MISSION 1 : RECONNAÎTRE UNE FONCTION LINÉAIRE

1 \mathbb{Z} Voici un tableau (avec 2 grandeurs x et y)

Grandeur x	2	5	7	10	а	\boldsymbol{x}
Grandeur y	6	15	21	30	3a	32

2. Ce tableau est-il un tableau de proportionnalité? Justifier.

$$\frac{15}{5} = \frac{3}{3}$$

$$\frac{21}{7} = \frac{3}{3}$$

$$\frac{30}{10} = \frac{3}{10}$$

3. Compléter les deux dernières colonnes.

4. Modéliser ce tableau par une fonction f qui permet de passer de x à y

$$f: 7 \mapsto 21$$

$$f: a \mapsto 3a$$

$$f: 10 \mapsto 30$$
 $f: a \mapsto 3a$ $f: x \mapsto 3x$

2 Svoici un tableau (avec 2 grandeurs x et y)

Grandeur x	3	-4	7	11	а	x
Grandeur y	15	-20	35	55	5a	5×

- Est-ce un tableau de proportionnalité ? Justifier.
- 2. Compléter les deux dernières colonnes.
- 3. Modéliser ce tableau par une fonction g qui permet de passer de x à y

1. 15 = 5; -20 = 5; 35 = 5; 55 = 5 Le tableau est un tableau de proportionnalité!

3 Parmi les fonctions suivantes, cocher celles qui sont des fonctions linéaires.

$$\Box$$
 $f: x \mapsto 2x - 7$

$$h: x \mapsto 4$$

$$k: x \mapsto -2x$$

$$g: x \mapsto x^2$$

$$j: x \mapsto 12x$$

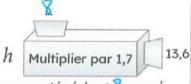
$$m: x \mapsto 0.17x$$

MISSION 2 : IMAGES ET ANTÉCÉDENTS

1 Soit $f: x \rightarrow 7x$

 $f(6) = 7 \times 6 = 42$ donc 6 a pour image 42 par f

- 1. Calculer f(2); f(11) et f(-5)
- 2. Calculer les images de 3 et de -10 par f
- 2 Soit $f: x \mapsto 4.3x$; $g: x \mapsto 3x^2$ et $h: x \mapsto -6x$
- Entourer les fonctions linéaires
- 2. Calculer f(10); g(2) et h(-4)



Donc 36 a pour antécédent $rac{4}{2}$. par f ; 21 a pour antécédent $rac{1}{2}$. par g ; et 13,6 a pour antécédent $rac{1}{8}$. par h

4 \mathbb{Z} Soit $f: x \mapsto 4x$

Déterminer un antécédent de 12

- $12 \div 4 = .3$

Soit $g: x \mapsto 12x$

Déterminer un antécédent de 66

66:12 = 5,5

Soit $h: x \mapsto -2x$ Déterminer un antécédent de -1 -1: (-2) = 1/2

Un antéceident de 66 est 5, 5. 1/2 est un antéceident de - 1

5 ZEntourer la bonne réponse

Quelle fonction est linéaire ?	$x \mapsto 12$	$x \mapsto -4x$	$x \mapsto x^2 - 6$
Soit $f: x \mapsto 3x$, Quelle est l'image de 12?	15	4	36
Soit $g: x \mapsto 11x$, Quel est l'antécédent de 55 ?	55	(5)	44
Déterminer la fonction linéaire h telle que $h(5) = 4$	$h: x \mapsto 5x$	$h: x \mapsto 1,25x$	$h: x \mapsto 0.8x$

telles que:

- $f: x \mapsto 6x$
- $g: x \mapsto -5x$
- $h: x \rightarrow 20x$

Compléter le tableau

f(5) = 30	f(AA) = 66	f(3) = 18
g(10.) = - 50	g(<mark>3.</mark>) = 15	g(2) =o
<i>h</i> (.Ω) = 0	h(5) = 400	h() = 40

MISSION 2

$$E \times L$$
 Δ . $f(2) = 2 \times 7 = 14$
 $f(M) = 7 \times M = 77$
 $f(-5) = 7 \times (-5) = -35$

2.
$$f(3) = 7 \times 3 = 21$$

L'image de 3 est 21.
 $f(-10) = 7 \times (-10) = -70$
L'image de 10 est -70.

