[ PBP3, GalU ESBLs, class A and B carbapenemases

Cephalosporins Ceftazidime AmpC[ PBP3, GalU OXA-2/10 ESBLs, class A and B carbapenemases
Cefepime MexXY[, AmpC[ PBP3, GalU OXA-2/10 ESBLs, class A and B carbapenemases

Monobactams Aztreonam MexAB[, AmpC[ PBP3, GalU OXA-2/10 ESBLs and class A carbapenemases
Carbapenems Imipenem OprD- MexST, PBP2, PBP1a Class A and B carbapenemases

Meropenem OprD-, MexAB[ PBP3, GalU Class A and B carbapenemases
Fifth-generation

cephalosporins þ classical
b-lactamase inhibitors

Ceftolozane/tazobactam AmpC U-loop PBP3, GalU
Efflux pumps

OXA-2/10 ESBLs, class A and B carbapenemases

Cephalosporins þ diazabicycloctanes
b-lactamase inhibitors

Ceftazidime/avibactam AmpC U-loop, MexAB[ PBP3, GalU OXA-2/10, GES, KPC Class B carbapenemases

Carbapenems þ diazabicycloctanes
b-lactamase inhibitors

Imipenem/relebactam OprD-, MexAB[b MexST, ParRS
PBP2, PBP1a

Class A and B carbapenemases

Carbapenems þ boronic acid
b-lactamase inhibitors

Meropenem/vaborbactam OprD-, MexAB[ PBP3, GalU Class A and B carbapenemases

Siderophore cephalosporins Cefiderocol Iron transporters
AmpC U-loop

PBP3, GalU OXA-2/10b ESBLs, class A and B carbapenemasesb

Monobactams þ diazabicycloctanes
b-lactamase inhibitors

Aztreonam/avibactama MexAB[ PBP3, GalU ESBLs and class A carbapenemasesb

Cephalosporins þ diazabicycloctanes
b-lactamase and PBP2 inhibitors

Cefepime/zidebactama MexXY[, MexAB[ PBP3, GalU
PBP2

ESBLs, class A and B carbapenemasesb

Cephalosporins þ boronic acid
b-lactamase inhibitors including MBLs

Cefepime/taniborbactama MexXY[, MexAB[ PBP3, GalU IMPs

Fluoroquinolones Ciprofloxacin, levofloxacin QRDR MexAB/XY/CD/EF[ Qnr
Aminoglycosides Tobramycin, amikacin MexXY[b FusA1 Aminoglycoside modifying enzymes, 16S rRNA

methylases
Polymyxins Colistin, polymyxin B PmrAB/PhoPQ/ParRS MCR (Very uncommon)
Fosfonic acids Fosfomycin GlpT FosA

ESBL, extended-spectrum b-lactamase; MBL, metallo-b-lactamase; QRDR, quinolone resistance-determining region.
[ Hyperproduction.

