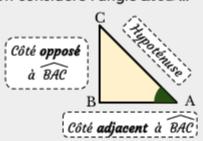
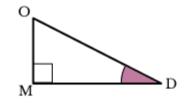
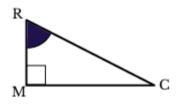
MISSION 1 : LE POINT SUR LES TRIANGLES RECTANGLES

On considère l'angle $\stackrel{\frown}{\mathrm{BAC}}$...



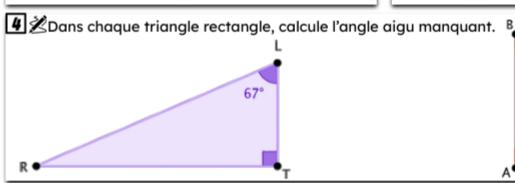
🔟 🇷 Complète, comme dans l'exemple, en fonction de l'angle grisé.

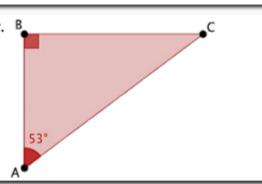




2 ½ Soit un triangle ABC rectangle en A.

- L'hypoténuse est
- Le côté adjacent à l'angle \widehat{ABC} est
- Le côté adjacent à l'angle \widehat{ACB} est
- **3 ½** Soit DEF un triangle rectangle en E.
- L'hypoténuse est
- Le côté opposé à l'angle $\widehat{\mathrm{EDF}}$ est
- ullet Le côté opposé à l'angle $\widehat{\mathrm{EFD}}$ est





MISSION 2 : LE POINT SUR LES ÉQUATIONS

1 Résoudre chacune des équations

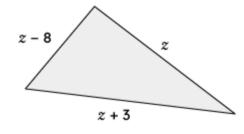
$$3 \times a = 2$$

$$5 \times t = 12$$

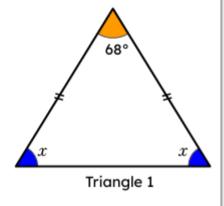
$$\frac{x}{5} = 12$$

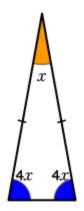
$$5 \times t = 12$$
 $\frac{x}{5} = 12$ $\frac{y}{7} = \frac{3}{4}$

 ${\color{red} {m{\mathcal{S}}}}$ Trouver la valeur de z sachant que le périmètre du triangle vaut 61



2 $\not \mathbb{Z}$ Calculer la mesure de l'angle x à l'aide d'une équation dans chaque cas

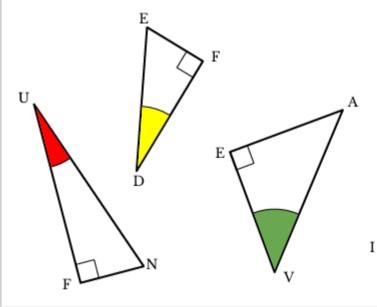




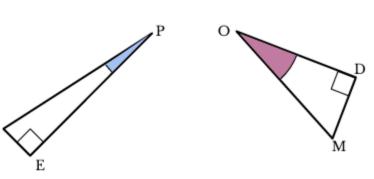
Triangle 2

MISSION 3 : COSINUS D'UN ANGLE AIGU

- 12 Pour chaque triangle rectangle,
- Annoter chaque côté avec H pour hypoténuse et A pour côté adjacent.
- Écrire le cosinus de l'angle grisé comme
 l'exemple du PSG.

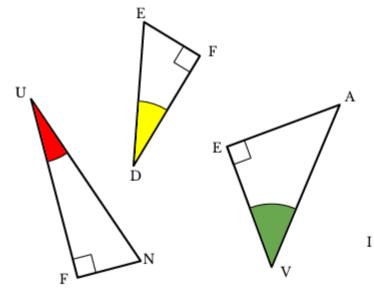


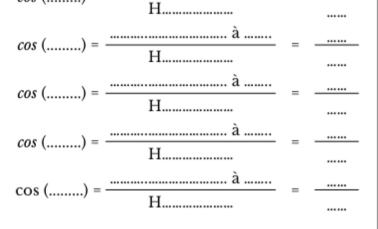
cos () =a	_	
Н		
cos () =à		
Н		
cos () = à		
Н		
cos () = à		
Н		
cos () =à		
Н		

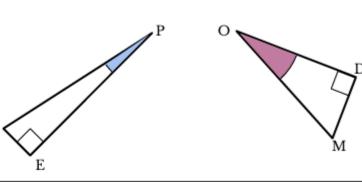


MISSION 3 : COSINUS D'UN ANGLE AIGU

- 12 Pour chaque triangle rectangle,
- Annoter chaque côté avec H pour hypoténuse et A pour côté adjacent.
- Écrire le cosinus de l'angle grisé comme
 l'exemple du PSG.





