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ABSTRACT

The ability to rapidly identify Resident Space Objects (RSOs) from intrinsic signatures is critical for complete Space
Domain Awareness (SDA) and achieving space superiority. Hyperspectral Imaging (HSI) from visible to long-wave
infrared can detect signature differences between RSOs that are created by material composition, manufacturing, and
geometric differences. These differences are exploited using Machine Learning (ML) algorithms to enable single-
observation identification of known objects and characterization of unknown objects. Space-based HSI systems
provide access to critical wavelengths necessary for identification and characterization over ground-based HSI
systems that are limited by atmospheric conditions, especially absorption features in frequencies where discriminating
information lies.

In this paper, the advantages of HSI are discussed, including its ability to provide a more comprehensive view of space
objects compared to traditional single-band or multispectral methods. The paper details the benefits of space-based
HSI, including a quantification of the wavelengths that are important for identification and cannot be detected from
ground-based systems. The paper explores the design and trade space of a space-based hyperspectral sensor, included
parameters such as range, aperture, and spectral resolving power, and presents a 51-channel, ultra-wideband HSI
system that can detect RSOs as small as 30cm, up to 10,000km range, and is composed of high Technical Readiness
Level (TRL) components. The paper then details the modeling and simulation used to demonstrate the effectiveness
of the sensor with ML algorithms in two experiments: identification of individual satellites of the same model, and
characterization of an unknown satellite’s material composition and mission.

The experimental results show that the HSI sensor and ML algorithms can accurately identify individual satellites
within the same geometric design and different material compositions with greater than 89% accuracy for measured
cases from a single HSI observation. The characterization experiment on realistic simulated data shows that the
material composition of an unknown satellite geometry can be identified with greater than 74% accuracy. This study
shows that a new capability to identify satellites and characterize their missions in a single observation could be
achieved, and lead to greater space domain awareness.

1. INTRODUCTION

The Space environment is rapidly changing with record-breaking numbers of launches creating a new environment of
peaceful and congested space. General Saltzman has stated “Space control is how the Space Force achieves space
superiority” [1]. The ability to track is not sufficient, characterization is now required to identify benign from
threatening, and where possible, to positively characterize satellites. Historically, this has been accomplished with
kinematic correction, photometric correlation, and under special conditions, satellite to satellite imaging [2].
Hyperspectral imaging, commonly used for astronomy, and ML algorithms trained on HSI data has been shown to
characterize and identify satellites [3] on their intrinsic material properties. To support the SDA mission, we proposed
a space-based HSI system to eliminate the limitations of ground-based systems to improve space control. In this paper
we demonstrate that a space-based hyperspectral instrument combined with machine-learning algorithms can be used
in combination to support timely, broad area characterization and identification of the space domain which should be
included in the SDA enterprise. This will be achieved by demonstrating possible space based HSI sensor design,
measure its performance against realistic targets, and demonstrated the ability to leverage the signal detected up to
10,000km ranges to identify simulate satellites.

Spectral imaging is the term for collecting multiple individual wavebands by decomposing the received signal into its
constituents. Color imaging is often performed using three wavebands on the Red, Green, and Blue (RGB)



wavelengths ~ which yields much more Example HSI Spectra for two RSOs
information for a human interpreter. Similarly, 1.0 1 —— Target Spectrum 1
hyperspectral imaging collects many wavebands, --- Target Spectrum 2
anywhere between 10s to 1000s [4]. Reflected IR
Additionally, HSI is often used to sample BN Emitted IR
wavelengths beyond human vision and can
capture discrete elements in any part of the
electromagnetic spectrum. In Electro-Optical
(EO) sensing, this spectrum includes visible,
short, near, mid, and long-wave infrared (IR).
Visible, short, and near-infrared make-up the
reflected profile of a satellite (Fig 1). Mid and
long wave are signals emitted by the satellites
surface and internal temperatures. The
combination of the reflected and emitted profile
creates a unique fingerprint that a ML algorithm 0.0 1
can identify and classify. In this way, pairing HSI 0 5 4 6 s
with ML can identify objects in a single Wavelength (um)

observing period, modeled in this paper as under
a minute, when compared to a library of
unknown or expected signatures. Within Fig 1
are two spectra captured by a single observer.
The observer, for both observations, is located at the same range, elevation, azimuth, and solar phase angle. At this
range, the target remains unresolved and appears as an indistinct point source on the detector. The modeled target
exhibits the same spatial characteristics. The sole distinction between the two spectra lies in the material composition
of the target. Despite the lack of spatial resolution, the spectral differences are evident and serve as a unique signature,
enabling identification and characterization.
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Fig 1: An example target spectrum with 1,677 color channels
broken into visible, reflected, and emitted bandwidths.

