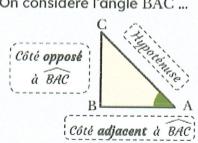
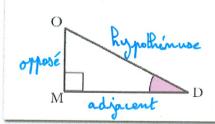
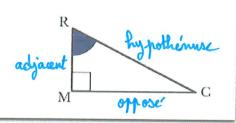
MISSION 1: LE POINT SUR LES TRIANGLES RECTANGLES

On considère l'angle $\widehat{\mathrm{BAC}}$...



1 🗷 Complète, comme dans l'exemple, en fonction de l'angle grisé.

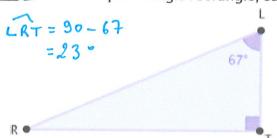


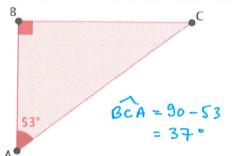


2 ½ Soit un triangle ABC rectangle en A.

- L'hypoténuse est ... [60]
- Le côté adjacent à l'angle \widehat{ABC} est \widehat{LAB}
- Le côté adjacent à l'angle \widehat{ACB} est ACD
- 3 🖄 Soit DEF un triangle rectangle en E.
- Le côté opposé à l'angle $\widehat{\mathrm{EDF}}$ est $\widehat{\mathsf{L.E.F.}}$
- Le côté opposé à l'angle $\widehat{ ext{EFD}}$ est 🛴 🕽 🗲 🕽

🗸 🗷 Dans chaque triangle rectangle, calcule l'angle aigu manquant. 🖇



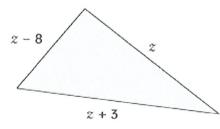


MISSION 2 : LE POINT SUR LES ÉQUATIONS

Résoudre chacune des équations

 $3 \times a = 2$ $5 \times t = 12$ $\frac{x}{5} = 12$ $\frac{y}{7} = \frac{3}{4}$

3 $\stackrel{?}{\cancel{\mathbb{Z}}}$ Trouver la valeur de z sachant que le périmètre du triangle vaut 61



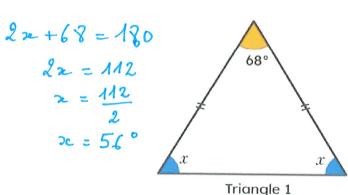
$$3-8+3+3+3=64$$

$$33-5=64$$

$$33='66$$

$$3=22$$

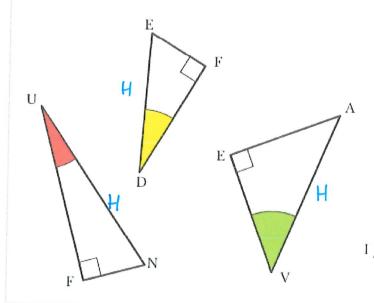
2 & Calculer la mesure de l'angle x à l'aide d'une équation dans chaque cas



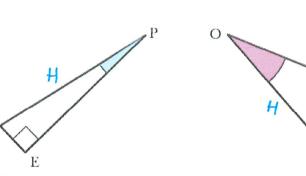
4x + 4x + x = 180 9x = 180 $x = \frac{180}{9}$

MISSION 3: COSINUS D'UN ANGLE AIGU

- 12 Pour chaque triangle rectangle,
- Annoter chaque côté avec H pour hypoténuse et A pour côté adjacent.
- Écrire le cosinus de l'angle grisé comme
 l'exemple du PSG.

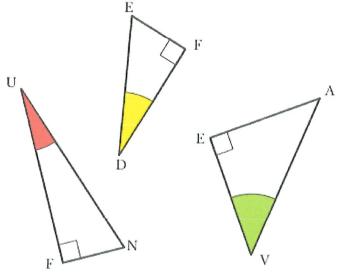


cos (FUN) = coté adjacent à FUN	UF
Hypothemuse	U.M
cos (EDF) = à EDF	DF
Hypothemuse	ED
cos (EVA) = à EVA	EV
H. y pothemuse	AY
cos (IPE) = à \\(\text{if } \) =	PE
H.z.pothemuse	L.P.
cos (MoD.) = à MoD =	Q.D.
Hypotheinuse	OM

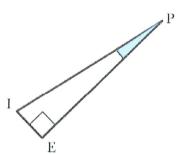


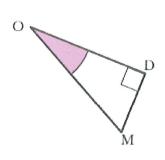
MISSION 3 : COSINUS D'UN ANGLE AIGU

- De Pour chaque triangle rectangle,
- Annoter chaque côté avec H pour hypoténuse et A pour côté adjacent.
- 2. Écrire le cosinus de l'angle grisé comme l'exemple du PSG.