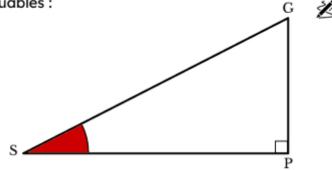


MISSION 4 : D'AUTRES RAPPORTS TRIGONOMÉTRIQUES

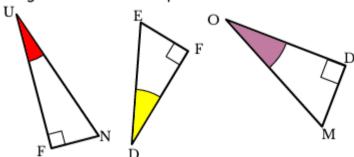
Il existe deux autres rapports de longueurs remarquables :

$$sin(\widehat{PSG}) = \frac{\widehat{côte} \text{ oppose à } \widehat{PSG}}{\text{Hypoténuse}} = \frac{\dots}{\dots}$$

Sinus
$$tan(\widehat{PSG}) = \frac{\widehat{côte} \text{ oppose à } \widehat{PSG}}{\widehat{côte} \text{ adjacent à } \widehat{PSG}} = \frac{.....}{....}$$

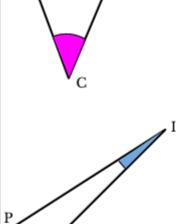


- 1 🗷 Pour chaque triangle rectangle,
- Annoter chaque côté avec H pour hypoténuse, A pour côté adjacent et O pour opposé.
- 2. Écrire le sinus et la tangente de l'angle grisé comme l'exemple du \widehat{PSG} .

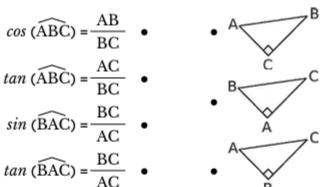


sin () = à	=	
Н		•••••
sin () = à	=	
Н		
sin () = à	=	
Н		
tan () =à	=	
à à		
tan () = à	=	
à à		
tan () =à	=	

2 Ø Pour chaque triangle rectangle, écrire les 3 rapports trigonométriques de l'angle coloré.



AR Associe les rapports avec le triangle qui lui correspond.



S'assurer que la calculatrice est placée en mode « degrés » : Un D ou DEG est alors affiché en haut de l'écran

cos, sin, tan ou Arccos, Arcsin, Arctan.

resin D	Arccos E	Arctan F
sin	COS	tan

☑ ZCalculer le cosinus, le sinus ou la tangente d'un angle (arrondi aux millièmes)

a. Si \widehat{RTL} = 11°, alors $tan(\widehat{RTL}) \approx 0,194$

arctan		► norm		100	++
(1	1		entrer	tan(11) 0,1943803	09

- b. Si $x = 30^{\circ}$, alors $\cos \hat{x}$
- c. Si \widehat{ABC} = 79°, alors \widehat{sin} \widehat{ABC}
- d. Si $y = 45^{\circ}$, alors $tan \hat{y}$
- e. Si $x = 0^{\circ}$, alors $\sin \hat{x} = \dots$
- f. Si \widehat{RDS} = 53°, alors cos \widehat{RDS}

2 Trouver la mesure d'un angle connaissant le sinus, le cosinus ou la tangente (arrondi à l'unité).

a. Si $\sin \widehat{x}$ = 0,79, alors \widehat{x} \approx 52°

- b. Si $cos \widehat{EDF} = 0.31$ alors \widehat{EDF} °
- c. Si $tan \ \widehat{ABC} = 0.5$, alors \widehat{ABC} °
- d. Si $tan \widehat{PAR} = 0,259$, alors \widehat{PAR} °
- e. Si $\cos \widehat{z} = 1$, alors $\widehat{z} =°$
- f. Si $sin \widehat{PSG} = 0.087$, alors \widehat{PSG} °
- L'hypoténuse est le plus grand côté d'un triangle rectangle donc cosinus et sinus d'un angle aigu sont deux grandeurs positives et toujours plus petites que 1.
- Par contre, la tangente d'un angle aigu peut prendre toutes les valeurs.

MISSION 5 : UTILISER SA CALCULATRICE

S'assurer que la calculatrice est placée en mode « degrés » : Un D ou DEG est alors affiché en haut de l'écran

Pour cela on utilise les touches :

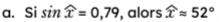
cos, sin, tan ou Arccos, Arcsin, Arctan.

