CHAPITRE 13 – FONCTIONS AFFINES



I Définition

Une fonction affine est une fonction qui peut s'écrire sous la forme :

 $(\infty) = \infty + 6$ où *a* et *b* sont deux nombres réels quelconques.

Remarque: toute fonction linéaire est une fonction affine telle que b = 0

Exemples: • La fonction $\{ : \infty \mapsto 2\infty + 3 \text{ est une fonction affine. } (a = 2 \text{ et } b = 3) \}$

- La fonction $\{ : \infty \mapsto 7 4\infty \text{ est une fonction affine.} (a = -4 \text{ et } b = 7) \}$
- La fonction $\oint : \infty \mapsto 4\infty$ est une fonction linéaire donc une fonction affine. (a = 4 et b = 0)
- La fonction $f: \infty \mapsto 3\infty^2 + 7$ n'est pas une fonction affine.

Il images et antécédents

1) Calculer **l'image** d'un nombre par une fonction affine

Soit f la fonction affine définie par $f(\infty) = -3\infty + 13$. Calculer l'image de -5 par la fonction $f(\infty)$

<u>Réponse</u> : pour calculer l'image d'un nombre, il suffit de <u>remplacer ∞ par la valeur souhaitée</u> :

{(-5) = -3 × (-5) + 13 = 15 + 13 = 28, donc l'image de -5 par **{** est 28.



Point Méthode

Exemple:

Soit f la fonction affine définie par $(\infty) = 7\infty$ – 6. Calculer l'antécédent de 22 par la fonction f.

<u>Réponse</u>: pour déterminer l'antécédent d'un nombre par une fonction affine, il <u>faut résoudre</u> une équation.

Soit ω l'antécédent cherché, on a (∞) = 22 autrement dit : $7\omega - 6 = 22$

$$7\omega = 28$$

donc l'antécédent de 22 par f est 4. $\infty = 4$

III Représentation graphique d'une fonction affine

Dans un repère, la représentation graphique d'une fonction affine $\int_{\mathbb{R}} (\infty) = \infty + \delta$ est une droite d'équation $\psi = \infty + \delta$

1) Coefficient directeur:

a est le coefficient directeur de la droite :

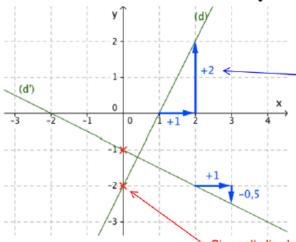
- Si a est positif, la droite monte.
- Si a est négatif, la droite descend.
- Si a est égal à 0, la droite est parallèle à l'axe des abscisses.

2) Ordonnée à l'origine

b est l'ordonnée à l'origine de la droite. C'est à dire que la droite coupe l'axe des ordonnées au point de coordonnées (0; b).

Exemples:

1) (d) est la représentation graphique de (∞) = $(\infty$



S'appelle le coefficient directeur (si on avance de 1 : on monte de 2)

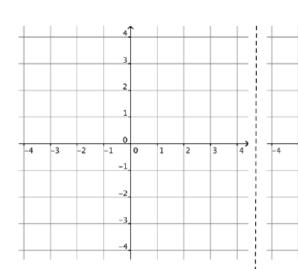
S'appelle l'ordonnée à l'origine (se lit sur l'axe des ordonnées : -2)

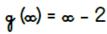
La fonction $(\infty) = 2_{\infty} - 2$ a un coefficient directeur qui est 2. Il est positif donc la droite monte.

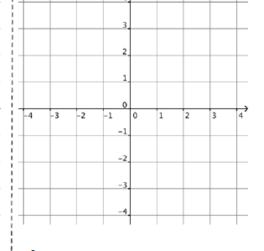
Pour construire la droite il faut déterminer les coordonnées de 2 points de la droite.

X	0	1
f(∞)	(O) = - 2	(1) = 0

A toi de jouer!







$$\oint (\infty) = -2\infty + 3$$

8	
{ (∞)	

$$g_r(\infty) = \infty - 2$$

8	
(∞)	

R	(œ)	=	3
	•		

8	
(∞)	