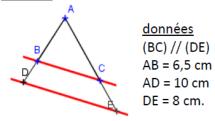

CHAPITRE 4 THEOREME DE THALES

Configurations de Thalès :

Configuration emboitée



Configuration papillon

I Théorème de Thalès

Si les droites (MN) et (BC) sont parallèles, et si (MB) et (NC) sont sécantes en A,

Exemple

Calculer BC.

On considère les triangles ABC et ADE.

Les droites (BC) et (DE) sont parallèles, donc d'après le théorème de Thalès :

$$\frac{AB}{AD} = \frac{AC}{AE} = \frac{BC}{DE}$$

$$\frac{6,5}{10} = \frac{AC}{AE} = \frac{BC}{8}$$

$$d'où \frac{6,5}{10} = \frac{BC}{8}$$

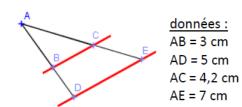
$$BC = \frac{6,5 \times 6}{10}$$

$$BC = 5,2 \ cm$$

$$C = \frac{6,5 \times 8}{10}$$

Dans les 2 configurations, il y a :

- 1 petit triangle: AMN


- 1 grand triangle: ABC

Ces deux triangles ont le sommet A en commun.

II Réciproque du théorème de Thalès

Si $\frac{AM}{AB} = \frac{AN}{AC}$ et si les points A, M, B et A, N, C sont alignés dans le même ordre, alors les droites (MN) et (BC) sont parallèles.

Exemple

Montrer que les droites (BC) et (DE) sont parallèles.

On considère les triangles ABC et ADE.

$$\frac{AB}{AD} = \frac{3}{5} = 0.6$$

$$\frac{AC}{AE} = \frac{4.2}{7} = 0.6$$

$$donc \frac{AB}{AD} = \frac{AC}{AE}$$

D'autre part, les points A, B, D et A, C, E sont alignés dans le même ordre, donc d'après la réciproque du théorème de Thalès, les droites (BC) et (DE) sont parallèles.