a Not yet approved.
b Low-level resistance. Clinical resistance requires additional mechanisms.
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Fig. 1. Antimicrobial spectrum expected for classical and novel b-lactams and b-lactam-b-lactamase inhibitor combinations against most relevant P. aeruginosa resistance mech-
anisms when present alone in clinical strains. To reduce complexity, combinations of resistance mechanisms are not considered, but acknowledged to be frequent among clinical
strains. S (green), fully susceptible; r (orange), reduced susceptibility; R (red) clinical resistance. For some antibiotics-mechanisms combinations a range of effect S/r or r/R is
considered depending on the specific mechanism or mutation; in such cases, the specific colour chosen was that of the most likely phenotype. It is noted, however, that variation in
the quantitative effect on resistance does occur according to the specific nature of the mechanisms or their expression. *AmpC (PDC) variants associated with ceftolozane/tazo-
bactam and/or ceftazidime/avibactam resistance. **KPC or GES mutations associated with ceftazidime/avibactam resistance and collateral carbapenem susceptibility.
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associated with increased ceftolozane/tazobactam and ceftazi-
dime/avibactam resistance. Moreover, some of these variants, such
as those showing the L320P substitution, have a significant impact
on cefiderocol MICs, but only a marginal effect on susceptibility to
ceftolozane/tazobactam and ceftazidime/avibactam [35]. An
updated database of PDC variants is maintained at IdISBa and is
freely available at https://arpbigidisba.com/pseudomonas-
aeruginosa-derived-cephalosporinase-pdc-database/ and at the
Beta-Lactamase Data Base (http://www.bldb.eu/BLDB.php?
prot¼C#PDC) [36] Typically, the strains producing these AmpC
variants show collateral susceptibility to imipenem (decreased
MICs) and also to anti-pseudomonal penicillins such as piperacillin.
In addition, resistance development to ceftolozane/tazobactam
and/or ceftazidime/avibactam may involve mutations leading to
the structural modification of narrow-spectrum OXA-2- and OXA-
10-acquired oxacillinases [20,37,38]. Interestingly, these mutations
may lead to collateral susceptibility to meropenem. Thus, imipe-
nem/relebactam, and to a lesser extent, cefiderocol, meropenem/
vaborbactam, and the novel combinations under development
cefepime/zidebactam and cefepime/taniborbactam might be
interesting options to treat infections by strains that have devel-
oped ceftolozane/tazobactam and/or ceftazidime/avibactam resis-
tance through mutations in AmpC or OXA-2/10 [39].

Horizontally acquired b-lactamase genes are obviously a major
source of resistance, including to the novel b-lactams and BLBLI
(Fig. 1). An extensive revision of the nature and prevalence of the
different horizontally acquired b-lactamases detected in P. aerugi-
nosa is beyond the scope of this document. However, globally, MBLs
are arguably the most frequent carbapenemases in P. aeruginosa,
but very large geographical differences in prevalence and nature
have been documented [40,41]. At European level, VIM, and
particularly VIM-2, are likely the most frequently reported en-
zymes, but with major differences across different countries, and
with an increasing prevalence of NDM enzymes [42,43]. Moreover,
guiana extended-spectrum beta-lactamase (GES) class A
carbapenemases variants such as GES-5 are also increasingly re-
ported in European countries [43,44]. Classical anti-pseudomonal
penicillins, cephalosporins, and carbapenems lack significant ac-
tivity and should be avoided against strains producing class A or
MBL carbapenemases, even if MICs close to the clinical breakpoints
are obtained for piperacillin/tazobactam, cefepime, or even carba-
penems for some VIM-2-producing isolates [12]. Moreover, the
production of MBLs is a frequent mechanism of resistance to cef-
tolozane/tazobactam, ceftazidime/avibactam, meropenem/vabor-
bactam, and imipenem/relebactam [26]. However, with a few
exceptions such as some NDM variants, cefiderocol retains activity
because of its higher stability against hydrolysis and efficient up-
take through the iron transport systems [45]. The combination of
aztreonam with avibactam may also be a useful future alternative
for MBL-producing strains, particularly when additionally hyper-
producing AmpC and/or coproducing acquired class A enzymes
[46,47]. Likewise, the novel combinations under development
cefepime/zidebactam and cefepime/taniborbactam also remain
active. The underlying mechanism for cefepime/zidebactam activ-
ity against MBL-producing strains is based on the fact that zide-
bactam has direct anti-pseudomonal activity by targeting PBP2,
and therefore provides synergy with b-lactams targeting PBP3 such
as the cephalosporins [48]. On the other hand, the activity of
cefepime/taniborbactam relies on the fact that taniborbactam in-
hibits MBL hydrolytic activity, except for IMPs [49]. In addition to
these three antimicrobials (cefiderocol, cefepime/zidebactam, and
cefepime/taniborbactam), ceftazidime/avibactam, and to a lower
extent imipenem/relebactam and meropenem/vaborbactam, show
activity against producers of Ambler class A carbapenemases (such
as GES-5 and klebsiella pneumoniae carbapenemase (KPC)s)
[50e52]. However, the frequent concomitant OprD deficiency and/
or MexAB-OprM overexpression limits the activity of imipenem/
relebactam and meropenem/vaborbactam against clinical P. aeru-
ginosa strains producing class A carbapenemases [52,53]. On the
other hand, resistance development to ceftazidime/avibactam