Ground-based hyperspectral imaging sensors such as OSIRIS [5] and PEPSI [6] are designed to perform astronomy
missions. While they could be used to supplement SDA activities, they are limited by atmospheric conditions and
location. Like all ground-based optical receiver systems, they can be inhibited by cloud cover and high particulate
environments. They are also limited in sensitivity in the non-visible bands because of atmospheric absorption (Fig 2).
HSI sensors like OSIRIS and PEPSI are design around these atmospheric absorption lines with OSIRIS capturing data
in the visible and near-IR (0.95 — 2.4um) and PEPSI capturing data in the ultraviolet (UV), visible, and shortwave-IR
spectrum (0.38 — 0.91um). These wavelengths center on the reflective side of the atmospheric window.
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Fig 2: Earth’s Atmospheric Window [7] relative to wavelength in micrometers. The atmospheric gaps (gray areas in
the lower figure) are dominated by the absorptive qualities of water, oxygen, and carbon dioxide.



Within Fig 2, there are two figures. The top figure defines the areas of the spectrum that light can pass into or out of
the earth. The rainbow and black curves show the detection windows for ground-based sensors. The bottom figure
shows the inverse. The gray area is where incoming or outgoing light is absorbed by the atmosphere, creating detection
gaps for a ground-based sensor.

In 2024, [3] showed that five
multispectral bands were needed to
effectively distinguish between three
RSO types, Active Satellite, Rocket
Body, and Space Debris from a space-
based instrument. What is more
important is that three of the five
discriminating wavelengths (3.3pum,
4.4pm, 6.5um) shown in Fig 3 have less
than 50% average transmission through
the atmosphere of the full width half
max (FWHM), with 4.4um, 6.5um less
than 2%. These results show valuable
discriminating information is found in
0 2 4 6 8 bands that cannot be observed from
Wavelength (um) existing ground-based optical systems.
MODTRAN s 3.3Um s 4.40m == 6.5UM === 8.5um These wavelengths are available from a
= 2.5um space-based system that is not looking
through an opaque atmosphere at those

Fig 3: Earth’s Atmospheric Transmission Window [8] (blue) and Naik’s wavelengths.

[3] optimal characterization wavelengths.
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In addition to the limitations of the
atmosphere, ground-based HSI instruments are stationary and cannot provide the timely access due to geometric and
lighting constraints. The PEPSI instrument is attached to the Large Binocular Telescope (LBT) Observatory located
in Mt. Graham in Arizona. Timely tracking and dissemination of information of RSOs can only be achieved when the
RSO is overhead. Space-based HSI systems can complete orbits in as little as 90 minutes enabling fast multi-object
detection and characterization around the globe.

While space-based HSI data can be effective, the ability to field a space-based HSI sensor is also addressed. Prior
space-based HSI sensors have ben used, they are primarily for Earth-viewing missions [9]. These sensors deployed in
Low Earth Orbit (LEO) for viewing Earth are not optimized for SDA applications. In this paper, we provide a
discussion (Section 2) on a notional sensor design and conclude with 51 spectral channels, 30cm aperture, designed
to detect and characterize RSOs up to 10,000km range with high a TRL level. We also detail the development of high
fidelity simulated data leveraging 3D models [10], applying materials to the surfaces and simulating the captured
spectral content via FIST/COAST [24] at the HSI. In Section 3 we detail the ML algorithms and how we applied them
to the simulated signatures. This is done with two experiments. Experiment 1 applies multiple material sets to the
target models and classifies each model on the material composition. Experiment 2 trains on a subset of the models
then attempts to classify the third unknown model. Section 4 presents the results of the ML classifiers and Section 5
concludes with a summary of the work and future path forward.