cos () = -	à	_	ATELEX Victorial designation (designation)
(,	Н		
cos () = -	à	===	TTTTT TO THE STREET THE STREET
	Н		
cos () = -	à	FOR	
	Н		
cos () = -	à	Timp.	
	Н		
cos () = -	a	=	******
	Н		



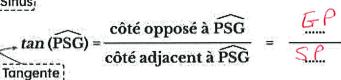


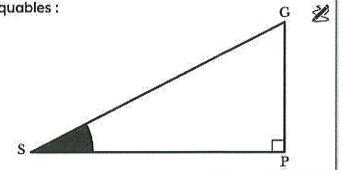
MISSION 4 : D'AUTRES RAPPORTS TRIGONOMÉTRIQUES

Il existe deux autres rapports de longueurs remarquables :

$$sin(\widehat{PSG}) = \frac{\widehat{côte} \text{ oppose à } \widehat{PSG}}{\text{Hypotenuse}} = \frac{\widehat{GP}}{S.G}$$

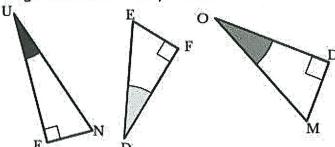
Sinus





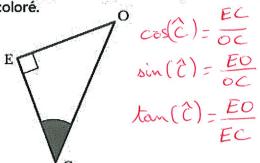
1 2 Pour chaque triangle rectangle,

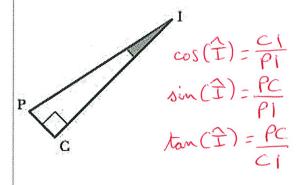
- Annoter chaque côté avec H pour hypoténuse, A pour côté adjacent et O pour opposé.
- 2. Écrire le sinus et la tangente de l'angle grisé comme l'exemple du PSG.



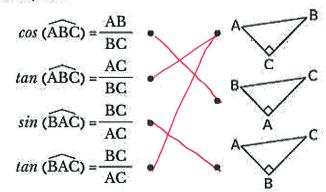
sin (FUN) = coté oposé à FUN HU potémux	·	FN
sin (EPE) = côte ophose à EDF	=	EE
sin (MOD) = Hypdima MOD	-	E.D. PM
A CALLAND SEIN		OM FN
tan (FUN) = Cotti asligacent à FUN	, =	UE
tan (EDL) = à EDF	See .	D.F.
tan (Mon) = à Mon	Kook :	DO DW

2 Pour chaque triangle rectangle, écrire les 3 rapports trigonométriques de l'angle coloré.



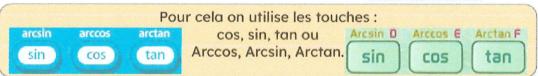


Associe les rapports avec le triangle qui lui correspond.



MISSION 5 : UTILISER SA CALCULATRICE

S'assurer que la calculatrice est placée en mode « degrés » : Un D ou DEG est alors affiché en haut de l'écran



1 Calculer le cosinus, le sinus ou la tangente d'un angle (arrondi aux millièmes)

a. Si $\widehat{RTL} = 11^{\circ}$, alors $tan(\widehat{RTL}) \approx 0.194$

- b. Si $x = 30^\circ$, alors $\cos \hat{x} = 0.067$
- c. Si $\widehat{ABC} = 79^{\circ}$, alors $\widehat{sin} \widehat{ABC} \approx 270^{\circ}$
- d. Si $y = 45^\circ$, alors $tan \hat{y}$
- e. Si $x = 0^{\circ}$, alors $\sin \widehat{x} = ... \Omega$.
- f. Si $\widehat{RDS} = 53^{\circ}$, alors $\cos \widehat{RDS}$ $\%... <math>\bigcirc 60^{\circ}$

2 🗶 Trouver la mesure d'un angle connaissant le sinus, le cosinus ou la tangente (arrondi à l'unité).

a. Si $\sin \hat{x} = 0.79$, alors $\hat{x} \approx 52^{\circ}$

- c. Si $tan \widehat{ABC} = 0.5$, alors $\widehat{ABC} \approx ... \stackrel{?}{\sim} 6$
- d. Si $tan \widehat{PAR} = 0.259$, alors $\widehat{PAR} \approx 4.5$
- e. Si $\cos \hat{z} = 1$, alors $\hat{z} = \Omega$.°
- f. Si sin PSG = 0.087, alors PSG = 0.087
- 0 L'hypoténuse est le plus grand côté d'un triangle rectangle donc cosinus et sinus d'un angle aigu sont deux grandeurs positives et toujours plus petites que 1.
- Par contre, la tangente d'un angle aigu peut prendre toutes les valeurs.