https://arpbigidisba.com/pseudomonas-aeruginosa-derived-cephalosporinase-pdc-database/
https://arpbigidisba.com/pseudomonas-aeruginosa-derived-cephalosporinase-pdc-database/
http://www.bldb.eu/BLDB.php?prot=C#PDC
http://www.bldb.eu/BLDB.php?prot=C#PDC
http://www.bldb.eu/BLDB.php?prot=C#PDC
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caused by the selection of mutations within the catalytic site of KPC
and GES enzymes has been described [54e56]. Interestingly, these
mutations restore carbapenem susceptibility (if the strain is not
oprD deficient) leading to an ESBL phenotype [54]. In addition to
those of classes A and B, a few cases of class D carbapenemase
production have been reported in P. aeruginosa, including the
epidemic dissemination OXA-198 in a hospital from Belgium [57].

In addition to b-lactamases, there is growing evidence on the
role of target modification in P. aeruginosa b-lactam resistance. Of
particular relevance are the mutations in ftsI, encoding PBP3, an
essential class B PBP with transpeptidase activity [58]. Indeed, data
from patients with cystic fibrosis (CF) [59,60], epidemic high-risk
clonal lineages [12,14] as well as from in vitro studies [61] have
shown that PBP3 is under strong mutational pressure, with specific
mutations in this PBP contributing to b-lactam resistance devel-
opment. R504C/H and F533L mutations are those being most
commonly reported and located within the protein domains
implicated in the formation and stabilization of the inactivating
complex b-lactam-PBP3 [62]. Moreover, these specific mutations
have been documented to emerge in vivo during chronic respiratory
infection in patients with CF [59,60] and upon exposure to mer-
openem [61], aztreonam [63], and ceftazidime [64] in vitro. How-
ever, the detailed effect of PBP3 mutations on b-lactam resistance
phenotypes needs to be further investigated using isogenic strains.
Likewise, despite unique polymorphisms having been detected in
some clinical strains for other PBPs, their potential role in b-lactam
resistance still needs to be experimentally determined. Also note-
worthy are the specific PBP2 mutations involved in resistance to
zidebactam [65], which obviate the b-lactam enhancer activity of
this BLI.

Other relevant components of the ß-lactam mutational resis-
tome are the genes encoding OprD and efflux pumps. The inacti-
vation of OprD is known to be the most frequent imipenem
resistance mechanisms in P. aeruginosa [27,66]. OprD inactivation
typically results from indels or nonsense mutations, including the
Q142X mutation, characteristic of the widespread ST175 high-risk
clonal lineage [14]. In addition, some amino acid replacements
have been associated with OprD-driven resistance, particularly in
the CF setting [67]. However, it should be noted that the presence of
OprD inactivating mutations has also been identified in some
carbapenem-susceptible isolates [68]. On the other hand, imipe-
nem resistance may also result from repression of oprD caused by
mutations in the MexEF-OprN efflux pump regulators (mexS/T) or
the ParRS two-component system [69]. Overexpression of MexAB-
OprM, caused by mutation of several genes involved in its regula-
tion (mexR, nalC, or nalD) increases MICs of most b-lactams
including meropenem but not imipenem, whereas overexpression
of genes encoding MexXY (mexZ, parRS, amgS mutations) is
involved in cefepime resistance [69].

