MISSION 1 : RECONNAÎTRE UNE FONCTION LINÉAIRE

1 X Voici un tableau (avec 2 grandeurs x et y)

Grandeur x	2	5	7	10	a	x
Grandeur y	6	15	21	30		

2. Ce tableau est-il un tableau de proportionnalité?

$$\frac{6}{2}$$
 = ... $\frac{15}{5}$ = ... $\frac{21}{7}$ = ... $\frac{30}{10}$ = ...

Donc ...

- 3. Compléter les deux dernières colonnes.
- 4. **Modéliser** ce tableau par une fonction f qui permet de passer de x à y

$$f: 2 \mapsto \dots \qquad \qquad f: 5 \mapsto \dots \qquad \qquad f: 7 \mapsto \dots$$

 $f: 10 \mapsto \dots \qquad \qquad f: a \mapsto \dots \qquad \qquad f: x \mapsto \dots$

Grandeur x

Grandeur y

Justifier.

3 Parmi les fonctions suivantes, cocher celles qui sont des fonctions linéaires.

- $\begin{array}{ccc}
 \Box & f: x \mapsto 2x 7 & \Box \\
 \Box & \varphi: x \mapsto x^2 & \Box
 \end{array}$
 - $h: x \mapsto \mathbf{4}$
- $k: x \mapsto -2x$

- \Box $g: x \mapsto x^2$
- \Box $j: x \mapsto 12x$
- $m: x \mapsto 0,17x$

2 Solici un tableau (avec 2 grandeurs x et y)

-4

-20

3. Modéliser ce tableau par une fonction g qui

35

15

permet de passer de x à y

Est-ce un tableau de proportionnalité ?

2. Compléter les deux dernières colonnes.

11

55

MISSION 2 : IMAGES ET ANTÉCÉDENTS

1 Soit $f: x \mapsto 7x$

 $f(6) = 7 \times 6 = 42$ donc 6 a pour image 42 par f

- 1. Calculer f(2); f(11) et f(-5)
- 2. Calculer les images de 3 et de -10 par f
- Soit $f: x \mapsto 4.3x$; $g: x \mapsto 3x^2$ et $h: x \mapsto -6x$
- 1. Entourer les fonctions linéaires
- 2. Calculer f (10); g (2) et h (-4)

Compléter:

36

Multiplier par -3

Multiplier par 1,7

13,6

Donc 36 a pour antécédent par f; 21 a pour antécédent par g; et 13,6 a pour antécédent par h

4 \aleph Soit $f: x \mapsto 4x$

Déterminer un antécédent de 12

Soit $g: x \mapsto 12x$

Déterminer un antécédent de 66

Soit $h: x \mapsto -2x$

Déterminer un antécédent de -1

• 12 ÷ 4 =

• 12 a pour antécédent par f

5 **Entourer** la bonne réponse

Г	<u> </u>			
	Quelle fonction est linéaire ?	$x\mapsto$ 12	<i>x</i> → -4 <i>x</i>	$x\mapsto x^2-6$
	Soit $f: x \mapsto 3x$, Quelle est l'image de 12 ?	15	4	36
	Soit $g: x \mapsto 11x$, Quel est l'antécédent de 55 ?	55	5	44
	Déterminer la fonction linéaire h telle que h (5) = 4	$h: x \mapsto 5x$	$h: x \mapsto 1,25x$	$h: x \mapsto 0.8x$

6 Con considère 3 fonctions linéaires f, g et htelles aue:

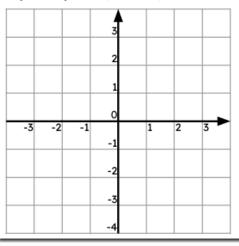
- $f: x \mapsto \mathbf{6}x$
- $g: x \mapsto -5x$

 $h: x \mapsto 20x$

Compléter le tableau

f(5) = 30	f() = 66	f() = 18
g() = - 50	g() = 15	g(2) =
<i>h</i> () = 0	<i>h</i> (5) =	h() = 40

