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ABSTRACT 
 
The ability to rapidly identify Resident Space Objects (RSOs) from intrinsic signatures is critical for complete Space 
Domain Awareness (SDA) and achieving space superiority. Hyperspectral Imaging (HSI) from visible to long-wave 
infrared can detect signature differences between RSOs that are created by material composition, manufacturing, and 
geometric differences. These differences are exploited using Machine Learning (ML) algorithms to enable single-
observation identification of known objects and characterization of unknown objects. Space-based HSI systems 
provide access to critical wavelengths necessary for identification and characterization over ground-based HSI 
systems that are limited by atmospheric conditions, especially absorption features in frequencies where discriminating 
information lies. 
 
In this paper, the advantages of HSI are discussed, including its ability to provide a more comprehensive view of space 
objects compared to traditional single-band or multispectral methods. The paper details the benefits of space-based 
HSI, including a quantification of the wavelengths that are important for identification and cannot be detected from 
ground-based systems. The paper explores the design and trade space of a space-based hyperspectral sensor, included 
parameters such as range, aperture, and spectral resolving power, and presents a 51-channel, ultra-wideband HSI 
system that can detect RSOs as small as 30cm, up to 10,000km range, and is composed of high Technical Readiness 
Level (TRL) components. The paper then details the modeling and simulation used to demonstrate the effectiveness 
of the sensor with ML algorithms in two experiments: identification of individual satellites of the same model, and 
characterization of an unknown satellite’s material composition and mission. 
 
The experimental results show that the HSI sensor and ML algorithms can accurately identify individual satellites 
within the same geometric design and different material compositions with greater than 89% accuracy for measured 
cases from a single HSI observation. The characterization experiment on realistic simulated data shows that the 
material composition of an unknown satellite geometry can be identified with greater than 74% accuracy. This study 
shows that a new capability to identify satellites and characterize their missions in a single observation could be 
achieved, and lead to greater space domain awareness. 
 

1. INTRODUCTION 
 
The Space environment is rapidly changing with record-breaking numbers of launches creating a new environment of 
peaceful and congested space. General Saltzman has stated “Space control is how the Space Force achieves space 
superiority” [1]. The ability to track is not sufficient, characterization is now required to identify benign from 
threatening, and where possible, to positively characterize satellites. Historically, this has been accomplished with 
kinematic correction, photometric correlation, and under special conditions, satellite to satellite imaging [2]. 
Hyperspectral imaging, commonly used for astronomy, and ML algorithms trained on HSI data has been shown to 
characterize and identify satellites [3] on their intrinsic material properties. To support the SDA mission, we proposed 
a space-based HSI system to eliminate the limitations of ground-based systems to improve space control. In this paper 
we demonstrate that a space-based hyperspectral instrument combined with machine-learning algorithms can be used 
in combination to support timely, broad area characterization and identification of the space domain which should be 
included in the SDA enterprise. This will be achieved by demonstrating possible space based HSI sensor design, 
measure its performance against realistic targets, and demonstrated the ability to leverage the signal detected up to 
10,000km ranges to identify simulate satellites. 
 
Spectral imaging is the term for collecting multiple individual wavebands by decomposing the received signal into its 
constituents. Color imaging is often performed using three wavebands on the Red, Green, and Blue (RGB) 



wavelengths which yields much more 
information for a human interpreter. Similarly, 
hyperspectral imaging collects many wavebands, 
anywhere between 10s to 1000s [4]. 
Additionally, HSI is often used to sample 
wavelengths beyond human vision and can 
capture discrete elements in any part of the 
electromagnetic spectrum. In Electro-Optical 
(EO) sensing, this spectrum includes visible, 
short, near, mid, and long-wave infrared (IR). 
Visible, short, and near-infrared make-up the 
reflected profile of a satellite (Fig 1). Mid and 
long wave are signals emitted by the satellites 
surface and internal temperatures. The 
combination of the reflected and emitted profile 
creates a unique fingerprint that a ML algorithm 
can identify and classify. In this way, pairing HSI 
with ML can identify objects in a single 
observing period, modeled in this paper as under 
a minute, when compared to a library of 
unknown or expected signatures. Within Fig 1 
are two spectra captured by a single observer. 
The observer, for both observations, is located at the same range, elevation, azimuth, and solar phase angle. At this 
range, the target remains unresolved and appears as an indistinct point source on the detector. The modeled target 
exhibits the same spatial characteristics. The sole distinction between the two spectra lies in the material composition 
of the target. Despite the lack of spatial resolution, the spectral differences are evident and serve as a unique signature, 
enabling identification and characterization. 
 