Efflux pumps may also play a major role in resistance to the
novel BLBLIs, not only because of their capacity to extrude the b-
lactam components but, particularly, for their capacity to accom-
modate their partner b-lactamase inhibitor. Indeed MexAB-OprM
overexpression plays a role in resistance to ceftazidime/avi-
bactam, aztreonam/avibactam, cefepime/zidebactam, imipenem/
relebactam, and meropenem/vaborbactam [65,70e72]. Likewise,
MexXY overexpression should also impact cefepime combinations
with zidebactam or taniborbactam [65]. Moreover, mutations
leading to the modification of the substrate recognition domain of
the efflux pump MexCD-OprJ have been shown to drive ceftolo-
zane/tazobactam resistance development in vivo [23]

In addition, another potentially relevant mutational b-lactam
resistance mechanism is the selection of large (up to 600 kb) de-
letions affecting specific parts of the chromosome [61,64]. Although
the basis of the conferred resistance phenotype still needs to be
further clarified, these mutants can be recognized by the charac-
teristic brown pigment (pyomelanine) caused by the deletion of
one of the included genes, hmgA, coding for a homogentisate-1,2-
dioxygenase. These deletions has been documented in both in vi-
tro evolved b-lactam-resistant mutants and CF isolates [61,73].
However, the deletion of hmgA is not responsible for the resistance
phenotype, which could be linked to the deletion of another of the
affected genes, galU. This gene codes for a UDP-glucose pyrophos-
phorylase involved in the synthesis of the lipopolysaccharide (LPS)
core. Indeed, analysis of transposon mutant libraries has revealed
that inactivation of galU increases the MICs of ceftazidime and
meropenem [74,75].

Lastly, specific cefiderocol resistance development mechanisms
involve the selection of mutations in iron uptake systems, partic-
ularly in TonB-dependent receptors such as piuA/piuC, pirA/pirR or
fptA (pyochelin receptor) [35]. Among these, mutations seem to be
particularly frequent in piuC, an iron-dependent oxygenase
involved in the expression of the adjacent piuA (or its homolog piuD
depending on the strain) iron receptor. On the other hand, muta-
tions in the ftpA gene, despite being frequent, do not seem to have a
direct significant impact on cefiderocol MICs, and thus selection
might reflect adaptive mutations for growing in the presence of
cefiderocol.

Pseudomonas aeruginosa aminoglycoside resistome

Primary aminoglycoside resistance is typically linked to the
production of horizontally acquired aminoglycoside modifying
enzymes, including acetyltransferases, adenylyltransferases, and
phosphoryltransferases, frequently co-transferred with ESBLs or
carbapenemases [76]. The specific pattern of aminoglycoside
resistance depends on the specific enzymes involved, with ami-
kacin showing an overall higher activity than tobramycin [77].
However, the more recently described transferable 16S rRNA
methylases, which modify the cellular target of aminoglycosides,
are further concerning because they confer resistance to all clini-
cally available members of this antibiotic family and are also co-
transferred with ESBLs or carbapenemases [78e80].

On the other hand, the development of resistance to amino-
glycosides has been particularly linked to the overexpression of
genes encoding the MexXY-OprM system upon some mutations in
the regulatory machinery. Indeed, mutational overexpression of
this pump, mainly caused by mexZ, amgS, or parRS mutations, is
very frequent among clinical isolates, from both patients with CF
and nosocomial infections [81,82]. Moreover, recent studies show
that the epidemic high-risk clone ST175 hyperproduces MexXY
because of a specific mutation in mexZ (G195E) [14]. However,
recent data suggest that the aminoglycoside mutational resistome
extends far beyond MexXY hyperproduction, and high-level resis-
tance may result from the accumulation of multiple mutations. The
involvement of several novel resistance determinants has been
documented [83e85]. Among them is noteworthy fusA1, coding for
the elongation factor G. Indeed, specific fusA1mutations have been
linked to aminoglycoside resistance in vitro [4,85] and among
clinical, strains, particularly from patients with CF [4,60,86e88].
Moreover, the implication of fusA1 mutations in aminoglycoside
resistance has been demonstrated through site-directed muta-
genesis [89].