2. SENSOR DESIGN

According to NASA, “As of 2024, there are more than 45,000 human-made objects orbiting Earth, and these are just
the ones we can track...” [11]. These satellites range from the small university CubeSats (small, standardized satellites
defined by their cubic dimensions, with 10x10x10cm defined as 1U), to the International Space Station (ISS). With
such a large variety of objects, the sensor mission design bounded the target sizes by commonality. Approximately
24% of the known objects are comprised of CubeSats and Starlink. According to Kulu [12], 2,714 CubeSats and
Nanosatellites launched in 2024. As of August 2025, there have been 8,075 Starlink satellites that are currently in
orbit and operational [13]. The approximate circular diameter of satellites within the CubeSat and Starlink categories
exhibit a range of 0.25m to 25m. The space-based HSI sensor is designed around classifying unresolved targets to



limit the size of the telescope. A comprehensive trade study was conducted to assess various sensor design options
under practical constraints:

Table 1: Evaluation criteria for a notional hyperspectral instrument design

Performance Considerations

Design Constraints / Considerations

Detect 30cm satellite at 10,000km or greater
with SNR > 6 in the weakest channel

Detect 10m satellite @ 10,000km or greater
range with SNR > 10 in the weakest channel
Achieve a frame time <5 seconds with SNR > 5
Expand detection capability into atmospheric

Small apertures are lighter and reduce cost
Reduce use of mechanisms for higher
reliability and reduced cost

Use High-TRL design and components
Optimize design for unresolved
detection

target

gaps

The primary objective of this evaluation is to develop an operationally feasible system that balances technical
capabilities with practical limitations.

2.1 Hyperspectral Performance Parameters
As stated earlier, a hyperspectral imager captures
light from the scene and decomposes it into distinct
color bands. Table 1 defines the evaluation criteria
that this paper aims to satisfy. To start, the design
trade balances three key factors: the number of
spectral channels, the size of the sensor, and the
system’s sensitivity.

An important data point captured in Fig 3 is the
spread of the optimal wavelengths needed for the
characterization covers 2.5 — 8.5um. In [14], it is
stressed that the SDA enterprise needs to expand
the EO detection operations to include all visible
through long-wave IR. The Near Infrared
Spectrograph (NIRSpec) on the Webb telescope
uses detectors that have high detection sensitivity
over 0.6 — S5um [15]. BAE has been working to
expand this TRL 9 detector into an Ultra-Wideband
sensor that maintains the high sensitivity and
increases the detection range to 0.4 —9um. In design
trades for standard imaging system, total signal
captured is an important trade parameter, whereas an HSI the minimum signal needed for a color channel drives the
design. Fig 5 shows the trade comparing target size, observer range from the target, and aperture size. All of the blue
lines represent a distance of 1,000 km
between the observer and the target.
The cyan and green lines are for
5,000km and 10,000km respectively.
The line styles within the figures
represent different aperture sizes. For
all cases, the minimum captured signal
occurs around 3um which is close to
one of the optimal bandwidths from
[3]. Fig 4 contains the optical layout.
A standard off-axis TMA design was
selected to keep a compress the layout
of the telescope. There are two optical
paths that are imaged simultaneously
by the detector. The image path is
colored magenta and is used for target
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Fig 5: Starlink and a 6U CubeSat spectral fluxes for various
aperture sizes and distances between the target and observer

Fig 4: High TRL off-axis Three-Mirror Anastigmat (TMA) Imager and
Hyperspectral instrument optical paths (Left). (Right) Close-up of the
placement of the imaging path (dots and streaks) and spectral path (rainbow)
on the detector.



acquisition. The space vehicle will track the desired targets (dots in the image). Once tracked, the space vehicle will
slew one of the dots into the pick-off mirror to place the target into the hyperspectral imaging path (blue lines). The
51 spectral channels are created when the target data is relayed through a Zinc Sulfide (TRL) prism. Then another set
of images are captured in a small strip on the FPA which contains the hyperspectral content (see Fig 1) of the target.
The integration times depend on the size of the target, but for the trade, it ranges from 0.08 — 2ms. Other design
parameters for the HSI are a f-number of 6, field of view 1.2°, with a 30cm aperture and 250nm RMS wavefront error.
Beyond the re-imaged pupil and including the FPA, the temperature needs to be maintained to 40K to control the dark
current. The rest of the optical path is held at 55K to control the near field emissions. There are two types of cooling
satellites, active and passive. Passive cooling requires large radiators and shields to keep the sensor in constant shade.
Active cooling uses mechanisms and electronics. Active cooling units are much smaller than the large shades and
radiators of passive cooling. The state-of-the-now solutions are called cryo-cooler. A cryo-cooler is a compact, closed-
cycle, cooling systems that can maintain temperatures without the use of an expendable refrigerant. Two examples
are BAE’s TRL 9 Klondike [16] and Kodiak [17] cryo-coolers which have sufficient cooling power to cool an entire
telescope to these temperatures while imparting very little jitter to a space vehicle.