■ Calculer le cosinus, le sinus ou la tangente d'un angle (arrondi aux millièmes)

a. Si \widehat{RTL} = 11°, alors $tan(\widehat{RTL}) \approx 0,194$

- b. Si $x = 30^{\circ}$, alors $\cos \hat{x}$
- c. Si \widehat{ABC} = 79°, alors \widehat{sin} \widehat{ABC}
- d. Si $y = 45^{\circ}$, alors $tan \hat{y}$
- e. Si $x = 0^{\circ}$, alors $\sin \widehat{x} = \dots$
- f. Si \widehat{RDS} = 53°, alors \widehat{cos} \widehat{RDS}

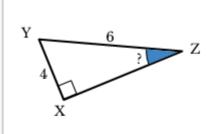
2 X Trouver la mesure d'un angle connaissant le sinus, le cosinus ou la tangente (arrondi à l'unité).



- b. Si $cos \ \widehat{EDF}$ = 0,31 alors \widehat{EDF} °
- c. Si $tan \ \widehat{ABC}$ = 0,5 , alors \widehat{ABC} °
- d. Si $tan \ \widehat{PAR}$ = 0,259, alors \widehat{PAR} °
- e. Si $\cos \widehat{z} = 1$, alors $\widehat{z} = \dots$ °
- f. Si $sin \widehat{PSG}$ = 0,087, alors \widehat{PSG} °
- L'hypoténuse est le plus grand côté d'un triangle rectangle donc cosinus et sinus d'un angle aigu sont deux grandeurs positives et toujours plus petites que 1.
- □ Par contre, la tangente d'un angle aigu peut prendre toutes les valeurs.

MISSION 6 : UTILISER LA TRIGONOMÉTRIE POUR CALCULER UN ANGLE

Soit XYZ un triangle rectangle en X tel que XY = 4 cm et YZ = 6 cm. Déterminer \widehat{YZX}



CHECK UP CAH SOH TOA

Je connais :

Côté Adjacent

O ✓ Côté Opposé H ✓ Hypoténuse

J'utilise donc :

CosinusSinus

Tangente

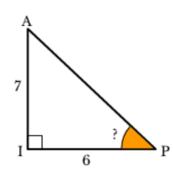
TUTO

RÉDACTION Dans le triangle **rectangle** XYZ,

$$sin(\widehat{YZX}) = \frac{XY}{YZ}$$

$$sin(\widehat{YZX}) = \frac{4}{6}$$

2 Soit API un triangle rectangle en I tel que AI = 7 cm et IP = 6 cm. Déterminer \widehat{API}



CHECK UP CAH SOH TOA

Je connais:

A Côté Adjacent

O Côté Opposé

#∘ Hypoténuse

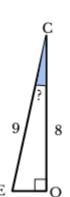
J'utilise donc :

Cosinus

Sinus

Tangente

 \blacksquare Soit ECO un triangle rectangle en O tel que CO = 8 cm et CE = 9 cm. Déterminer $\stackrel{\frown}{\text{ECO}}$



CHECK UP CAH SOH TOA

Je connais:

A Côté Adjacent

0 □ Côté Opposé

H • Hypoténuse

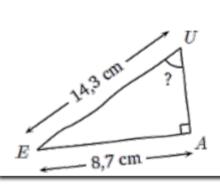
J'utilise donc :

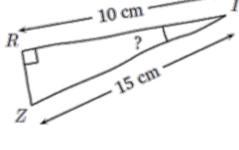
Cosinus

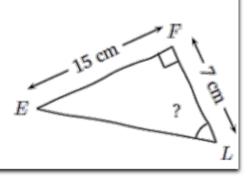
Sinus

Tangente

Déterminer les angles aigus de chaque triangle en utilisant le modèle de rédaction précédent. $10 \, \mathrm{cm}$

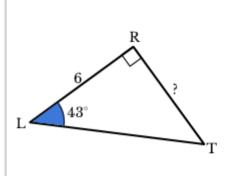






MISSION 7 : UTILISER LA TRIGONOMÉTRIE POUR CALCULER UNE LONGUEUR

1 Soit RTL un triangle rectangle en R tel que RL = 6 cm et \widehat{RLT} = 43°. Déterminer RT.



CHECK UP CAH SOH TOA

TUTO

Côtés concernés :

A Côté Adjacent

Ho Hypoténuse

J'utilise donc :

- Cosinus
- Sinus
- Tangente

RÉDACTION

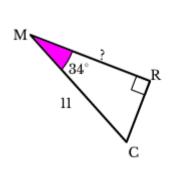
Dans le triangle rectangle RTL,

$$\tan (RLT) = \frac{RT}{RL}$$

$$\tan (43^\circ) = \frac{RT}{6}$$

$$\tan (43^\circ) = \frac{RT}{6}$$

- d'où RT \approx 6 cm $\times tan$ 43° \approx 5,6 cm
- 2 🖄 Soit RMC un triangle rectangle en R tel que MC = 11 cm et RMC = 34°. Déterminer MR.