Pseudomonas P. aeruginosa fluoroquinolone resistome

Fluoroquinolone resistance in P. aeruginosa is primarily driven
by mutational mechanisms. The fluoroquinolone mutational
resistome generally includes specific missense mutations in DNA
gyrase (gyrA and/or gyrB) and topoisomerase IV (parC and/or parE)
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quinolone resistance-determining regions [13,90]. High-level flu-
oroquinolone resistance in P. aeruginosa high-risk lineages is nearly
universal, and typically involves combinations of mutations in GyrA
T83 and ParC S87 [12]. Quinolone resistance-determining region
mutations involved in fluoroquinolone resistance in CF might be
more variable [60]. It is also well known that the mutational
overexpression of efflux pumps modulates fluoroquinolone resis-
tance (Table 1). Although the overexpression of MexAB-OprM and
MexXY-OprM is globally frequent among clinical strains, its
contribution to clinical fluoroquinolone resistance is likely to be
modest [90]. On the other hand, the mutational overproduction of
MexEF-OprN or MexCD-OprJ is associated with clinical fluo-
roquinolone resistance. Although their prevalence has been
considered low, except in the settings of CF chronic infections,
recent data show that it might be higher than expected [67]. Lastly,
the transferable quinolone resistance determinant QnrVC has also
been reported, linked to some epidemic strains producing acquired
carbapenemases such as ST175 and ST244 [91,92].

Pseudomonas aeruginosa polymyxin resistome

Because of its limited efficacy, toxicity, and high epidemiological
cut-offs (ECOFF) values (4 mg/L), colistin is not considered an
optimal treatment for wild-type P. aeruginosa, at least in mono-
therapy (www.eucast.org). Moreover, whereas the prevalence of
polymyxin (colistin and polymyxin B) resistance is still globally low
(<5%), it has increased in the last years because of the frequent use
of these last-resource antibiotics for the treatment of MDR/XDR/
DTR nosocomial and CF isolates, particularly in countries with no
access to novel BLBLIs [93]. Polymyxin resistance results most
frequently from the modification of the LPS caused by the addition
of a 4-amino-4-deoxy-L-arabinose moiety in the lipid A structure
[94,95]. The involved mutations are frequently located in the
PmrAB or PhoPQ two-component regulators, which lead to the
activation of the arnBCADTEF operon [96]. More recent studies have
revealed that mutations in the ParRS two-component regulator not
only produce polymyxin resistance because of the activation of the
arnBCADTEF operon, but also lead to a MDR phenotype determined
by the hyperproduction of MexXY and the repression of oprD [97].
Moreover, two additional two-component regulators, ColRS and
CprRS, have also been determined to be involved in colistin resis-
tance [98]. The analysis of colistin resistance mechanisms among
clinical strains is not always straightforward, because the presence
of mutations in these two-component regulators is not always
associated with clinical colistin resistance, probably denoting par-
tial complementation between the different regulators [60,98,99].
Moreover, recent in vitro evolution assays have revealed the
implication of additional mutations in high-level colistin resistance,
facilitated by the emergence of mutS-deficient mutator (pheno-
types such as those occurring in LptD, LpxC, or MigA) [100]. On the
other hand, the role of phosphoethanolaminemodification of LPS in
P. aeruginosa seems marginal, including both, that are driven by
intrinsic eptA gene expression [101] and that are driven by trans-
ferable determinants [102].

Pseudomonas aeruginosa fosfomycin resistome

Although not classified as an anti-pseudomonal agent (ECOFF of
256 mg/L), fosfomycin has been considered in the last decade as a
potentially useful antibiotic in urinary tract infections and as
combined therapy for MDR/XDR/DTR P. aeruginosa in other infec-
tion sites [103]. However, spontaneous mutation rates for fosfo-
mycin resistance are high and the mechanism involved is typically
the mutational inactivation of glpT, coding for a glycerol-3-
phosphate permease required for fosfomycin uptake [104,105].
Mutations in glpT are also frequently found among MDR/XDR/DTR
strains [106]. Certain specific mutations, such as T211P, have
become fixed in some widespread lineages as described for ST175
[14].