2.2 Target Modeling and Data Generation

The evaluation of performance for the HSI sensor design is estimated using high-fidelity, simulated data, where
materials with known and measured signals are overlayed onto 3-D models. The models are then articulated within
the FIST/COAST [24] ray-tracing tool to generate unresolved signatures over differential geometries at mission
relevant ranges. This method improves upon faster methods which use simple models such as spheres and cubes with
mixed signals for data generation for unresolved imagery but lack the real impacts of spacecraft complexity and
viewing that is necessary to fingerprint one satellite from another. Every RSO in orbit will have a distinct fingerprint
that is deterministic from its geometry and material makeup. All spectral content for an unresolved target is contained
within a single pixel. With the inclusion of geometry, the reflection and the emission profile generate a unique
fingerprint that is identifiable.

Fig 6: (Left) 1U x 3U CubeSat. (Middle) NASA DSCOVR. (Right) NASA CALIPSO

Three, highly detailed models selected from NASA’s model database [10] are shown in Fig 6 and detailed in Table 2
which covers a range of target sizes.

Table 2: Target definition with bounding dimensions

Small Sized Target Medium Sized Target Large Sized Target
CubeSat DSCOVR CALIPSO
0.lm x 0.1m x 0.34m 3 dmx 1.Imx 1.2m 9.5mx2.4mx 1.9m

While the models are geometrically accurate, they contained no material information. Materials were added to each
model based on spectra collected and stored in BAEs database. The materials selected are primary materials used on
spacecraft exteriors, such as solar panels, thermal and structural components, and paints which would be the largest
contributors of spectra an HSI sensor would observe.

Table 3: Materials applied to the Target Models

Category Material ID Material Name
Metal 1 Aluminum Alloy
Metal 2 Titanium

Metal 3 Magnesium Alloy



Category Material ID Material Name

Paint/MLI 4 White Paint

Paint/MLI 5 MLI

Paint/MLI 6 Aluminized Mylar
Glass 7 Fused Silica
Glass 8 Solar Cell
Glass 9 Silicon, Solar Cell

The materials selected in Table 3 are common and found on many spacecrafts’ external surfaces. For each model in
Fig 6, the black panels had a glass material applied for the solar cells. The gray portion of the model used a metal, and
on one surface of the body was covered by a Paint/MLI material. A total of 18 unique model and material combinations
were generated to create the simulated data, as shown in Table 4.

Table 4: Target Model and Material Combinations
Target SV Solar Panel  Single Surface
Model Material ID  Material ID Material ID

CubeSat A
CubeSat B
CubeSat C
CubeSat D
CubeSat E
CubeSat F
DSCOVR A
DSCOVR B
DSCOVR C
DSCOVR D
DSCOVR E
DSCOVR F
CALIPSO A
CALIPSO B
CALIPSO C
CALIPSO D
CALIPSO E
CALIPSO F
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Fig 7: Sensors positioned at three target ranges
along each of three lines of sight. The DSCOVR
model (centered at the origin, oriented
consistently with the COAST simulations, but
not shown here to scale), provides a reference to
the sensor viewing angles.
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Capturing the effects of the geometric interactions between the Sun, target model, and observer required generating 9
HSI models placed at different azimuth, elevation, and ranges. Varying the elevation, azimuth, and range accounts for
the glint and other non-Lambertian reflections, see Fig 7. The two elevation angles used are 0° and 30°. The two
azimuth angles are 0° and 40°. The observing HSI sensor were placed at 6,000km, 8,000km and 10,000km. For each
sensor location, the Solar Phase Angle (SPA) was shifted 180 times to capture the effects of incident energy on the
targets. Since the HSI is using an Ultra-Wideband detector (0.4 — 9um), changing the solar phase angle impacts the
reflection and emission profiles of the targets. At some phases, the target spectrum will be dominated by the visible
spectrum, and when the target is in shadow, it will be dominated by its thermal emissions.
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Fig 8: Example spectrum for CubeSat A, DSCOVR A, and CALIPSO A at different SPAs, elevations, and azimuths.
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The observing HSI is located 10,000km from the target models.

