Wroctaw University
of Science and Technology

Advanced Topics in Robotics Project

Remotely Controlled Mobile Platform by
using Ackermann Geometry

Students: Tugce Avcu 276817
Marcin Kochalski 275514

Date: 24.01.2025

TABLE OF CONTENTS

Problem Statement and Motivation.....3
Project Photos......ccccceeviiinnnnnncnnnnss 5
NT0] 11131 | 9
Tools Used on the Project............... 10
Code Implementation............cccceee. 11
Python GUI Code........ccccccennnnnnn. 12
110110 11F: 1 o) 14

Appendices.......coiiinmieinniiiiiiiiinnnse 15

Main Part

Problem Statement and Motivation

We started this project with the goal of building a remotely controlled
mobile platform using Ackermann steering geometry. Our intention
was to create a system that could mimic the steering behavior of real-
world vehicles, while being controlled remotely through a graphical
user interface (GUI). Initially, our plan was to use advanced
technologies like ESP32, ROS, and Zephyr for real-time
communication and motor control. However, in the process, major
integration challenges arose, which turned us toward a simpler yet
effective solution that included Arduino, the L298N motor driver, and
the HC-05 Bluetooth module. This change allowed us to focus more
on the functional aspects of the platform without getting bogged down
by complex software compatibility issues.

This project was born from the desire to gain practical experience in
robotics and control systems. Further, we needed to go a step further
than theoretical knowledge into the application of the acquired
knowledge on some hands-on, real-world problem. Interesting was the
Ackermann steering geometry, for its wide application in automotive
engineering; that was an opportunity to learn about its implementation
in a small-scale, controlled environment.

We divided the work among team members based on our strengths
during the beginning period. Some of us put more focus on the
hardware aspect, like the setup of the motor and steering mechanism,
whereas others worked on software aspects, which included
developing the GUI and programming the microcontroller. The first
try at integrating ESP32 and ROS resulted in compatibility issues
related to wireless communication and real-time control. After
discussing it thoroughly, we decided collectively to make the project
simpler by using Arduino, which would provide us with a more stable
and reliable platform.

In our final solution, Bluetooth communication was achieved by using
the HC-05 module. The Python-based GUI was used as the main
interface to send commands to the platform for movement, such as
forward, backward, left, and right. In our design, the L298N was used
for power and direction control of DC motors, and a servo motor for
the steering angle based on Ackermann geometry. The platform was
tested on a series of trials to ensure it was performing reliably and
meeting all functional requirements.

Apart from the development of the fully functional mobile platform,
the project taught us many lessons: problem-solving, teamwork, and
adaptability. Transitioning from a complex to a simpler system proved
to be a turning point to reinforce the importance of flexibility in
engineering projects. At the end, we achieved a functional, remotely
controlled Ackermann steering platform, and we are proud of the
results.

Fig. 1 Left view of the robot

Fig. 2 Front view of the robot

Fig. 3 Right view of the robot

= BEIPHE Jimpsniitsom
T

Fig. 4 Upper view of the robot

Solution
Overview of Solution

Our solution focuses on the functional remotely controlled Ackermann
steering geometry platform that can make precise movement possible.
Main parts include the following:

Ackermann Steering Geometry: Allows the model to make very
realistic angle and movement similar to steering in vehicles.

Arduino Microcontroller: A brain for the whole system.

L298N Motor Driver: Interfaces the power supply with control logic
to the DC motors of the platform.

HC-05 Bluetooth Module: Keeps the platform wireless to the user
interface display.

Python-Based GUI: The GUI will provide an intuitive interface for
remote control, letting the user manage speed, steering, and direction
with ease.

This condition requires very accurate control over the steering angle.
For the latter, we have utilized a servo motor controlled by Arduino.
The to-and-fro movements of the platform are realized via an L298N
motor driver, through which the amount of power is provided to DC
motors. For the communication with the platform in order for wireless

control to be achieved, a Bluetooth module will be used within the
GUIL

Tools Used on the Project

Software:

Arduino IDE for programming the microcontroller.

Python (with Tkinter) for creating the GUI.

Hardware:

Arduino Uno microcontroller.

HC-05 Bluetooth module for communication.

L298N motor driver for controlling motor power.

Servo motor for steering.

DC motors for platform movement.

Details of the Solution

The solution has gone through significant evolvement throughout the
project. First, we intended to use ESP32 with ROS and Zephyr for
higher-order communication and control capabilities. However,
difficulties in system integration shifted us towards Arduino-based
control with Bluetooth communication.

The final setup involves:

Communication: The HC-05 module transmits commands from the
GUI to the Arduino. The Arduino interprets these commands and
executes the corresponding actions, such as moving forward,
backward, or turning.

Motor Control: L298N-the motor driver for DC motors is applied in

order to give speed and direction input from Arduino.

10

Steering Mechanism: Servo motor for giving steering angle for
Ackermann geometry in order to take proper and smooth turns.