MISSION 5 : UTILISER SA CALCULATRICE

S'assurer que la calculatrice est placée en mode « degrés » : Un D ou DEG est alors affiché en haut de l'écran

Pour cela on utilise les touches : arctan Arcsin D Arccos E Arctan F cos, sin, tan ou Arccos, Arcsin, Arctan. sin tan COS sin COS

[7] Calculer le cosinus, le sinus ou la tangente d'un angle (arrondi aux millièmes)

a. Si $\widehat{RTL} = 11^{\circ}$, alors $tan(\widehat{RTL}) \approx 0,194$

- b. Si $x = 30^{\circ}$, alors $\cos \hat{x}$
- c. Si $\widehat{ABC} = 79^{\circ}$, alors $\widehat{sin} \widehat{ABC}$
- d. Si $y = 45^{\circ}$, alors $tan \hat{y}$
- e. Si $x = 0^{\circ}$, alors $\sin \hat{x} = \dots$
- f. Si $\widehat{RDS} = 53^{\circ}$, alors $\widehat{cos} \widehat{RDS}$

🙎 🖄 Trouver la mesure d'un angle connaissant le sinus, le cosinus ou la tangente (arrondi à l'unité).

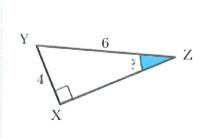
a. Si $\sin \hat{x} = 0.79$, alors $\hat{x} \approx 52^{\circ}$

- b. Si $\cos \widehat{EDF} = 0.31$ alors \widehat{EDF} °
- c. Si $tan \ \widehat{ABC} = 0.5$, alors \widehat{ABC} °
- d. Si tan PAR = 0,259, alors $PAR \dots$ °
- e. Si $\cos \hat{z} = 1$, alors $\hat{z} =^{\circ}$
- f. Si $sin \widehat{PSG} = 0.087$, alors \widehat{PSG} °
- 0 L'hypoténuse est le plus grand côté d'un triangle rectangle donc cosinus et sinus d'un angle ajqu sont deux grandeurs positives et toujours plus petites que 1.
- U Par contre, la tangente d'un angle aigu peut prendre toutes les valeurs.

MISSION 6 : UTILISER LA TRIGONOMÉTRIE POUR CALCULER UN ANGLE

7 % Soit XYZ un triangle rectangle en X tel que XY = 4 cm et YZ = 6 cm. Déterminer \widehat{YZX}

TUTO



CHECK UP CAH SOH TOA

Je connais:

A Côté Adjacent

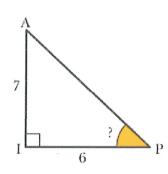
O Côté Opposé

O Coté Adjacem
O Coté Opposé
H Hypoténuse

J'utilise donc:
Cosinus
Sinus
Tangente

Dans le triangle **rectangle** XYZ, $sin (\widehat{YZX}) = \frac{XY}{YZ}$ $sin (\widehat{YZX}) = \frac{4}{6}$ $d'où \widehat{YZX} \approx 42^{\circ} \qquad arcsin(\frac{4}{6})$ 41,8103149

2 Soit API un triangle rectangle en I tel que AI = 7 cm et IP = 6 cm. Déterminer \widehat{API}



CHECK UP CAH SOH TOA

Je connais : A ≮Côté Adjacent

Ø Côté Opposé **H** ○ Hypoténuse

J'utilise donc :

ି Cosinus ି Sinus

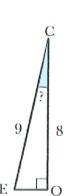
✓ Tangente

Dans le triangle rectangle AIP, $\hat{P} = \frac{AI}{IP}$ $\hat{P} = Arctan \frac{AI}{IP}$

 $\hat{p} = Arctan \frac{7}{6}$

P≈ 49°

 \blacksquare Soit ECO un triangle rectangle en O tel que CO = 8 cm et CE = 9 cm. Déterminer $\stackrel{\frown}{\text{ECO}}$



CHECK UP CAH SOH TOA

Je connais :

KCôté Adjacent

O Côté Opposé

H ∠ Hypoténuse

J'utilise donc :

∠Cosinus

≪Cosinus ○ Sinus

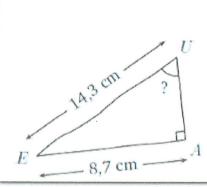
- Tangente

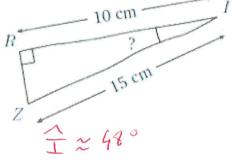
Dans le triangle rectangle CEO $\cos \hat{c} = \frac{CO}{CE}$

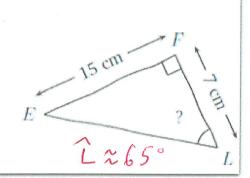
C = Arcos CO CE C = Arcos 8

2227°

Déterminer les angles aigus de chaque triangle en utilisant le modèle de rédaction précédent.