DSCOVR, CubeSat, and CALIPSO are represented by the blue, orange, and green colored lines. The left column of
figures contains spectra for each target with a SPA of 0°. The middle column shows the spectral captured with an SPA
of 57°. The right column of data happens with an SPA at 90°. From top to bottom, in the row direction, the elevation
and azimuth change. Changes in the SPA greatly impact the visible and infrared lobes. Different elevations and
azimuths capture different phases (geometry) of the target models. At a SPA of 57° and looking from top to bottom,
the reflected portion of the spectrum (< 4um) significantly changes. This is due to the non-Lambertian reflection

(glints) of that portion of the spectrum dominating (or not).

The FIST/COAST [24] generated data contains 1,677 color channels per captured spectrum. To match the expected
output of the HSI sensor, the 1,677 color channels are converted to 51 color channels using the Signal Response

Function (SRF) of the as-designed HSI.
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In total, over 29,000 spectra were generated for the training, validation, and verification data sets. Every spectrum had
1,677 channels of color defined (blue line in Fig 9). Each data set was reduced using the SRF down to 51 channels of
color (black line example in Fig 9, with the center wavelength marked with dots) to match the HSI design. The shade
regions shows the portion of the spectra that was reduced to the small channel. NOTE: the color of the shaded region
matches the color directly above it on the top plot.

3. CHARACTERIZATION AND IDENTIFICATION

The ability to identify individual satellites by characteristics other than their kinematic state in short timelines is
necessary to reduce cross-tagging of SDA observation. We define identification in this research as the ability to tell
distinct copies of the same satellite configuration, i.e. we can differentiate between two cubesats based only on the
spectral signatures. This identification is analogous to identifying a single “tail number” from constellation of same
satellites, such as Starlink, or Thousand Sails.

We define characterization in this research as the ability to infer information about any satellite, based on the
signature. An example of this would be that certain material combinations (and their spectral signatures) and ratios
would be indicative of radio-frequency sounders, while other material compositions would be indicative of EO
systems. This ability to infer mission, based on material compositions can be valuable especially in new launches
where the intent and capability of a new space vehicle are unknown and not easily imaged.

The exploitation of hyperspectral imagery using ML-based approaches has been explored over the past decade, in
applications such as agricultural entity characterization [18][19][20] and has more recently been expanded to space-
object-identification efforts [3][21]. Many of these works have specifically made use of decision-tree-based
approaches to performing classification, which Xu et al. attributes to the complexity of deep neural networks which
comes from having larger parameter sizes, which require more powerful hardware to utilize effectively. As such, the
present work uses gradient boosting — a decision-tree-based approach — approach to characterize space-object material
compositions.

The present study focuses on two experiments: an identification experiment, and characterization experiment. The
first experiment assesses the ability of the ML-based approach to identify the “tail numbers” of each target. In Table
3, the six tail numbers correspond to the material composition of the target model, cases A — F. The second experiment
expands this capability into the characterization of an unknown satellite. In this experiment, the classifiers are trained
on two of the target models and all material cases, CubeSat A - F and CALIPSO A — F. Then unknown targets
corresponding to DSCOVR cases A — F are characterized by the ML classifiers.

By performing these two experiments on the synthetic hyperspectral dataset, the authors will establish a) ML-based
approaches perform very well in identifying the tail number of a known target model, and b) ML-based approaches
demonstrate promising performance in characterizing an unknown target model by identifying the material
composition of that satellite as compared to existing material signature models.

3.1 Data Partitioning

In performing the tail number identification and material characterization experiments, the data generated must be
split into a training, validation, and test set as in Fig 10. For each experiment, the training set represents the “known”
set of samples from which the classifiers will learn defining characteristics. The validation set represents data from
this distribution which has not been explicitly handed to the classifier to learn from and is used to tune hyperparameters
(section 3.3). The test set represents the set of samples containing similar features to the trained data from a potentially
different distribution. As the experiments vary on what they consider to be known and unknown, each requires its own
variation of the data partitioning.