Ex2 2.
$$g(10) = 4,3 \times 10 = 43$$

 $g(2) = 3 \times 2^{2} = 12$
 $g(-4) = -6 \times (-4) = 24$

MISSION 3 : REPRÉSENTATIONS GRAPHIQUES

🔟 🗷 Compléter et représenter graphiquement ces fonctions linéaires :

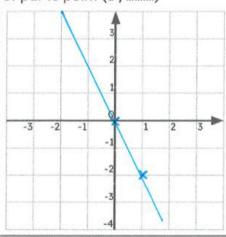
 $f: x \mapsto -2x$

C'est une fonction liveaire

Donc la représentation graphique este cheit qui passe par

l'arigine

et par le point (1;)

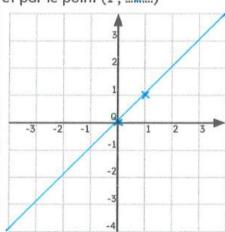


 $f: X \mapsto X$

C'est une fonction lineaire

Donc la représentation graphique est une divite qui passe par

et par le point (1;)



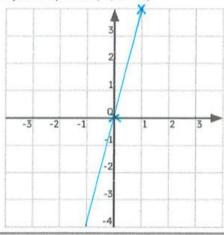
 $f: x \mapsto 4x$

C'est une fonction Liveaire

Donc la représentation graphique est qui passe par

l'origine

et par le point (1;)



 $f: x \mapsto 0.25x$

C'est une fonction limeaire

Donc la représentation graphique est <u>une choite</u> qui passe par

l'origine

et par le point (4 ;)



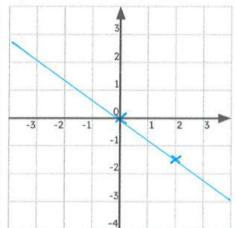
 $f: x \mapsto -0.75x$

C'est une fonction limeaire

Donc la représentation graphique est <u>une duite</u> qui passe par

l'origine

et par le point (..........; -1,5)



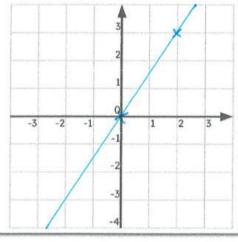
 $f: x \mapsto 1.5x$

C'est une fonction

Donc la représentation graphique est une durite qui passe par

l'origine

et par le point (...2...; ...3...)



 $\widehat{\mathbf{Activit\acute{e}}}$: Représenter graphiquement les fonctions f,g,h,k et l d'équations respectives :

$$D_{1}: y = 0.2x$$

$$D_2: y = 3x$$

$$D_1: y = 0.2x$$
 $D_2: y = 3x$ $D_3: y = -0.5x$ $D_4: y = -3x$ $D_5: y = x$

$$D_{\star}: y = -3x$$

$$D_{\kappa}: y = x$$

Pour tracer chaque courbe, chercher 2 points qui vérifient les équations des fonctions.

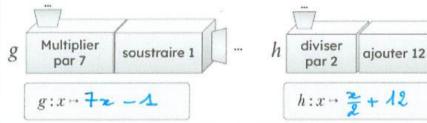
Pour	$rf: x \mapsto 0,$	2x
Antécédent	Image	Point
pour $x = Q$	y = <u>Q</u>	(Ω.;Ω.)
5	1	51

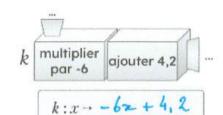
Pour $g: x \mapsto 3x$			
Antécédent		Point	
pour $x = \Omega$.	y = Q	(Ω;Ω)	
pour x = 1	$y = \frac{3}{3}$	(1;3)	

<u>Q</u>.)

			pour $x = 5$	y = <u>1</u>	(5,1)	pour x = △	$y = \frac{3}{3}$.	(<u></u> ;
Pour	$h: x \mapsto -0$,	5 <i>x</i>		$\operatorname{ir} k : x \mapsto -3$	ix	Po	$\operatorname{ur} l : x \mapsto s$	r
Antécédent	Image	Point	Antécédent	Image	Point	Antécédent	Image	Poir
pour $x = \Omega$.	$y = \Omega$.	(Ω;Ω)	pour $x = \Omega$	y <u>Q</u>	(<u>Q.</u> ; <u>Q</u>)	pour $x = \Omega$.	y = <u>Ω</u> .	(<u>Q.</u> ;
pour $x = 2$.	y = -1	(2:-4)	pour $x = \frac{1}{2}$	y = -3	(1.;-3)	pour $x = 4$	<i>y</i> =	(<u></u> ;
			Di		D ₂		D 5	
73			Charles (Charles	61 3 2				- Ds
					2 3	L ₁		

MISSION 4 : Définir une fonction affine



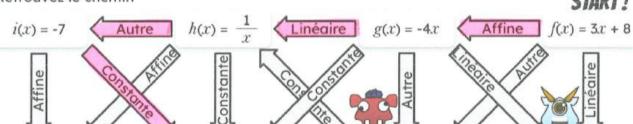


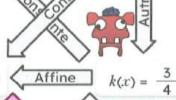
2 🗷 Parmi les fonctions suivantes, cochez celles qui sont des fonctions affines.