Ground-based hyperspectral imaging sensors such as OSIRIS [5] and PEPSI [6] are designed to perform astronomy 
missions. While they could be used to supplement SDA activities, they are limited by atmospheric conditions and 
location. Like all ground-based optical receiver systems, they can be inhibited by cloud cover and high particulate 
environments. They are also limited in sensitivity in the non-visible bands because of atmospheric absorption (Fig 2). 
HSI sensors like OSIRIS and PEPSI are design around these atmospheric absorption lines with OSIRIS capturing data 
in the visible and near-IR (0.95 – 2.4μm) and PEPSI capturing data in the ultraviolet (UV), visible, and shortwave-IR 
spectrum (0.38 – 0.91μm). These wavelengths center on the reflective side of the atmospheric window. 

 
Fig 2: Earth’s Atmospheric Window [7] relative to wavelength in micrometers. The atmospheric gaps (gray areas in 
the lower figure) are dominated by the absorptive qualities of water, oxygen, and carbon dioxide. 

Fig 1: An example target spectrum with 1,677 color channels 
broken into visible, reflected, and emitted bandwidths. 



 
Within Fig 2, there are two figures. The top figure defines the areas of the spectrum that light can pass into or out of 
the earth. The rainbow and black curves show the detection windows for ground-based sensors. The bottom figure 
shows the inverse. The gray area is where incoming or outgoing light is absorbed by the atmosphere, creating detection 
gaps for a ground-based sensor. 

 
In 2024, [3] showed that five 
multispectral bands were needed to 
effectively distinguish between three 
RSO types, Active Satellite, Rocket 
Body, and Space Debris from a space-
based instrument. What is more 
important is that three of the five 
discriminating wavelengths (3.3μm, 
4.4μm, 6.5μm) shown in Fig 3 have less 
than 50% average transmission through 
the atmosphere of the full width half 
max (FWHM), with 4.4μm, 6.5μm less 
than 2%. These results show valuable 
discriminating information is found in 
bands that cannot be observed from 
existing ground-based optical systems. 
These wavelengths are available from a 
space-based system that is not looking 
through an opaque atmosphere at those 
wavelengths. 

 
In addition to the limitations of the 

atmosphere, ground-based HSI instruments are stationary and cannot provide the timely access due to geometric and 
lighting constraints. The PEPSI instrument is attached to the Large Binocular Telescope (LBT) Observatory located 
in Mt. Graham in Arizona. Timely tracking and dissemination of information of RSOs can only be achieved when the 
RSO is overhead. Space-based HSI systems can complete orbits in as little as 90 minutes enabling fast multi-object 
detection and characterization around the globe. 
 
While space-based HSI data can be effective, the ability to field a space-based HSI sensor is also addressed. Prior 
space-based HSI sensors have ben used, they are primarily for Earth-viewing missions [9]. These sensors deployed in 
Low Earth Orbit (LEO) for viewing Earth are not optimized for SDA applications. In this paper, we provide a 
discussion (Section 2) on a notional sensor design and conclude with 51 spectral channels, 30cm aperture, designed 
to detect and characterize RSOs up to 10,000km range with high a TRL level. We also detail the development of high 
fidelity simulated data leveraging 3D models [10], applying materials to the surfaces and simulating the captured 
spectral content via FIST/COAST [24] at the HSI. In Section 3 we detail the ML algorithms and how we applied them 
to the simulated signatures. This is done with two experiments. Experiment 1 applies multiple material sets to the 
target models and classifies each model on the material composition. Experiment 2 trains on a subset of the models 
then attempts to classify the third unknown model. Section 4 presents the results of the ML classifiers and Section 5 
concludes with a summary of the work and future path forward. 
 