MISSION 3 : REPRÉSENTATIONS GRAPHIQUES

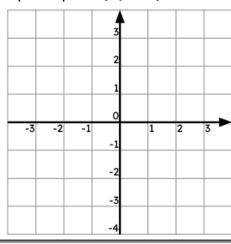

_	∠ Compléter et repre			
I 7	IXCompléter et repré	esenter aranhia	ruement ces foi	actions linéaires :
	123 COMPLETED OF TOPIN	Journal Grapine	44CIIICIII CC3 IOI	iciiono inicanco

$f: x \mapsto -2x$

C'est une fonction

Donc la représentation graphique est qui passe par

et par le point (1;)

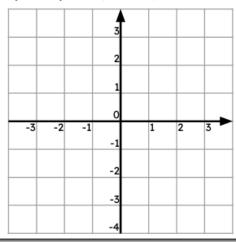


$f: x \mapsto x$

C'est une fonction

Donc la représentation graphique est qui passe par

et par le point (1;)

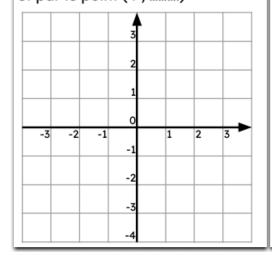


$f: x \mapsto 4x$

C'est une fonction

Donc la représentation graphique est qui passe par

et par le point (1 ;)

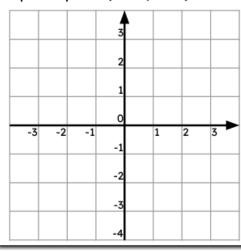


$f: x \mapsto 0,25x$

C'est une fonction

Donc la représentation graphique est qui passe par

et par le point (4;)

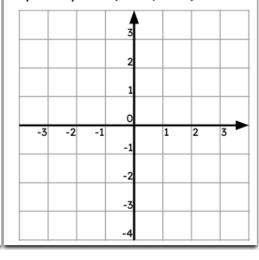


$$f: x \mapsto -0.75x$$

C'est une fonction

Donc la représentation graphique est qui passe par

et par le point (......;)

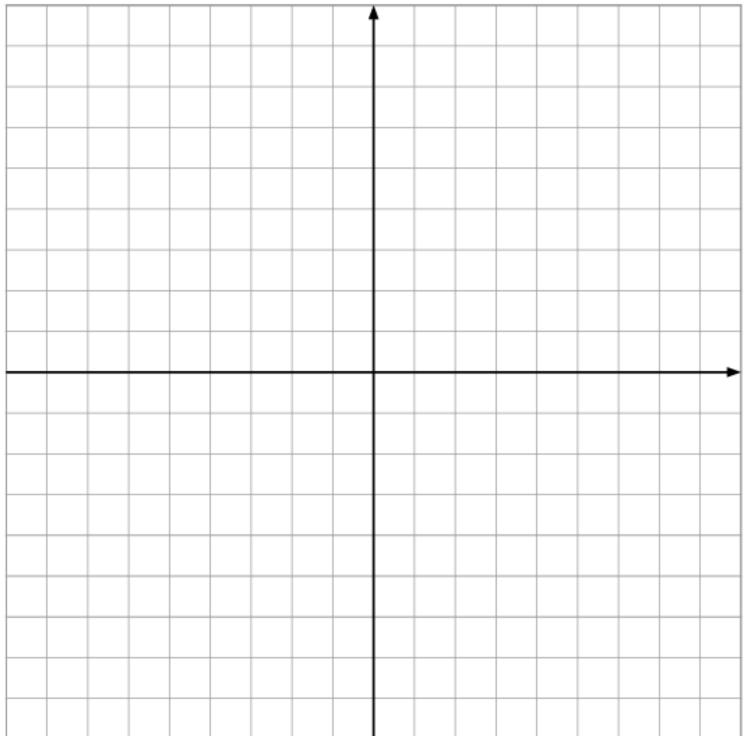


$f: x \mapsto \mathbf{1}, \mathbf{5}x$

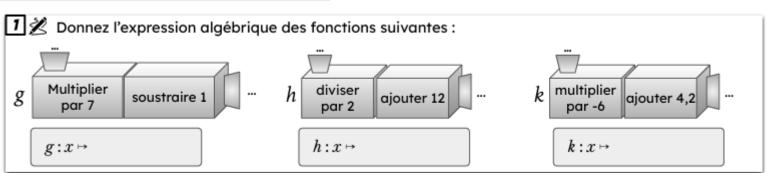
C'est une fonction

Donc la représentation graphique est qui passe par

et par le point (......;)