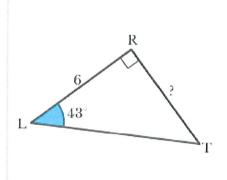






MISSION 7 : UTILISER LA TRIGONOMÉTRIE POUR CALCULER UNE LONGUEUR

Soit RTL un triangle rectangle en R tel que RL = 6 cm et RLT = 43°. Déterminer RT.



CHECK UP CAH SOH TOA

Côtés concernés :

A Côté Adjacent O Côté Opposé

H Hypoténuse

J'utilise donc :

- Cosinus
- Sinus
- Tangente

TUTO

RÉDACTION

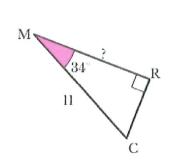
Dans le triangle rectangle RTL,

$$\tan (RLT) = \frac{RT}{RL}$$

$$\tan (43^\circ) = \frac{RT}{6}$$

d'où RT \approx 6 cm $\times tan$ 43° \approx 5,6 cm

Soit RMC un triangle rectangle en R tel que MC = 11 cm et RMC = 34°. Déterminer MR.



CHECK UP CAH SOH TOA

Côtés concernés :

AKCôté Adjacent

O Côté Opposé

∦ K Hypoténuse

J'utilise donc :

- ∠ Cosinus
- Sinus
- Tangente

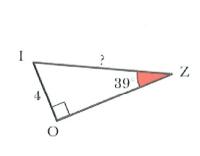
Dans le triangle rectangle MRC:

MR = MC x cos A

MR = 11 x cos 34

MR=9,1cm

🗾 🖄 Soit IZO un triangle rectangle en O tel que IO = 4 cm et ÎZO = 39°. Déterminer IZ.



CHECK UP CAH SOH TOA

Côtés concernés :

A Côté Adjacent

OK Côté Opposé

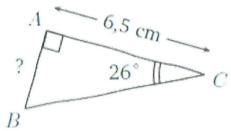
H×Hypoténuse

J'utilise donc :

- Cosinus
- Sinus
- Tangente

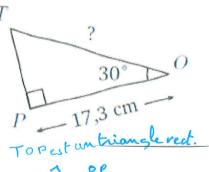
Dans le triangle 120 rect. en 0:

🛂 📝 Déterminer les longueurs AB, OT et MN en utilisant le modèle de rédaction précédent.

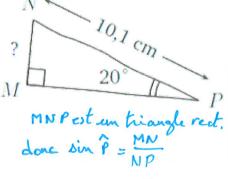


ABC est un trian sk rect. donc: $tan C = \frac{AB}{AC}$

AB - Acx tan 2



OT=200



MN = NPx sin P =10,1 x sin20

MISSION 8

Ex1 ABC est un triangle nect. en B donc ton $\widehat{A} = \frac{CB}{AB}$ donc $AB = \frac{CB}{\tan A}$ $AB = \frac{324}{\tan 18}$ donc $AB \approx 997 \, \text{m}$. La distance est d'environ $997 \, \text{m}$.

ABC est un triangle rect. en B donc d'agrès le bhés. de Pythagore ona: $AC^2 = AB^2 + BC^2$

1) done
$$BC = \sqrt{AC^2 - AB^2}$$

 $BC = \sqrt{3,2^2 - 3,05^2}$
 $BC \approx 0,968 \text{ m}$

La distance est d'environ 97 cm.

L'angle Journe' est d'environ 72°.

2/ cos
$$\hat{c} = \frac{Bc}{Ac}$$
 donc $\hat{c} = Arcos \left(\frac{Bc}{Ac}\right)$

----on amait pur la tangente: = Arcos $\frac{0,97}{3,2}$

intiliser le sinus ou la tangente: $\approx 72^{\circ}$

Ex 3 Avrell mesure 2,13 m donc CA = 2,13 - PS = 2,13-1 = 1,13 m

Dans le triangle CPA rect. en A on a:

$$\tan CPA = \frac{CA}{PA}$$

$$= \frac{1,13}{6}$$

tan CPA = 0,188

done CPA & Arctan 0,188 CPA 2 11° . L'angle est

d'environ 11°.

Ex4 ? 75m

ABC et un triangle rect. en A donc sin ACB = AB done AB = 75x sin ACB = 75x sin 5 ≈ 6,5m.

La hauteur est d'environ 6,5 m.

Ex 6 ABC est un triangle rect. en C. donc $AB = \frac{BC}{AB}$ donc $AB = \frac{30}{5}$ sin 3 $= \frac{30}{AB} \qquad AB = 573 \text{ cm}.$

La range doit mesurer 573 cm.

Ex 5 @ Utiliser la trigonométrie dans le triangle ABS pour calcula BS

2 Ajouter 2 m pour obtenir la hauteur totale.