2. SENSOR DESIGN 
 
According to NASA, “As of 2024, there are more than 45,000 human-made objects orbiting Earth, and these are just 
the ones we can track…” [11]. These satellites range from the small university CubeSats (small, standardized satellites 
defined by their cubic dimensions, with 10x10x10cm defined as 1U), to the International Space Station (ISS). With 
such a large variety of objects, the sensor mission design bounded the target sizes by commonality. Approximately 
24% of the known objects are comprised of CubeSats and Starlink. According to Kulu [12], 2,714 CubeSats and 
Nanosatellites launched in 2024. As of August 2025, there have been 8,075 Starlink satellites that are currently in 
orbit and operational [13]. The approximate circular diameter of satellites within the CubeSat and Starlink categories 
exhibit a range of 0.25m to 25m. The space-based HSI sensor is designed around classifying unresolved targets to 

Fig 3: Earth’s Atmospheric Transmission Window [8] (blue) and Naik’s 
[3] optimal characterization wavelengths. 



limit the size of the telescope. A comprehensive trade study was conducted to assess various sensor design options 
under practical constraints: 
 

Table 1: Evaluation criteria for a notional hyperspectral instrument design 
Performance Considerations Design Constraints / Considerations 

 Detect 30cm satellite at 10,000km or greater 
with SNR > 6 in the weakest channel 

 Detect 10m satellite @ 10,000km or greater 
range with SNR > 10 in the weakest channel 

 Achieve a frame time < 5 seconds with SNR > 5 
 Expand detection capability into atmospheric 

gaps 

 Small apertures are lighter and reduce cost 
 Reduce use of mechanisms for higher 

reliability and reduced cost 
 Use High-TRL design and components 
 Optimize design for unresolved target 

detection 
 

 
The primary objective of this evaluation is to develop an operationally feasible system that balances technical 
capabilities with practical limitations. 
 
2.1 Hyperspectral Performance Parameters 
As stated earlier, a hyperspectral imager captures 
light from the scene and decomposes it into distinct 
color bands. Table 1 defines the evaluation criteria 
that this paper aims to satisfy. To start, the design 
trade balances three key factors: the number of 
spectral channels, the size of the sensor, and the 
system’s sensitivity. 
An important data point captured in Fig 3 is the 
spread of the optimal wavelengths needed for the 
characterization covers 2.5 – 8.5μm. In [14], it is 
stressed that the SDA enterprise needs to expand 
the EO detection operations to include all visible 
through long-wave IR. The Near Infrared 
Spectrograph (NIRSpec) on the Webb telescope 
uses detectors that have high detection sensitivity 
over 0.6 – 5μm [15]. BAE has been working to 
expand this TRL 9 detector into an Ultra-Wideband 
sensor that maintains the high sensitivity and 
increases the detection range to 0.4 – 9μm. In design 
trades for standard imaging system, total signal 
captured is an important trade parameter, whereas an HSI the minimum signal needed for a color channel drives the 
design. Fig 5 shows the trade comparing target size, observer range from the target, and aperture size. All of the blue 

lines represent a distance of 1,000 km 
between the observer and the target. 
The cyan and green lines are for 
5,000km and 10,000km respectively. 
The line styles within the figures 
represent different aperture sizes. For 
all cases, the minimum captured signal 
occurs around 3μm which is close to 
one of the optimal bandwidths from 
[3]. Fig 4 contains the optical layout. 
A standard off-axis TMA design was 
selected to keep a compress the layout 
of the telescope. There are two optical 
paths that are imaged simultaneously 
by the detector. The image path is 
colored magenta and is used for target 

Fig 5: Starlink and a 6U CubeSat spectral fluxes for various 
aperture sizes and distances between the target and observer 

Fig 4: High TRL off-axis Three-Mirror Anastigmat (TMA) Imager and 
Hyperspectral instrument optical paths (Left). (Right) Close-up of the 
placement of the imaging path (dots and streaks) and spectral path (rainbow) 
on the detector. 



acquisition. The space vehicle will track the desired targets (dots in the image). Once tracked, the space vehicle will 
slew one of the dots into the pick-off mirror to place the target into the hyperspectral imaging path (blue lines). The 
51 spectral channels are created when the target data is relayed through a Zinc Sulfide (TRL) prism. Then another set 
of images are captured in a small strip on the FPA which contains the hyperspectral content (see Fig 1) of the target. 
The integration times depend on the size of the target, but for the trade, it ranges from 0.08 – 2ms. Other design 
parameters for the HSI are a f-number of 6, field of view 1.2o, with a 30cm aperture and 250nm RMS wavefront error. 
Beyond the re-imaged pupil and including the FPA, the temperature needs to be maintained to 40K to control the dark 
current. The rest of the optical path is held at 55K to control the near field emissions. There are two types of cooling 
satellites, active and passive. Passive cooling requires large radiators and shields to keep the sensor in constant shade. 
Active cooling uses mechanisms and electronics. Active cooling units are much smaller than the large shades and 
radiators of passive cooling. The state-of-the-now solutions are called cryo-cooler. A cryo-cooler is a compact, closed-
cycle, cooling systems that can maintain temperatures without the use of an expendable refrigerant. Two examples 
are BAE’s TRL 9 Klondike [16] and Kodiak [17] cryo-coolers which have sufficient cooling power to cool an entire 
telescope to these temperatures while imparting very little jitter to a space vehicle. 
 