For the first experiment, by assuming every target model and all
its tail numbers (A — F) are known, a standard stratified data
split can be performed on the whole dataset. This means 70% of
the data will belong to the training set, 10% of the data will
belong to the validation set, and 20% of the data will belong to
the test set, where stratification ensures each set has an equal
number of each distinct satellite model within it.

Simulated

For the second experiment, assuming only CubeSat A — F and Spectral

CALIPSO A —F are known, then the training and validation sets Signatures
should come from a distribution of these samples. Exactly 2/3
of our dataset belong to these two cases. As such, the training
and validation set come from an 87.5% / 12.5% split of these
samples. The test set consists solely of 1/3 of samples belonging
to DSCOVR A —F. This is analogous to having data on multiple
satellite configurations with material compositions (as may be
found by various mission packages on similar buses). The test
data is then analogous to having seen a new satellite
configuration with similar material composition, which could

Validation

Fig 10: Partitioned data buckets representing the
format of the data partitions for the tail number
identification and material characterization

) . . experiments.
imply the same mission package as other satellite P
configurations.

3.2 Data Processing

For both experiments, the models were trained on the 51-channel no-noise pristine data (Fig 9). To mitigate the impact
of relative intensity between target models of different sizes, the values across the 51 color channels of each individual
spectrum in the data have been min-max normalized. This is performed to demonstrate that the algorithms are using
material signatures to discriminate, not the relative intensity or brightness which can be done with broad-band EO
systems. Within each experiment, there will be a test set of the same samples, one which is pristine (no noise added),
and one which contains noise. Pristine data is used as a control, and the noisy data is modeled to include some expected
effects of a real sensor. The noise added to this set consists of Gaussian white noise, representing detector read noise,
and Poisson noise, representing scene shot noise, and were incorporated into each of the 51 color channels for data
within the respective test set for each experiment. A visualization of each of these test buckets can be found in Fig 11.

Poisson

Noise

Fig 11: Test-set noising process

33 Machine Learning Framework

The ML-based approach described in the present work consists of a series of individual binary classifiers for each of
material configurations A — F. Each of these binary classifiers is an instance of an XGBoost [22] module, which is a
specific implementation of a gradient-boosted decision tree. Each of these binary classifiers are trained to minimize
the binary-cross-entropy loss function. For each classifier, a Bayesian optimization routine, implemented with Optuna
[23], is wrapped around the training process to optimize the hyperparameters of the classifier to produce the greatest
performance. After the optimal set of binary classifiers is produced, testing is performed by running each test-set
sample through each of the binary classifiers to collect a probability score, after which the highest probability of the
six is selected to represent the predicted class. This set of predicted classes is used to compute several metrics, with
the primary metric considered in this study being the true positive rate (recall) between the predicted and actual classes.
Recall is a proportion of correct predict of a class to the actual number of instances for a given class, which measures
how many samples belonging to that class have been correctly classified. A visualization of the machine-learning
pipeline described here can be found in Fig 12.
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Fig 12: Pipeline describing the process to handle the data and use it to perform identification and characterization
experiments.

4. RESULTS

Having established a pipeline by which the data could be processed and digested by ML-based classifiers, experiments
were performed to (a) identify specific versions (“the tail number”) of a known satellite model, and (b) characterize
an unknown satellite by identifying a material composition like known satellites. During testing, a sample consists of
the normalized intensity across the 51 channels and associated meta-data. This is analogous to a single less than 1
second observation from the HSI sensor.