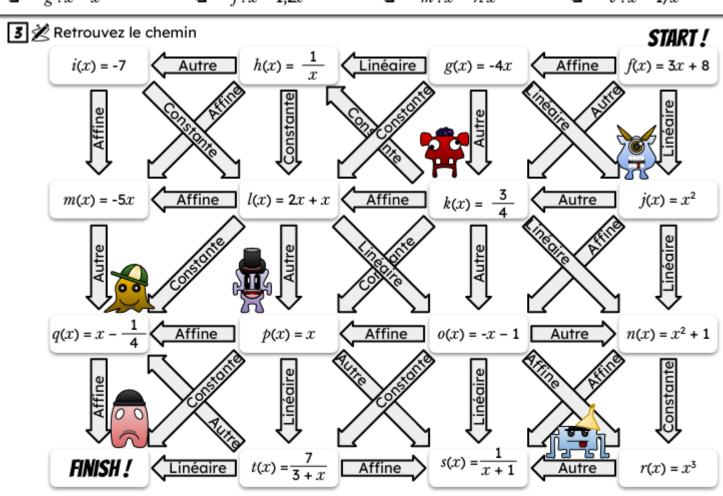

 $D_1: y = 0.2x$ $D_2: y = 3x$ $D_3: y = -0.5x$ $D_4: y = -3x$ $D_5: y = x$

Pour tracer chaque courbe, chercher 2 points qui vérifient les équations des fonctions.


Pour $f: x \mapsto 0,2x$							
Antécédent	Image	Point					
pour <i>x</i> =	<i>y</i> =	(;)					
pour <i>x</i> =	ν =	()					

Pour $g: x \mapsto 3x$							
Antécédent	Image	Point					
pour $x = \dots$	y =	(;)					
pour <i>x</i> =	<i>y</i> =	(;)					

Pour	$h: x \mapsto -0,$	5 <i>x</i>	Pou	r <i>k</i> : <i>x</i> → -3	x	Pour $l: x \mapsto x$				
Antécédent	Image	Point	Antécédent	Image	Point	Antécédent	Image	Point		
pour <i>x</i> =	<i>y</i> =	(;)	pour <i>x</i> =	y =	(;)	pour <i>x</i> =	<i>y</i> =	(;)		
			pour <i>x</i> =							


MISSION 4 : Définir une fonction affine

2 🗷 Parmi les fonctions suivantes, cochez celles qui sont des fonctions affines.

- $h: x \mapsto 4$
- \square $k: x \mapsto -2x + 5$
- $b: x \mapsto 2x^3 1$

- \Box $g: x \mapsto x^2$
- \Box $j: x \mapsto 1,2x$
- \square $m: x \mapsto \frac{1}{2}x$
- \neg $v: x \mapsto 1/x$

MISSION 5 : Calculer des images et des antécédents

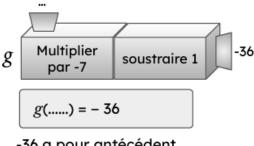
Soit $f: x \mapsto 7x + 4$ C'est une fonction

1. Calculer f(2), f(11) et f(-5)

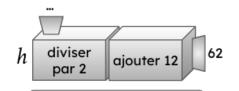
2. Calculer les images de 3 et de -10 par f

2 Soient $f: x \mapsto 3x - 4$, $g: x \mapsto 5x^2$ et $h: x \mapsto -0.5x$

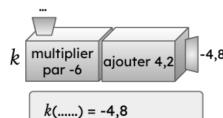
1. Entourer les fonctions affines


2. Compléter mentalement :

$$f(10) = \dots$$
;


$$g(\dots) = 45 \text{ et } g(\dots) = 45;$$

$$h(4) = \dots$$



-36 a pour antécédent ...

$$h(.....) = 62$$

62 a pour antécédent ...