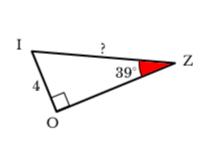
CHECK UP CAH SOH TOA

Côtés concernés :

- A D Côté Adiacent
- O□ Côté Opposé
- **H**□ Hypoténuse

J'utilise donc :

- Cosinus
- Sinus
- Tangente
- **3 ½** Soit IZO un triangle rectangle en O tel que IO = 4 cm et \widehat{IZO} = 39°. Déterminer IZ.



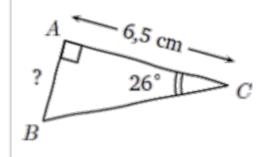
CHECK UP CAH SOH TOA

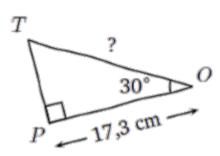
Côtés concernés :

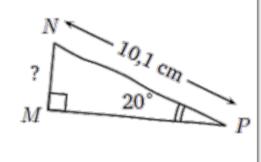
- A Côté Adjacent
- 0 □ Côté Opposé
- *H* Hypoténuse

J'utilise donc :

- Cosinus
- Sinus
- Tangente
- 4 🕏 Déterminer les longueurs AB, OT et MN en utilisant le modèle de rédaction précédent.



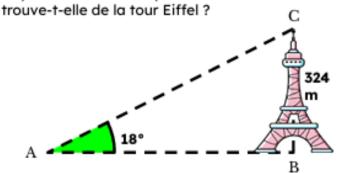




MISSION 8 : RÉSOUDRE DES PROBLÈMES

1 Dans la figure ci-contre, le triangle ABC est rectangle en B.

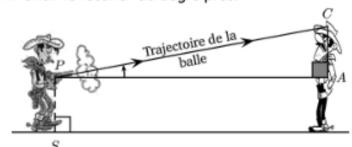
A quelle distance une personne située en A se



3 Pour toucher le chapeau d'Avrell, Lucky Luke va devoir incliner son pistolet avec précision.

- On suppose que les deux cow-boys se tiennent perpendiculaires au sol.
- Taille d'Avrell : 7 pieds soit 2,13 m.
- Distance du sol au pistolet : PS = 1 m.
- Distance du pistolet à Avrell : PA = 6m
- Le triangle PAC est rectangle en A.

Calculer l'angle d'inclinaison APC formé par la trajectoire de la balle et l'horizontale. Arrondir le résultat au degré près.



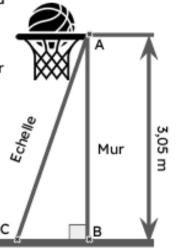
5 On veut connaître la hauteur de cette tour. Préciser les étapes nécessaires pour répondre. 45 m

2 Tony veut installer chez lui un panier de basket. Il doit le fixer à 3,05 m du sol. L'échelle dont il se sert mesure 3,20 m de long.

 À quelle distance du pied du mur doit-il placer l'échelle pour que son sommet soit juste au niveau du panier ? (Donner une valeur approchée au cm près.)

2. Calculer l'angle formé par l'échelle et le sol. (Donner une valeur approchée au degré près.)

Sol



4 🕏 Une épreuve consiste à rejoindre deux plates formes situées sur des arbres à l'aide d'une tyrolienne.

Le câble mesure 75 m de long et il fait un angle de 5° avec l'horizontale. Calculer le dénivelé (hauteur entre les deux plateformes), après avoir codé le dessin.

6 🕏 Un vendeur souhaite rendre son magasin plus accessible aux personnes en fauteuil roulant.

Pour cela il s'est renseigné sur les normes et a décidé d'installer une rampe avec une pente de 3 degrés comme indiqué sur le schéma suivant. Calculer la longueur AB, arrondie au centimètre, pour savoir où la rampe doit commencer.

- ABC est un triangle rectangle en C
- CAB mesure 3°