Definitions of resistance profiles in Pseudomonas aeruginosa

According to established recommendations by ECDC [6], the
MDR profile is defined as resistance to at least one agent in at least
three of eight antibiotic categories. These categories include anti-
pseudomonal penicillins þ b-lactamase inhibitor combinations
(ticarcillin/clavulanate, piperacillin/tazobactam), anti-
pseudomonal cephalosporins (ceftazidime and cefepime), mono-
bactams (aztreonam), anti-pseudomonal carbapenems (imipenem,
meropenem, doripenem), fluoroquinolones (ciprofloxacin, levo-
floxacin), aminoglycosides (gentamicin, tobramycin, amikacin,
netilmicin), polymyxins (colistin, polymyxin B), and fosfonic acids
(fosfomycin). The XDR profile is defined as resistance to at least one
agent in all antibiotic classes except one or two. Likewise, PDR
profile is defined as resistance to all agents in the eight antibiotic
categories. The eighth category (fosfonic acids, fosfomycin)
included in the ECDC recommendations should be likely not
considered, given the lack of current EUCAST clinical breakpoints.
Likewise, the inclusion of gentamicin as anti-pseudomonal agents
is questionable according to current EUCAST breakpoints, and the
activity of ticarcillin/clavulanate likely not comparable with that of
piperacillin/tazobactam in P. aeruginosa. On the other hand, the DTR
profile is defined according to IDSA/NIH recommendations as
resistance to all first-line (classical) agents: anti-pseudomonal
penicillins þ b-lactamase inhibitor combinations, cephalosporins,
monobactams, carbapenems, and fluoroquinolones [7]. Thus, if
fosfomycin is not considered, all DTR isolates would meet the XDR
criteria, because they are resistant to at least five of seven cate-
gories, but not the other way around.

However, neither the ECDC nor IDSA/NIH definitions take into
consideration the novel b-lactams and BLBLIs. The inclusion of these
novelagents is challenging, startingbygrouping themintomeaningful
‘categories’ because their properties, spectrum, and mechanisms of
resistance show similarities but alsomarked differences. As shown in
Table1, at leastfivenovel categories couldbeconsidered to include the
novel b-lactams already approved: fifth-generation anti-pseudomo-
nal cephalosporins þ classical b-lactamase inhibitors (ceftolozane/
tazobactam), anti-pseudomonal cephalosporinsþ diazabicycloctanes
b-lactamase inhibitors (ceftazidime/avibactam), anti-pseudomonal
carbapenems þ diazabicycloctanes b-lactamase inhibitors (imipe-
nem/relebactam), anti-pseudomonal carbapenems þ boronic acid b-
lactamase inhibitors (meropenem/vaborbactam), and siderophore
anti-pseudomonal cephalosporins (cefiderocol). In addition, there are
at least three further classes to be considered in the future if the cor-
responding antibiotics are approved: monobactams þ diazabicy
cloctanes b-lactamase inhibitors (aztreonam/avibactam), anti-
pseudomonal cephalosporins þ diazabicycloctanes b-lactamase and
PBP2 inhibitors (cefepime/zidebactam), and anti-pseudomonal
cephalosporins þ boronic acid b-lactamase inhibitors including
MBLs (cefepime/taniborbactam).

Within the framework of the ECDC definitions, these novel
categories could potentially align with MDR implying resistance to
at least three classes (of up to 13), XDR indicating resistance to all
but one or two and PDR indicating resistance to all. Regarding DTR
definition, it would imply resistance to all the novel b-lactams
approved. However, the practical application of this definition is
likely to encounter challenges because of limited access to these
antibiotics for treatment and to the capacity to perform antimi-
crobial susceptibility testing in several countries. Moreover, the
classification of the resistance profiles for the novel agents under

http://www.eucast.org


Fig. 2. Summary of the main characteristics of the top 10 P. aeruginosa high-risk clones. Updated in July 2023 from Del Barrio-Tofiio et al. [10]. Novel descriptions since 2020 are shown in red.
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development into clinical susceptibility categories will need to
consider PK/PD data, not yet available in some cases, in addition to
existing phenotypic and genomic information.