2.2 Target Modeling and Data Generation 
The evaluation of performance for the HSI sensor design is estimated using high-fidelity, simulated data, where 
materials with known and measured signals are overlayed onto 3-D models. The models are then articulated within 
the FIST/COAST [24] ray-tracing tool to generate unresolved signatures over differential geometries at mission 
relevant ranges. This method improves upon faster methods which use simple models such as spheres and cubes with 
mixed signals for data generation for unresolved imagery but lack the real impacts of spacecraft complexity and 
viewing that is necessary to fingerprint one satellite from another. Every RSO in orbit will have a distinct fingerprint 
that is deterministic from its geometry and material makeup. All spectral content for an unresolved target is contained 
within a single pixel. With the inclusion of geometry, the reflection and the emission profile generate a unique 
fingerprint that is identifiable. 
 

 
Fig 6: (Left) 1U x 3U CubeSat. (Middle) NASA DSCOVR. (Right) NASA CALIPSO 

 
Three, highly detailed models selected from NASA’s model database [10] are shown in Fig 6 and detailed in Table 2 
which covers a range of target sizes. 
 

Table 2: Target definition with bounding dimensions 
Small Sized Target Medium Sized Target Large Sized Target 

CubeSat DSCOVR CALIPSO 
0.1m x 0.1m x 0.34m 3.1m x 1.1m x 1.2m 9.5m x 2.4m x 1.9m 

 
While the models are geometrically accurate, they contained no material information. Materials were added to each 
model based on spectra collected and stored in BAEs database. The materials selected are primary materials used on 
spacecraft exteriors, such as solar panels, thermal and structural components, and paints which would be the largest 
contributors of spectra an HSI sensor would observe. 
 

Table 3: Materials applied to the Target Models 
Category Material ID Material Name 

Metal 1 Aluminum Alloy 
Metal 2 Titanium 
Metal 3 Magnesium Alloy 



Category Material ID Material Name 
Paint/MLI 4 White Paint 
Paint/MLI 5 MLI 
Paint/MLI 6 Aluminized Mylar 

Glass 7 Fused Silica 
Glass 8 Solar Cell 
Glass 9 Silicon, Solar Cell 

 
The materials selected in Table 3 are common and found on many spacecrafts’ external surfaces. For each model in 
Fig 6, the black panels had a glass material applied for the solar cells. The gray portion of the model used a metal, and 
on one surface of the body was covered by a Paint/MLI material. A total of 18 unique model and material combinations 
were generated to create the simulated data, as shown in Table 4. 
 

Table 4: Target Model and Material Combinations 
Target 
Model 

SV 
Material ID 

Solar Panel 
Material ID 

Single Surface 
Material ID 

CubeSat A 1 4 7 
CubeSat B 2 5 8 
CubeSat C 3 6 9 
CubeSat D 1 5 9 
CubeSat E 2 6 7 
CubeSat F 3 4 8 

DSCOVR A 1 4 7 
DSCOVR B 2 5 8 
DSCOVR C 3 6 9 
DSCOVR D 1 5 9 
DSCOVR E 2 6 7 
DSCOVR F 3 4 8 
CALIPSO A 1 4 7 
CALIPSO B 2 5 8 
CALIPSO C 3 6 9 
CALIPSO D 1 5 9 
CALIPSO E 2 6 7 
CALIPSO F 3 4 8 

 
Capturing the effects of the geometric interactions between the Sun, target model, and observer required generating 9 
HSI models placed at different azimuth, elevation, and ranges. Varying the elevation, azimuth, and range accounts for 
the glint and other non-Lambertian reflections, see Fig 7. The two elevation angles used are 0o and 30o. The two 
azimuth angles are 0o and 40o. The observing HSI sensor were placed at 6,000km, 8,000km and 10,000km. For each 
sensor location, the Solar Phase Angle (SPA) was shifted 180 times to capture the effects of incident energy on the 
targets. Since the HSI is using an Ultra-Wideband detector (0.4 – 9μm), changing the solar phase angle impacts the 
reflection and emission profiles of the targets. At some phases, the target spectrum will be dominated by the visible 
spectrum, and when the target is in shadow, it will be dominated by its thermal emissions.  
 

