CHAPITRE 15 STATISTIQUES

Vocubulnire

Voici les poids en kg des sangliers mangés par Obélix ce mois :

Cette série de données s'appelle une série statistique.

Le caractère étudié est la masse des sangliers.

Les valeurs extrêmes sont la plus petite et la plus grande valeur : 70 et 100.

L'effectif de la valeur 70 est 2 (car il y a 2 sangliers de 70 kg). L'effectif total est le nombre de sangliers étudiés : Il sangliers.

FRÉQUENCE

Quelle est la fréquence d'un sanglier de 70 kg? Il en a mangé 2 sur 11!

Fréquence d'une donnée =
$$\frac{effectif\ de\ la\ valeur}{effectif\ total}$$
 Fréquence de 70 =
$$\frac{2}{11} \approx 0,18 = 18\%$$

Fréquence de 70 =
$$\frac{2}{11} \approx 0,18 = 18 \%$$

Masse (kg)	70	75	85	90	95	100	TOTAL
Effectif	2	1	1	4	2	1	11
Fréquence	$\frac{2}{11} \approx 0.182$	$\frac{1}{11} \approx 0.091$	$\frac{1}{11} \approx 0,091$	$\frac{4}{11} \approx 0,364$	$\frac{2}{11} \approx 0,182$	$\frac{1}{11} \approx 0.091$	1
Fréquence %	18,2 %	9,1 %	9,1 %	36,4 %	18,2 %	9,1 %	100 %

18,2 % des sangliers mangés par Obélix pèsent 70 kg.

Chaque fréquence est un nombre compris entre 0 et 1. La somme des fréquences vaut 1.

MOYENNE SIMPLE

Voici les moyennes obtenues par Astérix ce trimestre pour 5 matières: Maths: 18 Français: 14 Anglais: 15 EPS: 19 Histoire: 13

Moyenne d'une série =
$$\frac{somme des valeurs de la série}{effectif total}$$

Moyenne d'Astérix =
$$\frac{18+14+15+19+13}{5}$$
 = $(18+14+14+19+13) \div 5 = 79 \div 5 = 15,8$

La moyenne d'Astérix 15,8 est comprise entre les valeurs extrêmes de la série qui sont 13 et 19. **Interprétation**: cela équivaut à avoir 15,8 de moyenne dans chaque matière.

A l'aide du tableur :

	Α	В	С	D	Е	Н	1
1	18	14	15	19	13	15,8	•

= MOYENNE (A1 : E1)

Vocabulaire : Lors d'une enquête, une liste de données a été relevée.

<u>L'effectif</u> d'une donnée est le nombre de fois ou cette donnée apparait dans la liste.

L'effectif total est le nombre total de données dans la liste.

I. Classes de données

Dans le cas de nombreuses données numériques, on peut les regrouper en classes pour faciliter la présentation des effectifs et des fréquences.

Exemple

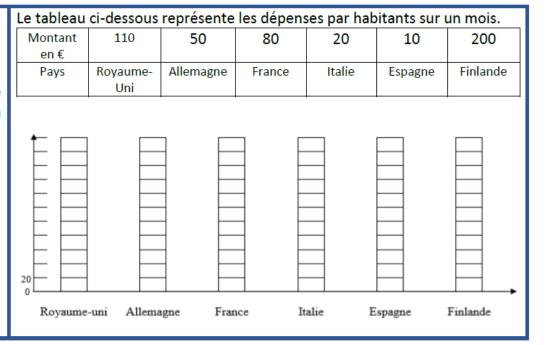
On a relevé la taille (en m) des joueurs d'un club de rugby :

1,92	1,79	1,80	1,94	1,85	1,79	1,84	1,90	1,84	1,88	1,76	1,83
1,82	1,85	1,80	1,78	1,91	1,88	1,97	1,75	1,93	1,93	1,97	1,92

On présente les effectifs en regroupant les tailles en plusieurs classes de même amplitude (ici 5 cm).

Taille t (en m)				- E	
Effectif	5	6	4	6	3

Fréquence			
Fréquence en %			


 $Fréquence d'une valeur = \frac{Effectif pour la valeur}{Effectif total}$

Effectif des tailles comprises entre 1,90 m (inclus) et 1,95 m (exclu).

II. Diagrammes statistiques

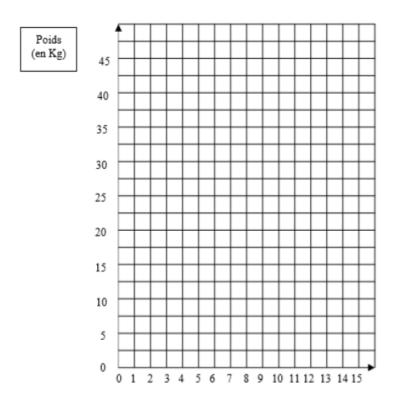
1) Diagramme en barres :

La hauteur de chaque barre est proportionnelle à l'effectif qu'elle représente.

2) Graphique cartésien

Un graphique cartésien permet de représenter des données qui varient selon un paramètre.

La représentation graphique s'articule autour de 2 axes perpendiculaires:


Un axe horizontal appelé l'axe des abscisses

Un axe vertical appelé l'axe des ordonnées

On repère les points en fonction de leurs coordonnées.

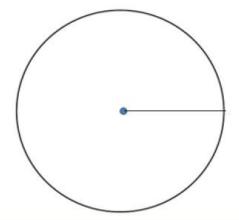
Construire le graphique du poids de Sébastien en fonction de son âge. Placer un à un les points du tableau dans le graphique puis les relier.

Ages	0	1	2	4	5	6	8	10	12	15
Sébastien	3,5	7,5	10	15	19	22	29	32	35	45

Age (en année)

3) Diagramme circulaire :

Dans un diagramme circulaire, l'angle de chaque secteur est proportionnel à l'effectif qu'il représente. L'effectif total est proportionnel à 360°.


Yannick a 45 albums de bandes dessinées: 15 Tintin; 6 Boule et Bill; 10 Lucky Luke et 14 Astérix.

Représenter la répartition des BD de Yannick par un diagramme <u>circulaire</u>

. Pour cela aidez-vous du tableau de proportionnalité ci-dessous :

	Tintin		Lucky Luke	Astérix	Total
Effectif	15	6	10	14	45
Angle					360°

4) Diagramme semi-circulaire:

Dans un diagramme semi-circulaire, l'angle de chaque secteur est proportionnel à l'effectif qu'il représente. L'effectif total est proportionnel à 180°.