-4,8 a pour antécédent ...

4	Ż	Entourer	la	ou	les	bonnes	ré	ponses
---	---	----------	----	----	-----	--------	----	--------

Quelle fonction est affine?	$x \mapsto x + 12$	<i>x</i> → -4 <i>x</i> - 1	$x \mapsto x^2 - 6$
Soit $f: x \mapsto 3x + 9$, quelle est l'image de -4 ?	-3	3	39
Soit $g: x \mapsto 3x$ – 2, quel est l'antécédent de 22 ?	64	6,5	8
Déterminer la fonction linéaire h telle que h (3) = 27	$h: x \mapsto 24x$	$h: x \mapsto 1,25x$	$h: x \mapsto 9x$

- $f: x \mapsto 6x 1$
- $g: x \mapsto -2x + 4$
- $h: x \mapsto -5x$

Compléter le tableau

<i>f</i> (5)	=	f() = 53	f() = -19
g() = 6	g() = 10	g(2) =
h() = 0	h(-3) =	h() = 40

6 🗷

Soit $f: x \mapsto 4x + 3$

Déterminer un antécédent de 19 cela revient à résoudre :

$$4x + 3 = 19$$

Soit $g: x \mapsto -2x - 7$

Déterminer un antécédent de 3 cela revient à résoudre :

Soit $h: x \mapsto -5x + 11$

Déterminer un antécédent de -34 cela revient à résoudre :

→ 19 a pour antécédent par f

MISSION 6: Représenter une fonction

 $f: x \mapsto 2x + 1$

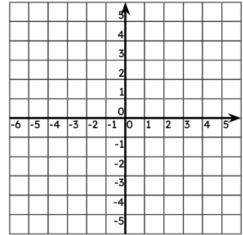
- 1 Dans chaque cas, compléter le tableau.
 - Placer les 5 points (x; y) dans le repère et tracer la courbe correspondante.
 - Préciser si votre courbe est une droite et la nature de la fonction.

		_						_				 						
anté			-;	3	-1	L	0		1		2	a		x céde	ent	-3	5	
y= in	f(x	;)											v im	(X) age				
					5	1												I
					4													I
					3													I
L					2			L	\perp	L								1
L					1	L		L	\perp	L								
L					0	_												
-6	-5	-4	-3	-2	-1	0	1	2	3	4	5		-6	-5	-4	-3	-2	ŀ
					-1													I
					-2													Ī
					-3												Г	Ī
					-4													Ī
					-5													I
																		-

71	٠	\boldsymbol{r}	\rightarrow	-4
ω		.4.	, ,	

im	(X) age										
					5						
					4						
					3						
					2						
					1						
					0						
_	_		_		0						
-6	-5	-4	-3	-2	-1	0	1	2	3	4	5
-6	-5	-4	-3	-2	-1 -1	0	1	2	3	4	5
-6	-5	-4	-3	-2	-1	0	1	2	3	4	5
-6	-5	-4	-3	-2	-1 -1	0	1	2	3	4	5
-6	-5	-4	-3	-2	-1 -1 -2	0	1	2	3	4	5

-1


0

2

5

h	r	\mapsto	x^2	_	1
11	u		ı	_	1

x antécédent	-2	-1	0	1	2
h(x) image					
image					
				ТТ	

c'est une droite oui onon

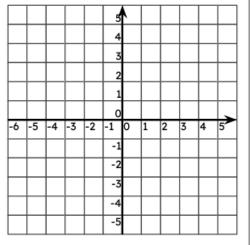
c'est une fonction...

- linéaire affine
- constante
 autre

c'est une droite oui onon

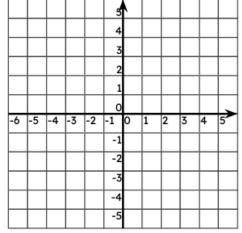
c'est une fonction...

