MISSION 1 - DIVISION EUCLIDIENNE ET CRITÈRE DE DIVISIBILITÉ

Poser les divisions euclidiennes et écrire les égalités correspondantes :

- 123 ÷ 7
- 367 ÷ 23

2 Critères de divisibilité par 2, 3, 5, 9 et 10 : Cocher dans le tableau les diviseurs des différents nombres.

	2	3	5	9	10
135					
240					
6372					

Déterminer la liste des diviseurs des nombres suivants: 68; 90; 57

Dans chaque cas, donne un diviseur, autre que 1, commun aux deux nombres.

- a) 12 et 15 → . . .
- e) 135 et 732 → ...
- b) 25 et 50 → ...
- f) 200 et 40 → ...
- c) 56 et 49 → ...
- g) 54 et 954 → ...
- d) 42 et 54 → ...
- h) 63 et 77 → . . .

Trouve le nombre mystérieux!

Explique ta démarche pour trouver ce nombre. Donne sa valeur.

Je suis un nombre entier compris entre 100 et 400.

J'ai aussi 3 et 5 compre diviseurs. Je suis un

multiple de 11.

Je suis

pair.

MISSION 2 - UTILISER LES NOMBRES PREMIERS

Refaire le tableau suivant qui contient tous les nombres entiers non nuls inférieurs ou égal à 100 :

- 1) Noircir la case contenant le nombre 1.
- 2) Souligner le nombre 2 et noircir toutes les cases contenant un multiple de 2.
- 3) La case contenant le nombre 3 n'a pas été noircie, on souligne donc le nombre 3 et on noircit toutes les cases contenant un multiple de 3.
- 4) On réitère le procédé jusqu'à la partie entière de la racine carrée de 100. On obtient alors la liste des nombres premiers inférieurs ou égal à 100.
- 5) Un quart des nombres entiers inférieurs à 100 sont des nombres premiers. Vrai ou Faux ?

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

En utilisant les critères de divisibilité, expliquer pourquoi chacun des nombres suivants n'est pas premier : 8 271 ; 934 ; 5 410 ; 475 ; 6 429

3 Décomposer en produits de facteurs premiers les nombres suivants :

40	2	84	 120	 34	

Bob cherche à décomposer en produits de facteurs premiers le nombre 2 541.

Pour l'aider, son professeur lui dit que ce nombre est le **produit** des nombres 33 et 77.

A l'aide de cette remarque, termine la décomposition du nombre 2 541 en produits de facteurs premiers.

#

3

120=

84=

40=

34=

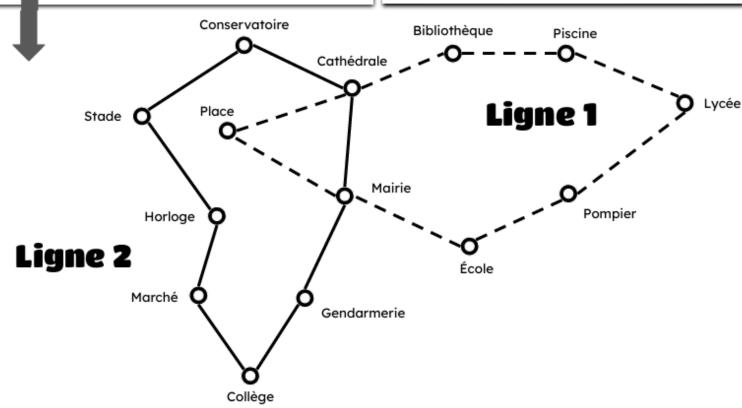
1 ☑ Le capitaine d'un navire possède un trésor 2 ☑ Problème : constitué de 69 diamants, 1 150 perles et 4 140 pièces d'or.

1. Décomposer 69 ; 1 150 et 4 140 en produits de facteurs premiers.

2. Le capitaine partage équitablement le trésor entre les marins. Combien y-a-t-il de marins sachant que toutes les pièces, perles et diamants ont été distribués?

3 Voici le plan de deux lignes de bus :

C'est à 6h30 que les deux bus des lignes 1 et 2 partent de l'arrêt « Mairie » dans le sens des aiguilles d'une montre. Le bus de la ligne 1 met 3 minutes entre chaque arrêt (temps de stationnement compris), tandis que le bus de la ligne 2 met 4 minutes. Tous les deux vont effectuer le circuit complet un grand nombre de fois. Ils s'arrêteront juste après 20h.


- Est-ce que les deux bus vont se retrouver à un 1. moment de la journée à l'arrêt « Mairie » en même temps?
- 2. Si oui, donner tous les horaires précis de ces rencontres.

- 1. Décomposer les nombres 162 et 108 en produits de facteurs premiers.
- 2. Déterminer deux diviseurs communs aux nombres 162 et 108 plus grands que 10.
- 3. Un snack vend des barquettes composées de nems et de samoussas. Le cuisinier a préparé 162 nems et 108 samoussas. Dans chaque barquette :
 - le nombre de nems doit être le même
 - le nombre de samoussas doit être le b. même.
 - Tous les nems et tous les samoussas c. doivent être utilisés.

Le cuisinier peut-il réaliser 36 barquettes ?

- Quel nombre maximal de barquettes 4. pourra-t-il réaliser ?
- 5. Dans ce cas, combien y aura-t-il de nems et de samoussas dans chaque barquette?