Fig 7: Sensors positioned at three target ranges 
along each of three lines of sight. The DSCOVR 
model (centered at the origin, oriented 
consistently with the COAST simulations, but 
not shown here to scale), provides a reference to 
the sensor viewing angles. 



 
Fig 8: Example spectrum for CubeSat A, DSCOVR A, and CALIPSO A at different SPAs, elevations, and azimuths. 
The observing HSI is located 10,000km from the target models. 

 
DSCOVR, CubeSat, and CALIPSO are represented by the blue, orange, and green colored lines. The left column of 
figures contains spectra for each target with a SPA of 0o. The middle column shows the spectral captured with an SPA 
of 57o. The right column of data happens with an SPA at 90o. From top to bottom, in the row direction, the elevation 
and azimuth change. Changes in the SPA greatly impact the visible and infrared lobes. Different elevations and 
azimuths capture different phases (geometry) of the target models. At a SPA of 57o and looking from top to bottom, 
the reflected portion of the spectrum (< 4μm) significantly changes. This is due to the non-Lambertian reflection 
(glints) of that portion of the spectrum dominating (or not). 
 
The FIST/COAST [24] generated data contains 1,677 color channels per captured spectrum. To match the expected 
output of the HSI sensor, the 1,677 color channels are converted to 51 color channels using the Signal Response 
Function (SRF) of the as-designed HSI. 
 

 
Fig 9: (Top) The HSI normalized SRF for all 51 channels. (Bottom) A fully simulated spectrum (blue line) and the 
reduced spectrum with each of the 51 channels coverage 



 
In total, over 29,000 spectra were generated for the training, validation, and verification data sets. Every spectrum had 
1,677 channels of color defined (blue line in Fig 9). Each data set was reduced using the SRF down to 51 channels of 
color (black line example in Fig 9, with the center wavelength marked with dots) to match the HSI design. The shade 
regions shows the portion of the spectra that was reduced to the small channel. NOTE: the color of the shaded region 
matches the color directly above it on the top plot.  
 

3. CHARACTERIZATION AND IDENTIFICATION 
 
The ability to identify individual satellites by characteristics other than their kinematic state in short timelines is 
necessary to reduce cross-tagging of SDA observation. We define identification in this research as the ability to tell 
distinct copies of the same satellite configuration, i.e. we can differentiate between two cubesats based only on the 
spectral signatures. This identification is analogous to identifying a single “tail number” from constellation of same 
satellites, such as Starlink, or Thousand Sails. 
 
We define characterization in this research as the ability to infer information about any satellite, based on the 
signature. An example of this would be that certain material combinations (and their spectral signatures) and ratios 
would be indicative of radio-frequency sounders, while other material compositions would be indicative of EO 
systems. This ability to infer mission, based on material compositions can be valuable especially in new launches 
where the intent and capability of a new space vehicle are unknown and not easily imaged. 
 
The exploitation of hyperspectral imagery using ML-based approaches has been explored over the past decade, in 
applications such as agricultural entity characterization [18][19][20] and has more recently been expanded to space-
object-identification efforts [3][21]. Many of these works have specifically made use of decision-tree-based 
approaches to performing classification, which Xu et al. attributes to the complexity of deep neural networks which 
comes from having larger parameter sizes, which require more powerful hardware to utilize effectively. As such, the 
present work uses gradient boosting – a decision-tree-based approach – approach to characterize space-object material 
compositions. 
 
The present study focuses on two experiments: an identification experiment, and characterization experiment. The 
first experiment assesses the ability of the ML-based approach to identify the “tail numbers” of each target. In Table 
3, the six tail numbers correspond to the material composition of the target model, cases A – F. The second experiment 
expands this capability into the characterization of an unknown satellite. In this experiment, the classifiers are trained 
on two of the target models and all material cases, CubeSat A - F and CALIPSO A – F. Then unknown targets 
corresponding to DSCOVR cases A – F are characterized by the ML classifiers. 
 