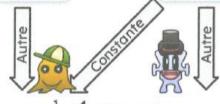
- $f: x \mapsto 2x 7$
- $h: x \mapsto 4$
- X $k: x \rightarrow -2x + 5$
- $b: x \to 2x^3 1$ 0

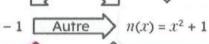
START!

- $g: x \mapsto x^2$
- $j: x \mapsto 1,2x$
- $m: x \rightarrow \frac{1}{2}x$ W
- $v: x \mapsto 1/x$



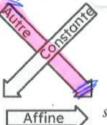


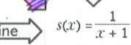






Linéaire
$$t(x) = \frac{7}{3+x}$$





$$r(x) = x^3$$

MISSION 5 : Calculer des images et des antécédents

Soit
$$f: x \rightarrow 7x + 4$$
 C'est une fonction

1. Calculer
$$f(2)$$
, $f(11)$ et $f(-5)$
 $f(2) = 7 \times 2 + 4 = 18$
 $f(11) = 7 \times 11 + 4 = 81$
 $f(-5) = 7 (-5) + 4 = -31$

2. Calculer les images de 3 et de -10 par
$$f$$

$$f(3) = 7 \times 3 + 4 = 25$$

$$f(-10) = 7 \times (-10) + 4 = -66$$

Soient
$$f: x \mapsto 3x - 4$$
 $g: x \mapsto 5x^2$
et $h: x \mapsto -0.5x$

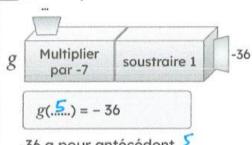
- 1. Entourer les fonctions affines
- 2. Compléter mentalement :

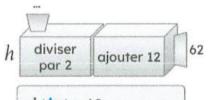
$$f(10) = 26$$
;

$$g(3...) = 45 \text{ et } g(3...) = 45;$$

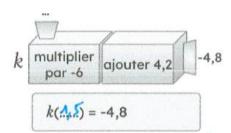
$$h(4) = -2$$

3 🖄 Compléter





$$h(ARR) = 62$$



-4,8 a pour antécédent 4,5

Quelle fonction est affine?	$x \mapsto x + 12$	$x \mapsto -4x - 1$	$x \mapsto x^2 - 6$
Soit $f: x \rightarrow 3x + 9$, quelle est l'image de -4 ?	-3	3	39
Soit $g: x \rightarrow 3x$ – 2, quel est l'antécédent de 22 ?	64	6,5	(8)
Péterminer la fonction linéaire h telle que $h(3) = 27$	$h: x \mapsto 24x$	$h: x \mapsto 1,25x$	$(h:x\mapsto 9x)$

5 On considère 3 fonctions affines f, g et h telles que :

- $f: x \mapsto 6x 1$
- $g: x \mapsto -2x + 4$
- $h: x \mapsto -5x$

Compléter le tableau

f(5) = 29	f() = 53	f(=:.3) = -19
g(<u>.</u>) = 6	g(==3) = 10	g(2) = Ω.
$h(\Omega_{-}) = 0$	h(-3) = 4.5.	h(3) = 40

6

Soit
$$f: x \mapsto 4x + 3$$

Déterminer un antécédent de 19 cela revient à résoudre :

$$4x + 3 = 19$$

$$\alpha = \frac{16}{4}$$

→ 19 a pour antécédent par f

Soit $g: x \mapsto -2x - 7$

Déterminer un antécédent de 3 cela revient à résoudre :