- linéaire affine
- oconstante autre

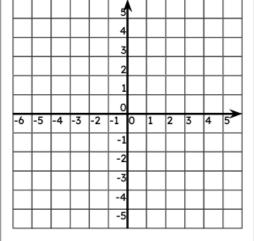

c'est une droite oui onon

c'est une fonction...

- affine
 linéaire
- constanteautre


k	:	x	↦	-0,5 <i>x</i>
---	---	---	---	----------------------

x antécédent	-6	-4	0	2	4
k(x) image					


$$t: x \mapsto 1/x$$

x antécédent	-4	-1	1	2	4
t(x) image					
image					

 $g: x \mapsto \frac{1}{2}x - 1$

x antécédent	-4	0	2	4	6
g(x) image					

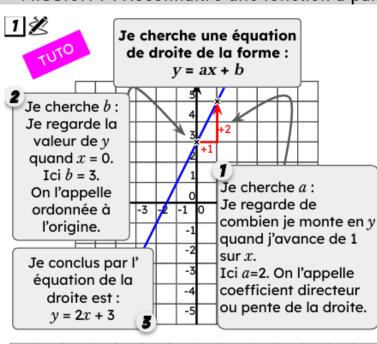
c'est une droite oui onon

c'est une fonction...

- affine
 linéaire
- constante
 autre

c'est une droite oui onon

c'est une fonction...


- □ affine □ linéaire
- constante
 autre

c'est une droite oui onon

c'est une fonction...

- affine
 linéaire
- constante
 autre

MISSION 7 : Reconnaître une fonction à partir de sa représentation

<u>Activité</u>: Pour chacune des 5 droites représentées graphiquement, déterminer algébriquement l'expression de sa fonction affine:

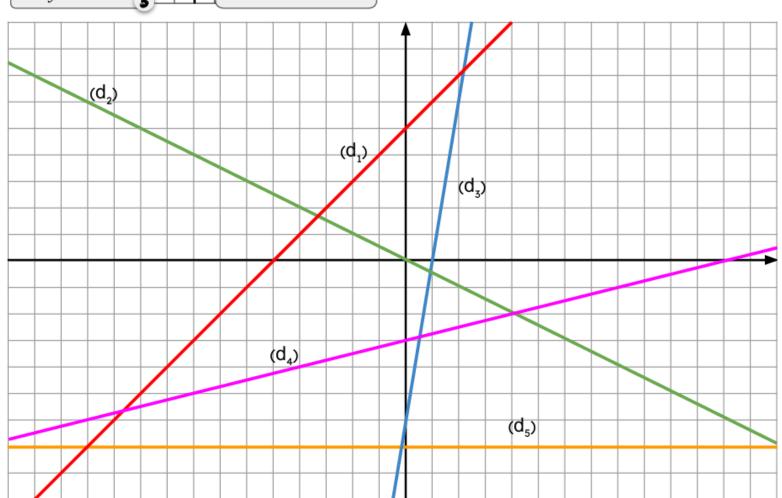
$$\Box$$
 (d₁): $y =$

$$\rightarrow f_1: x \mapsto$$

$$\Box$$
 (d₂): y =

$$\rightarrow f_2: x \mapsto$$

$$\Box$$
 (d_z): y =


$$\rightarrow f_3: x \mapsto$$

□ (d₄):
$$y =$$

$$\rightarrow f_4: x \mapsto$$

$$\Box$$
 (d₅): $y =$

$$\rightarrow f_5: x \mapsto$$

2 Bilan : lorsque le coefficient directeur

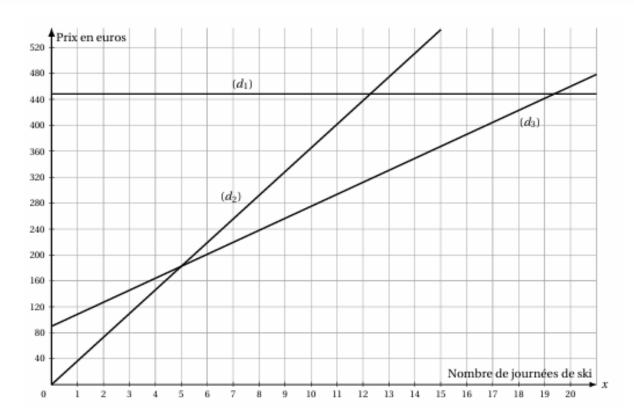
- a est positif alors ...
- a est négatif alors ...
- a est nul alors ...