By performing these two experiments on the synthetic hyperspectral dataset, the authors will establish a) ML-based 
approaches perform very well in identifying the tail number of a known target model, and b) ML-based approaches 
demonstrate promising performance in characterizing an unknown target model by identifying the material 
composition of that satellite as compared to existing material signature models. 
 
3.1 Data Partitioning 
In performing the tail number identification and material characterization experiments, the data generated must be 
split into a training, validation, and test set as in Fig 10. For each experiment, the training set represents the “known” 
set of samples from which the classifiers will learn defining characteristics. The validation set represents data from 
this distribution which has not been explicitly handed to the classifier to learn from and is used to tune hyperparameters 
(section 3.3). The test set represents the set of samples containing similar features to the trained data from a potentially 
different distribution. As the experiments vary on what they consider to be known and unknown, each requires its own 
variation of the data partitioning.  
 



For the first experiment, by assuming every target model and all 
its tail numbers (A – F) are known, a standard stratified data 
split can be performed on the whole dataset. This means 70% of 
the data will belong to the training set, 10% of the data will 
belong to the validation set, and 20% of the data will belong to 
the test set, where stratification ensures each set has an equal 
number of each distinct satellite model within it. 
 
For the second experiment, assuming only CubeSat A – F and 
CALIPSO A – F are known, then the training and validation sets 
should come from a distribution of these samples. Exactly 2/3 
of our dataset belong to these two cases. As such, the training 
and validation set come from an 87.5% / 12.5% split of these 
samples. The test set consists solely of 1/3 of samples belonging 
to DSCOVR A – F. This is analogous to having data on multiple 
satellite configurations with material compositions (as may be 
found by various mission packages on similar buses). The test 
data is then analogous to having seen a new satellite 
configuration with similar material composition, which could 
imply the same mission package as other satellite 
configurations. 
 
3.2 Data Processing 
For both experiments, the models were trained on the 51-channel no-noise pristine data (Fig 9). To mitigate the impact 
of relative intensity between target models of different sizes, the values across the 51 color channels of each individual 
spectrum in the data have been min-max normalized. This is performed to demonstrate that the algorithms are using 
material signatures to discriminate, not the relative intensity or brightness which can be done with broad-band EO 
systems. Within each experiment, there will be a test set of the same samples, one which is pristine (no noise added), 
and one which contains noise. Pristine data is used as a control, and the noisy data is modeled to include some expected 
effects of a real sensor. The noise added to this set consists of Gaussian white noise, representing detector read noise, 
and Poisson noise, representing scene shot noise, and were incorporated into each of the 51 color channels for data 
within the respective test set for each experiment. A visualization of each of these test buckets can be found in Fig 11. 
 

3.3 Machine Learning Framework 
The ML-based approach described in the present work consists of a series of individual binary classifiers for each of 
material configurations A – F. Each of these binary classifiers is an instance of an XGBoost [22] module, which is a 
specific implementation of a gradient-boosted decision tree. Each of these binary classifiers are trained to minimize 
the binary-cross-entropy loss function. For each classifier, a Bayesian optimization routine, implemented with Optuna 
[23], is wrapped around the training process to optimize the hyperparameters of the classifier to produce the greatest 
performance. After the optimal set of binary classifiers is produced, testing is performed by running each test-set 
sample through each of the binary classifiers to collect a probability score, after which the highest probability of the 
six is selected to represent the predicted class. This set of predicted classes is used to compute several metrics, with 
the primary metric considered in this study being the true positive rate (recall) between the predicted and actual classes. 
Recall is a proportion of correct predict of a class to the actual number of instances for a given class, which measures 
how many samples belonging to that class have been correctly classified. A visualization of the machine-learning 
pipeline described here can be found in Fig 12. 

Test  
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Simulated 
Spectral 

Signatures 

Noisy 
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Poisson 
Noise 

Read 
Noise Test  

Fig 10: Partitioned data buckets representing the 
format of the data partitions for the tail number 
identification and material characterization 
experiments. 

Fig 11: Test-set noising process 



 
Fig 12: Pipeline describing the process to handle the data and use it to perform identification and characterization 
experiments. 