$$-2x - 7 = 3$$

$$-2x = 3 + 7$$

$$-2x = 10$$

$$x = \frac{10}{-2}$$

$$x = -5$$

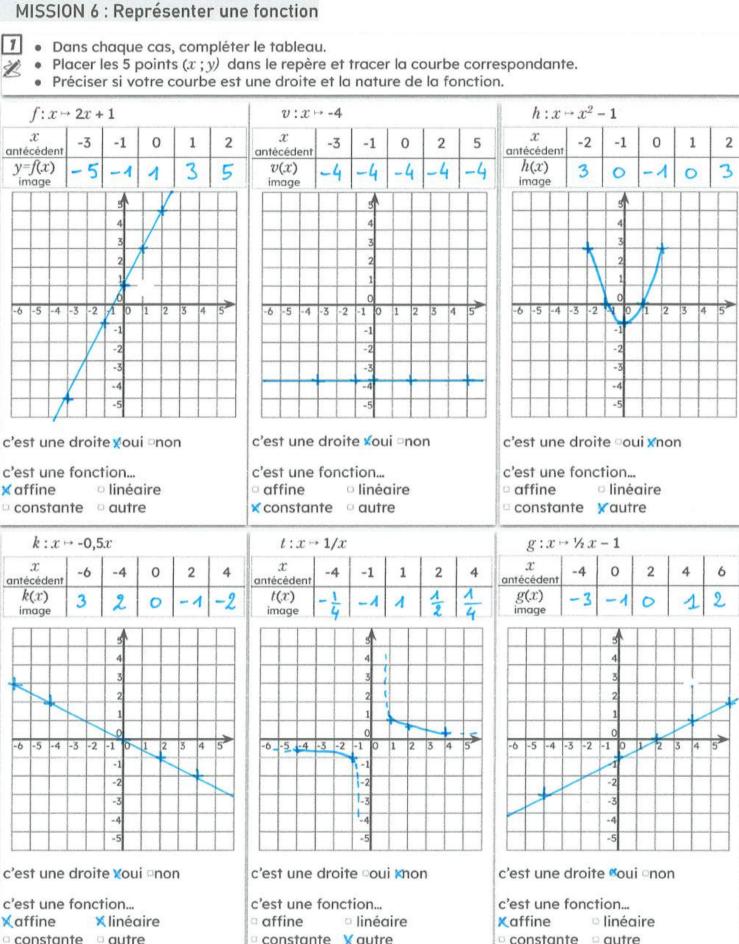
Soit
$$h: x \mapsto -5x + 11$$

Déterminer un antécédent de -34 cela revient à résoudre :

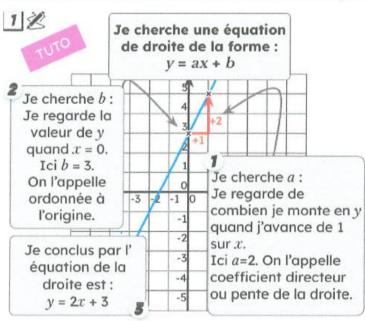
$$-52 + 11 = -34$$

$$-52 = -45$$

$$2 = 9$$



MISSION 7 : Reconnaître une fonction à partir de sa représentation

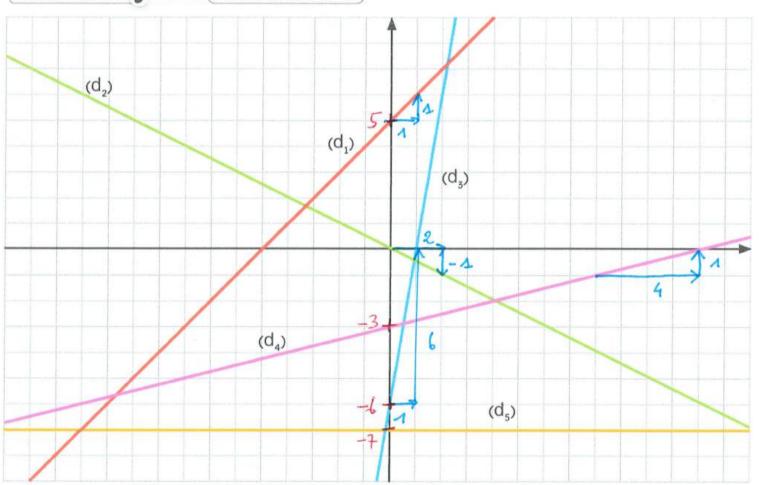


<u>Activité</u>: Pour chacune des 5 droites représentées graphiquement, déterminer algébriquement l'expression de sa fonction affine :

$$\Box$$
 (d₂): $y = -\frac{1}{2} \times d$ $\rightarrow f_2: x \mapsto -\frac{1}{2} \times d$

□
$$(d_3): y = bx - b$$
 $\rightarrow f_3: x \mapsto bx - b$

$$\Box$$
 (d₄): $y = \frac{1}{4} z - 3 \rightarrow f_4: x \mapsto \frac{1}{4} z - 3$



2 Bilan : lorsque le coefficient directeur

- a est positif alors "la droite est croissante
- a est négatif alors la droite est décroissante
- a est nul alors ... la fonction est constante.