MISSION 8: En route vers le DNB

Exercice 1

Une station de ski propose à ses clients trois formules pour la saison d'hiver :

- Formule A: on paie 36,50 € par journée de ski.
- Formule B: on paie 90 € pour un abonnement « SkiPlus » pour la saison, puis 18,50 € par journée de ski.
- Formule C: on paie 448,50 € pour un abonnement « SkiTotal » qui permet ensuite un accès gratuit à la station pendant toute la saison.
- Marin se demande quelle formule choisir cet hiver. Il réalise un tableau pour calculer le montant à payer pour chacune des formules en fonction du nombre de journées de ski. Compléter, sans justifier, le tableau fourni en ANNEXE à rendre avec la copie.
- Dans cette question, x désigne le nombre de journées de ski.


On considère les trois fonctions f, g et h définies par :

$$f(x) = 90 + 18,5x$$

$$g(x) = 448,5$$

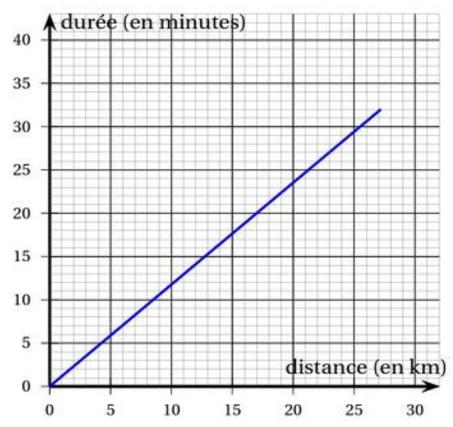
$$h(x) = 36,5x$$

- a. Laquelle de ces trois fonctions représente une situation de proportionnalité?
- b. Associer, sans justifier, chacune de ces fonctions à la formule A, B ou C correspondante.
- c. Calculer le nombre de journées de ski pour lequel le montant à payer avec les formules A et B est identique.
- 3. On a représenté graphiquement les trois fonctions dans le graphique ci dessous. Sans justifier et à l'aide du graphique :
 - a. Associer chaque représentation graphique (d₁), (d₂) et (d₃) à la fonction f, g ou h correspondante.
 - b. Déterminer le nombre maximum de journées pendant lesquelles Marin peut skier avec un budget de 320 €, en choisissant la formule la plus avantageuse.
 - c. Déterminer à partir de combien de journées de ski il devient avantageux de choisir la formule
 C.

ANNEXE à rendre avec la copie

Nombre de journées de ski	2	6	10
Formule A	73 €		
Formule B	127€		
Formule C	448,50 €		

Exercice 2


Le Tour de France 2021 est une compétition de cyclisme s'étant déroulée du 26 juin au 18 juillet 2021.

L'étape 5 était un contre-la-montre individuel de 27,2 km. Le graphique ci-dessous indique le temps effectué par Tadej Pogacar en fonction de la distance parcourue sur son trajet (source: https://www.letour.fr).

On répondra aux questions suivantes à l'aide de ce graphique ci-dessous.

On laissera les traits de construction éventuels sur le graphique.

Quelle distance approximative Tadej POGACAR a-t-il parcouru en 20 minutes ?

2. En combien de temps environ Tadej POGACAR a-t-il effectué les 27,2 km du parcours?

Le cycliste Bryan Coquard a lui aussi effectué ce contre-la-montre.

Le temps, en minutes, mis par Bryan Coquard pour parcourir la distance x, exprimée en km, peut être représenté par la fonction linéaire f d'expression algébrique : f(x) = 1,4x.

- 3. Représenter la fonction f sur le graphique.
- 4. Lequel de ces deux coureurs a été classé avant l'autre ?

5. Est-il vrai que la vitesse moyenne de Tadej Pogacar sur l'ensemble du parcours est supérieure à 50 km/h? Justifier.