MISSION 1 : Critères de divisibilité

Labyrinthe du 2 :

En ne passant que par des cases divisibles par 2, relier le départ et l'arrivée.

					CONTRACTOR OF			
D	16	30	25	68	85	864	69	
7	19	42	65	51	47	111	23	
71	27	14	98	128	990	158	7	
54	39	77	157	233	11	250	29	
125	144	81	12	254	56	86	35	
45	52	93	226	37	651	87	57	1
854	58	157	202	Α	53	88	64	-

Labyrinthe du 9 :

En ne passant que par des cases divisibles par 9, relier le départ et l'arrivée.

					-			
	45	18	13	D	18	28	35	75
	17	72	62	25	27	81	72	45
	27	27	9	56	21	71	12	63
	562	951	825	543	96	189	108	99
	216	495	999	91	53	450	47	95
ì	189	125	567	126	612	342	25	72
٨	Α	753	143	363	105	741	123	81

Labyrinthe du 4 :

En ne passant que par des cases divisibles par 4, relier le départ et l'arrivée.

relier le départ et l'arrivée.							
17	65	82	62	106	56	64	606
D	8	36	58	65	534	442	561
6	18	24	47	58	648	736	508
65	74	40	98	102	224	230	Α
28	98	48	56	96	104	30	19

Labyrinthe du 6 :

En ne passant que par des cases divisibles par 6 (à la fois par 2 et par 3), relier le départ et l'arrivée.

т.				,				
	96	44	51	54	72	36	73	Α
	32	19	40	30	17	84	62	126
	14	24	60	120	88	66	104	276
	21	18	35	21	74	42	90	108
	D	12	27	144	95	250	65	142

MISSION 2 : Décomposer un nombre en produit de facteurs premiers

METHODE : Décomposition en produit de facteurs premiers

126 = 2 x 63 On décompose en produits en utilisant <u>les nombres premiers : 2,3,5,7,11,13,17,19 ...</u>

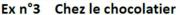
126 = 2 x 3 x 21 On regarde si le nombre est divisible par 2 puis 3, 5 etc <u>dans l'ordre croissant</u> des nombres

126 = 2 x 3 x 3 x 7 premiers jusqu'à obtenir <u>un produit constitué uniquement de nombres premiers</u>.

Trouve la décomposition en facteurs premiers des nombres suivants : Colorie de la façon suivante : A: 350 = D:1080 = $600 = 2^3 \times 3 \times 5^2$ B:1890 = E:66 = F:42 = C:10 290 = В c D 2 2 3 3 5 3 3 E 2 3 11 11 A: 1617 =..... D: 6 930 = $600 = 2^3 \times 3 \times 5^2$ B: 429= E:7546 = C:514 500 = 2 2 3 3 B 2 2 3 3 5 5 11 13 C 2 2 3 3 5 D 2 2 2 3 3 3 5 5 7 13 13 2 2 3 13

MISSION 3: Plus Grand Diviseur Commun (PGCD)

Methode: $60 = 2^2 \times 3 \times 5 = 2 \times 2 \times 2 \times 3 \times 5$ $54 = 2 \times 3^3$


On repère les facteurs communs dans les 2 décomposition puis on les multiplie.

Donc le PGCD de 18 et 28 est 2 x 3 = 6

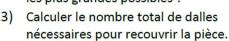
Ex n°1 Chez le pâtissier

Un pâtissier veut répartir 30 cookies et 45 macarons dans des sachets ayant la même répartition de cookies et de macarons, en utilisant tous les gâteaux.

- 1) Peut-il faire 5 sachets?
- 2) Peut-il faire 6 sachets?
- 3) Donner un exemple de nombre de sachets qu'il pourrait faire.
- 4) Combien de sachets peut-il faire au maximum? Avec quelle composition?

Un chocolatier a fabriqué 392 Pralines et 504 chocolats. Il souhaite les répartir jusqu'au dernier dans des boîtes constituées du même nombre de pralines et du même nombre de chocolats.

- 1) Vérifier que ce chocolatier peut préparer 8 boîtes. Quelle est alors la composition de chaque boîte?
- 2) Peut-il préparer 49 boîtes ?
- 3) Combien peut-il faire de boîtes au maximum?


Ex n°2 Chez le fleuriste

Un fleuriste a reçu 72 roses et 108 tulipes. Il souhaite concevoir des bouquets tous identiques, composés du même nombre de roses et du même nombre de tulipes, en utilisant toutes les fleurs.

- 1) Vérifier que ce fleuriste peut confectionner 18 bouquets. Quelle est alors la composition de chaque bouquet
- 2) Peut-il faire 24 bouquets?
- 3) Combien de bouquets peut-il faire au maximum? Avec quelle composition?

- Décomposer 330 et 240 en produit de facteurs premiers et en déduire leur plus grand diviseur commun.
- On souhaite recouvrir une pièce rectangulaire de 3,30 m sur 2,40m de dalles de moquette carrés sans découpe. Quelle sera la mesure du côté de la dalle sachant que l'on veut les dalles les plus grandes possibles?

MISSION 4 : Plus Petit Multiple Commun (PPCM)

Methode: $18 = 2 \times 3^2$ ($\times 2 \times 7$) car « il manque un 2 et un 7 » par rapport à la décomposition de 28 $28 = 2^2 \times 7$ ($\times 3^2$) car « il manque 3^2 » par rapport à la décomposition de 18

Donc le PPCM de 18 et 28 est $2 \times 3^2 \times 2 \times 7 = 252$ ou $2^2 \times 7 \times 3^2 = 252$

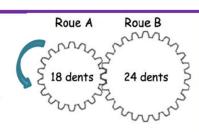
Ex n°1 Les bus

Deux bus A et B partent du même arrêt à 8h00. Le bus A fait un tour de 16min alors que le bus B fait un tour de 36 min.

- 1) Décomposer 16 et 36 en produit de facteurs premiers et en déduire leur plus grand multiple commun (autre méthode : écrire la liste des multiples de 16 et de 36 afin de trouver leur plus grand multiples commun).
- 2) En utilisant la réponse de la question 1 dire à quelle heure les deux bus passeront de nouveau en même temps à l'arrêt du bus.
- 3) Combien de tours auront alors été effectués par le bus A? et par le bus B?

Ex n°2 Les phares

Sur l'île de Ré, deux phares s'allument à intervalle régulier. Le phare A s'allume toutes les 112 secondes et le phare B toutes les 104 secondes. A 10h, ils sont tous les deux allumés. A quelle heure seront-ils allumés à nouveau en même temps


pour la première fois ? (Aide : utiliser le même

cheminement qu'à l'exercice 1)

Ex n°3 Engrenages

- 1) Dans quel sens tourne la roue B?
- 2) Lorsque la roue A fait 8 tours combien de tours fait la roue B?
- 3) Décompose 18 et 24 en produit de facteurs premiers.
- 4) Les deux roues tournent jusqu'à revenir (pour la première fois) dans la position initiale.
 - a. De combien de dents chaque roue aura-t-elle alors tourné?
 - b. Combien de tours aura alors effectué la roue A ? Et la roue B ?