4.1 Known Target Model Tail-Number Identification

The experiment to identify a known target model can be broken up into the three individual target models for which
this test was performed: CubeSat, DSCOVR, and CALIPSO. Each of the classifiers for cases A — F have been trained
on 70% of the pristine samples, tuned using 10%, and tested on the final 20%. The final 20% has two variants for
which testing was performed, the pristine version and the noised version. As these spectra are passed through the six
binary classifiers, the one with the highest probability score is taken to be the prediction for that spectrum This
prediction is then run against the true prediction for every sample in the test set, from which a confusion matrix can
be built to represent the ratio of correct predictions to mistakes, broken down by individual satellite configurations.
This can be seen in Fig 13, where the left column demonstrates that predicting the tail number of a known satellite
body without noise is done correctly for all test samples. When realistic impacts of shot and read noise are included,
performance degrades as expected. Excitingly, the largest degradation impact of noise (CubeSat—A) detects more than
75% of samples belonging to that configuration using a space-based 51 channel HSI system where each sample comes
from a less than 1 second observation. Apart from CubeSat-C and CubeSat-D, greater than 92% of all samples are
correctly identified for all other cases. In fact, the average true positive rate for all CubeSat cases was 89%, for all
DSCOVR cases was 96% and for all CALIPSO cases was 99%.
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Fig 13: Confusion matrix of tail number predictions on known satellite models for both pristine test set (left column)
and noisy test set (right column)

4.2 Unknown Target Model Material Characterization

The experiment to characterize the material composition of an unknown target model can be broken up into the two
individual target models which the classifiers will be trained on, CubeSat and CALIPSO, and the one individual target
model which the performance will be evaluated, DSCOVR. Each of the classifiers for material compositions A — F
have been trained on 87.5% of the pristine samples in CubeSat and CALIPSO, tuned using the other 12.5%, and tested
on the entirety of the DSCOVR data. The DSCOVR test was also performed on the pristine version and the noised
version of the data. The testing process is shared with that of the previous experiment, where the series of binary
classifiers is iterated to aggregate probabilities, for which the maximum is selected. The confusion matrix



demonstrating these results can be seen in Fig 14. The left matrix demonstrates the prediction of the tail number of an
unknown satellite model without noise. In the worst case (DSCOVR-A), the classifier can correctly characterize 61%
of the total instances of that case, but in the best case (DSCOVR-E), that goes up to 100%. In most cases, the inclusion
of noise does not degrade performance by much. The most noteworthy drop appears in the classification of Material
Case D, where the model is 11% less likely to characterize this material case in the presence of noise. Across all cases,
the true positive rate does not change much with the inclusion of noise, with merely a drop from 75% to 74%.

DSCOVR Clean

0.29 d i I ! A

0.8
0.00 0.00 0.19 ! B

DSCOVR Noisy

0.8

° 0.00 ﬂ 000 014 O 0.6 B C 0.6
o ]
2 S
k T
S 000 000 [VEPEN 000 O 0.4 LD 0
000 000 EEELEE o E
0.2 0.2
017 015 013 | 0. F
0.0 A B C D E F 0.0
Actual Actual

Fig 14: Confusion matrix of tail number predictions for the unknown satellite body for both the pristine test set (left
matrix) and noisy test set (right matrix)

4.3 Important Wavelengths

During training of the classifiers used in these experiments, the architecture was designed to record properties of the
decisions used in the gradient-boosted decision trees. That is, when a split was made between measured values at the
distinct wavelengths, the amount of information gained, typically measured by number of samples separated between
different categories was measured, and used to rank how important that wavelength is. Using this process, it was
possible to extract the importance of each wavelength as it pertains to making classification decisions. Since the system
in place aggregates decisions from six different classifiers, the wavelength importances were summed to determine
the overall importance of each band to the system.

By analyzing how important each wavelength is, it was possible to compare how feasible it is to perform these
experiments using a ground-based system in place of a space-based one. This is done by comparing the significant
bands collected from each experiment against atmospheric absorption windows. For this analysis, the highest bands
responsible for 99% of classification decisions were compared against the corresponding ground-based bands with at
least 50% transmissivity through the atmosphere.

For the case of the known satellite body tail-number identification experiment, Fig 15 shows the importance of every
wavelength broken down by satellite model type, with a background curve representing the atmospheric transmission
window. For the CubeSat tail-number classifiers, the number of bands required to make 99% of the classifications is
43. 37% of these bands fall in ranges with less than 50% atmospheric transmission. For the DSCOVR tail-number
classifiers, the number of bands required to make 99% of the classifications is 41. 32% of these bands fall in ranges
with less than 50% atmospheric transmission. For the CALIPSO tail-number classifiers, the number of bands required
to make 99% of the classifications is 43. 35% of these bands fall in ranges with less than 50% atmospheric
transmission.