Update on Pseudomonas aeruginosa high-risk lineages and
their association with transferable b-lactamases

In a recent review [10], according to their prevalence, global
spread and association with MDR/XDR/DTR profiles, and specially
with concerning horizontally acquired b-lactamases such as ESBLs
and carbapenemases, the worldwide top ten P. aeruginosa high-risk
lineages were established to be, by order of relevance, ST235, ST111,
ST233, ST244, ST357, ST308, ST175, ST277, ST654, and ST298. Fig. 2
shows updated information for these top ten high-risk lineages,
including their virulence profile (presence of the genes coding the
type III secretion system exotoxins ExoS and/or ExoU), worldwide
distribution and association with acquired carbapenemases from
key publications in the last 3 years [40e42,92,107e111]. Particu-
larly noteworthy is the expansion of KPC enzymes in several of
these lineages (ST233, ST277, and ST654 in addition to the previous
detection in ST235, ST111, and ST244), followed byNDM (ST244 and
ST357 in addition to ST235, ST233, ST308, and ST654). Moreover,
coproduction of various carbapenemases is not infrequent among
those lineages [43]. Besides these top ten lineages, a few others
have gained relevance in the last few years, including globally
expanding ST309, associated with the production of VIM-2, ST773
linked to NDM-1, or ST463 associatedwith the production of KPC-2,
particularly in China [112e117].

Concluding remarks and future challenges

P. aeruginosa infections rank among the foremost global resis-
tance threats, associated with significant morbidity and mortality.
P. aeruginosa resistance mechanisms and epidemiology are com-
plex and ever-evolving, with a significant impact on novel and
forthcoming b-lactams. The interplay between novel antibiotics
and resistance is notably challenging, as certain mechanisms can
lead to cross-resistance to multiple agents, whereas others may
confer collateral susceptibility to relevant anti-pseudomonals such
as carbapenems. The global dissemination of XDR/DTR high-risk
lineages is also a major challenge, particularly when coupled with
increased virulence and capacity to acquire exogenous resistance
elements as documented for ST235 [11]. In this sense, a recent
nation-wide survey of P. aeruginosa susceptibility profiles and
resistance genomics has revealed, on the one hand, a significant
generalized decrease of resistance rates and XDR/DTR profiles in
Spain in the last 5 years, but on the other, a significant increase in
the proportion of the concerning carbapenemase-producing ST235
high-risk lineage [44].

Therefore, there is a major need for establishing comprehensive
resistance surveillance initiatives, integrating both phenotypic and
genomic data, and metadata. However, our current capacity to
predict the susceptibility profiles and emerging high-risk clonal
lineages from genomic sequences still needs to be improved,
potentially through the incorporation of machine learning,
knowledge-based approaches, or so-called artificial intelligence
tools [43,118,119]. Nevertheless, current achievable surveillance
strategies at European level should at least integrate: (a) moni-
toring of concerning high-risk lineages (particularly ST235); (b)
analyses of resistance prevalence trends to recently introduced
agents (such as the novel BLBLIs) in addition to classical anti-
pseudomonals; (c) monitoring of strains producing horizontally
acquired resistance mechanisms (particularly carbapenemases and
ESBLs); and (d) monitoring of noteworthy chromosomal resistance
mechanisms such as the AmpC (PDC) derivates involved in
resistance to the novel BLBLIs. Likewise, in this scenario, antimi-
crobial stewardship and infection control are of paramount
importance. Nevertheless, these aspects are equally challenging
and should be guided by rapid diagnostics and antimicrobial sus-
ceptibility testing, including the detection of resistance mecha-
nisms and specific high-risk clonal lineages [120]. Thus, efforts
should also be directed to the implementation and scaling of
personalized precision medicine that allows us to establish early
targeted treatments and specific epidemiological control measures
adapted to the strain/mechanism involved.
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