ANNEXE à rendre avec la copie

Nombre de journées de ski	2	6	10
Formule A	73 €	219£	365€
Formule B	127 €	201€	275€
Formule C	448,50 €	448,50	448,50€

Exercice 2

Le Tour de France 2021 est une compétition de cyclisme s'étant déroulée du 26 juin au 18 juillet 2021.

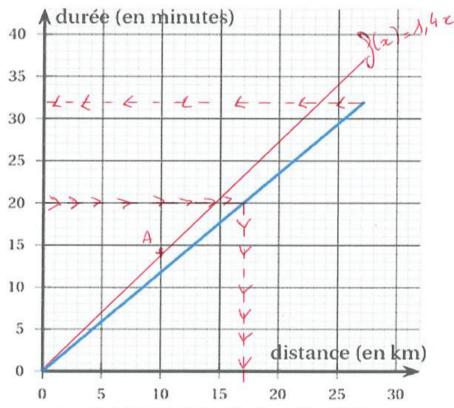
L'étape 5 était un contre-la-montre individuel de 27,2 km. Le graphique ci-dessous indique le temps effectué par Tadej Pogacar en fonction de la distance parcourue sur son trajet (source: https://www.letour.fr).

On répondra aux questions suivantes à l'aide de ce graphique ci-dessous.

On laissera les traits de construction éventuels sur le graphique.

1. Quelle distance approximative Tadej POGACAR a-t-il parcouru en 20 minutes ?

Il a parcouru environ 17 km.



2. En combien de temps environ Tadej POGACAR a-t-il effectué les 27,2 km du parcours?

Il a effectue 27, 2 konen environ 32 min.

Le cycliste Bryan Coquard a lui aussi effectué ce contre-la-montre.

Le temps, en minutes, mis par Bryan Coquard pour parcourir la distance x, exprimée en km, peut être représenté par la fonction linéaire f d'expression algébrique : f(x) = 1,4x.

- 3. Représenter la fonction f sur le graphique. $J(10) = 1,4 \times 10 = 14$ danc A(10,14)
- 4. Lequel de ces deux coureurs a été classé avant l'autre ?

Pogacar est avive avant Coquard.

5. Est-il vrai que la vitesse moyenne de Tadej Pogacar sur l'ensemble du parcours est supérieure à 50 km/h? Justifier.

Mission n= 8

Exercice 1

2. a) La fonction linéaire h(x) = 36,5 x représente une situation de proportionnalité

$$\frac{182}{18} = \frac{90}{18}$$

Læs formules A et B sont identiques pour 5 jours de ski.

Exercise 2

Convertissions 32 min en heure décimale:

Sa vitesse moyenne est donc supérieure à 50 km/h. L'afformation est vraie.

MISSION 8: En route vers le DNB

Exercice 1

Une station de ski propose à ses clients trois formules pour la saison d'hiver :

- Formule A: on paie 36,50 € par journée de ski.
- Formule B: on paie 90 € pour un abonnement « SkiPlus » pour la saison, puis 18,50 € par journée de ski.
- Formule C: on paic 448,50 € pour un abonnement « SkiTotal » qui permet ensuite un accès gratuit
 à la station pendant toute la saison.
- Marin se demande quelle formule choisir cet hiver. Il réalise un tableau pour calculer le montant à payer pour chacune des formules en fonction du nombre de journées de ski. Compléter, sans justifier, le tableau fourni en ANNEXE à rendre avec la copie.
- 2. Dans cette question, x désigne le nombre de journées de ski.

On considère les trois fonctions f, g et h définies par :

$$f(x) = 90 + 18.5x$$

$$g(x) = 448.5$$

$$h(x) = 36, 5x$$

- a. Laquelle de ces trois fonctions représente une situation de proportionnalité?
- b. Associer, sans justifier, chacune de ces fonctions à la formule A, B ou C correspondante.
- c. Calculer le nombre de journées de ski pour lequel le montant à payer avec les formules A et B est identique.
- 3. On a représenté graphiquement les trois fonctions dans le graphique ci dessous. Sans justifier et à l'aide du graphique :
 - a. Associer chaque représentation graphique (d₁), (d₂) et (d₃) à la fonction f, g ou h correspondante.
 - b. Déterminer le nombre maximum de journées pendant lesquelles Marin peut skier avec un budget de 320 €, en choisissant la formule la plus avantageuse.
 - c. Déterminer à partir de combien de journées de ski il devient avantageux de choisir la formule
 C.