For the case of the unknown satellite body material characterization experiment, Fig 16 shows the importance of every
wavelength broken down by satellite model type, with a background curve representing the atmospheric transmission
window. The number of bands required to make 99% of the classifications is 43. 40% of these bands fall in ranges
with less than 50% atmospheric transmission.
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Fig 17: A heatmap detailing the relationship between wavelength, transmission, and ML-importance in identification
and characterization.

Fig 17 is an alternative way to view Fig 15 and Fig 16. Along the x-axis defines the center wavelengths of the HSI.
The y-axis represents the average atmospheric transmission over the channel bandwidth (defined in Fig 9). The color
bar or heatmap characterizes the importance of that band to the ML-algorithm. Lighter colors are of lower importance,
and darker colors denote higher importance. For CubeSat, DSCOVR, and Experiment 2 (characterizing the unknown
target), many of the higher important wavelengths have an atmospheric transmission below 30%. Only CALIPSO has
most of their important wavelengths in an atmospheric window. However, in ALL cases, the visible through shortwave
IR spectrums were of medium to lower importance.



5. CONCLUSION

The integration of space-based Hyperspectral Imaging (HSI) systems with Machine Learning (ML) algorithms
presents a promising solution for enhancing Space Domain Awareness (SDA) and achieving space superiority. By
leveraging the unique spectral signatures of satellites, a space-based HSI system can provide timely and broad area
characterization and identification of objects in space. This paper has presented a design of a HSI sensor and ML
algorithm suite which creates a system that (a) can detect unresolved satellites ranging from 30cm to 13m at 10,000km
range from the observer and (b) identify or characterize a satellite from its material properties. This design shows that
space-based HSI systems are not a “far in the future” capability but could be fielded in the near-future given the high
TRL nature of the majority of the system components.

This system has shown that satellites of the same geometry can be individually identified within a single HSI
observation. This can be used to discriminate between two similar satellites, where one may be benign and the other
may have ill-intent, based on the material differences of those satellites’ payloads, where the different materials
generate a unique signature that can be used to assign an individual “tail number” to that satellite. The system as
modeled can identify the individual satellite with an average rate greater than 89% for the CubeSat and greater than
96% for DSCOVR and CALIPSO tail numbers.

When the system is challenged to characterize a new satellite configuration (3-m RSO that was not in any training
data), the system can identify the material composition an average success rate greater than 74%. This would enable
an observer to determine the material composition of this new satellite and estimate its mission and capabilities from
a single observation. This is possible because certain materials and ratios are indicative of missions, such as the
materials of RF-sounding apertures.

The study has shown that for accurate characterization and identification of geometrically accurate targets, many of
the important wavelengths reside within the atmospheric gaps that block a ground-based HSI sensor from detecting.
Further analysis of the results has shown that many of these wavelengths, reside in areas of the atmospheric windows
with a transmission less than or equal to 50%.

The limitations of ground-based HSI systems such as atmospheric interference and restricted spectral ranges, can be
overcome with a space-based system. By collecting data across multiple wavebands, including visible, near-infrared
and long wave infrared, a space-based HSI system can create a comprehensive and accurate picture of the space
environment.

The proposed system, combining HSI and ML algorithms has the potential for:
1. Timely and accurate characterization and identification of objects based on their intrinsic material properties.
2. Providing real-time updates on the space domain, enabling more effective space control.
3. Enhancing SDA capabilities, supporting the Space Force’s mission to achieve space superiority.

By advancing the capabilities of space-based HSI systems and ML algorithms, we can improve our understand of the
space environment and enhance our ability to control and protect our space assets.

6. ABBREVIATIONS AND ACRONYMS

Acronym Description
EO Electro-Optical
FWHM Full Width Half Max
HSI Hyperspectral Imager
IR Infrared
ISS International Space Station
LBT Large Binocular Telescope
LEO Low Earth Orbit
ML Machine Learning
NIRSpec Near Infrared Spectrograph
RBG Red - Green - Blue

RSO Resident Space Objects



Acronym Description

SDA Space Domain Awareness

SPA Solar Phase Angle

SRF Signal Response Function
SWAP Size Weight and Power
TMA Three-Mirror Anastigmat
TRL Technology Readiness Level

Uv Ultra-Violet
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