Code Implementation

Arduino Code

The Arduino code was designed to process commands received via
Bluetooth and control the motors accordingly:

#include <Servo.h>

Servo steeringServo;
int motorPinl = 5;
int motorPin2 = 6;
int enablePin 9;

void setup() {
steeringServo.attach(3);
pinMode(motorPinl, OUTPUT);
pinMode(motorPin2, OUTPUT);
pinMode(enablePin, OUTPUT);
Serial.begin(9600);

}

void loop() {
if (Serial.available()) {

char command = Serial.read();

if (command == 'F') {
digitalWrite(motorPinl, HIGH);
digitalWrite(motorPin2, LOW);
analogWrite(enablePin, 200);
else if (command == 'B') {
digitalWrite(motorPinl, LOW);
digitalWrite(motorPin2, HIGH);
analogWrite(enablePin, 200);
else if (command == 'L') {
steeringServo.write(45);
else if (command == 'R') {
steeringServo.write(135);
else if (command == 'S') {
digitalWrite(motorPinl, LOW);
digitalWrite(motorPin2, LOW);

The Arduino initializes communication with the HC-05 Bluetooth

module.

It continuously listens for commands from the user interface (GUI).

Python GUI Code

The GUI code enables the user to send commands to the platform

using a graphical interface:

> appcode) [create_gui

import tkinter as tk

from tkinter import messagebox
import serial

import time

BLUETOOTH_PORT = "
BAUD_RATE 9600

COM6

bt_connection None

def connect_bluetooth():

global bt_connection

try:
bt_connection
time.sleep(2)
messagebox.showinfo(

except Exception as e:
messagebox.showerror("Erx

serial.Serial(BLUETOOTH_PORT, BAUD_RATE)
connected!

s not connect

send_command (command) :
global bt_connection
if bt_connection and bt_connection.is_open:
try:
bt_connection.write((command + "\n").encode())
print(f"Com: {command}")
except Exception as e:
messagebox.showerror("error

and sent:

, f"Komut génderilen
else:

messagebox.showerror(“no connection", "Litfen

create_gui():

root tk.Tk()

root.title("HC-@5 Kontrol Paneli)
root.geometry ("6 90")
root.configure(bg="red")

button_font

btn_connect = tk.Button(root, tex BLT", font=button_font, bg="gr
command=connect_bluetooth)

btn_connect.place(x=220, y=20)

tk.Button(root, text="STOP", font=button_font, bg="blu:
command=lambda: send_command (

btn_stop.place(x=220, y=120)

btn_stop fg:

btn_start tk.Button(root, text="MOVE", font=button_font,
command=lambda: send_command("START"))

btn_start.place(x=220, y=200)

bg="orange",

btn_forward = tk.Button(root, text="1", font=button_font, bg="yel
command=lambda: send_command("FORWARD"))
btn_forward.place(x=270, y=300)

btn_left tk.Button(root, tex ", font=button_font, bg="yellow",
command=lambda: send_command("LEFT"))
btn_left.place(x=80, y=400)

btn_right

command=1ambda: send_command("RIGHT"))

btn_right.place(x=450, y=400)

btn_backward = tk.Button(root, text="i",
command=1ambd.

btn_backward.place(x=270, y=500)

font=button_font,
send_command ("B,

“yellow",

D"))

bg

tk.Button(root, text="CENTER WHEEL", fon
command=1ambda: send_command("

btn_center.place(x=190, y=400)

btn_center
NTER"))
root.mainloop()

__nhame__
create_gui()

="bla

utton_font, bg="purple", fg="whi

)

e

i kurun!")

lack", width=12, height=:

, width=12, height=2,
, width=12, height=2,

fg="black"

', width=5, height=2,

fg="black", width=5, height=2

tk.Button(root, text="3", font=button_font, bg="yellow", fg="black", width=5, height=2,

fg="black", width=5, height=2

e", width=15, height=2,

12

The Python GUI uses the serial library to establish a connection with
the HC-05 Bluetooth module.
The user interacts with buttons in the GUI to send commandss.

Each button triggers a function that sends the corresponding command
to the Arduino.

The Arduino processes these commands to control the motors and
servo, executing the desired movement.

CENTER WHEEL

13

Tests and Results

Functionality Tests: Verified movements.

Bluetooth Range: Stable communication within a 10-meter range.
Stability Tests: Continuous operation for over an hour without failure.

GUI Usability: Commands executed seamlessly with no noticeable
delay.

Summary
Evaluation of the Project

The project successfully demonstrated the development of a remotely
controlled mobile platform using Ackermann steering geometry.
Despite initial challenges, the final system performed reliably and met
the functional requirements.

Possible Enhancements

Better functionalities about moving the robot left-right from keyboard.
Extended Bluetooth range for broader usability (maybe with more
advanced bluetooth module/board)

Adding sensors for obstacle detection and navigatoin.

Enhanced GUI features for better control.

14

Appendices
Project Plan and Deviations
The original plan involved using ESP32 and ROS. However, due to
integration difficulties, the project was restructured to use Arduino,
HC-05, and a Python GUI.
Tasks and Distribution
Hardware Design: Managed by Marcin Kochalski
Software Development: Managed by Tugce Avcu

Testing and Debugging: Collaborative effort.

Report: Collaborative effort.

15