 
4. RESULTS 

 
Having established a pipeline by which the data could be processed and digested by ML-based classifiers, experiments 
were performed to (a) identify specific versions (“the tail number”) of a known satellite model, and (b) characterize 
an unknown satellite by identifying a material composition like known satellites. During testing, a sample consists of 
the normalized intensity across the 51 channels and associated meta-data. This is analogous to a single less than 1 
second observation from the HSI sensor. 
 
4.1 Known Target Model Tail-Number Identification 
The experiment to identify a known target model can be broken up into the three individual target models for which 
this test was performed: CubeSat, DSCOVR, and CALIPSO. Each of the classifiers for cases A – F have been trained 
on 70% of the pristine samples, tuned using 10%, and tested on the final 20%. The final 20% has two variants for 
which testing was performed, the pristine version and the noised version. As these spectra are passed through the six 
binary classifiers, the one with the highest probability score is taken to be the prediction for that spectrum This 
prediction is then run against the true prediction for every sample in the test set, from which a confusion matrix can 
be built to represent the ratio of correct predictions to mistakes, broken down by individual satellite configurations. 
This can be seen in Fig 13, where the left column demonstrates that predicting the tail number of a known satellite 
body without noise is done correctly for all test samples. When realistic impacts of shot and read noise are included, 
performance degrades as expected. Excitingly, the largest degradation impact of noise (CubeSat–A) detects more than 
75% of samples belonging to that configuration using a space-based 51 channel HSI system where each sample comes 
from a less than 1 second observation. Apart from CubeSat-C and CubeSat-D, greater than 92% of all samples are 
correctly identified for all other cases. In fact, the average true positive rate for all CubeSat cases was 89%, for all 
DSCOVR cases was 96% and for all CALIPSO cases was 99%. 



 
Fig 13: Confusion matrix of tail number predictions on known satellite models for both pristine test set (left column) 
and noisy test set (right column) 
 
4.2 Unknown Target Model Material Characterization 
The experiment to characterize the material composition of an unknown target model can be broken up into the two 
individual target models which the classifiers will be trained on, CubeSat and CALIPSO, and the one individual target 
model which the performance will be evaluated, DSCOVR. Each of the classifiers for material compositions A – F 
have been trained on 87.5% of the pristine samples in CubeSat and CALIPSO, tuned using the other 12.5%, and tested 
on the entirety of the DSCOVR data. The DSCOVR test was also performed on the pristine version and the noised 
version of the data. The testing process is shared with that of the previous experiment, where the series of binary 
classifiers is iterated to aggregate probabilities, for which the maximum is selected. The confusion matrix 



demonstrating these results can be seen in Fig 14. The left matrix demonstrates the prediction of the tail number of an 
unknown satellite model without noise. In the worst case (DSCOVR-A), the classifier can correctly characterize 61% 
of the total instances of that case, but in the best case (DSCOVR-E), that goes up to 100%. In most cases, the inclusion 
of noise does not degrade performance by much. The most noteworthy drop appears in the classification of Material 
Case D, where the model is 11% less likely to characterize this material case in the presence of noise. Across all cases, 
the true positive rate does not change much with the inclusion of noise, with merely a drop from 75% to 74%.  
 

 
Fig 14: Confusion matrix of tail number predictions for the unknown satellite body for both the pristine test set (left 
matrix) and noisy test set (right matrix) 

 
4.3 Important Wavelengths 
During training of the classifiers used in these experiments, the architecture was designed to record properties of the 
decisions used in the gradient-boosted decision trees. That is, when a split was made between measured values at the 
distinct wavelengths, the amount of information gained, typically measured by number of samples separated between 
different categories was measured, and used to rank how important that wavelength is. Using this process, it was 
possible to extract the importance of each wavelength as it pertains to making classification decisions. Since the system 
in place aggregates decisions from six different classifiers, the wavelength importances were summed to determine 
the overall importance of each band to the system. 
 
By analyzing how important each wavelength is, it was possible to compare how feasible it is to perform these 
experiments using a ground-based system in place of a space-based one. This is done by comparing the significant 
bands collected from each experiment against atmospheric absorption windows. For this analysis, the highest bands 
responsible for 99% of classification decisions were compared against the corresponding ground-based bands with at 
least 50% transmissivity through the atmosphere. 
 
For the case of the known satellite body tail-number identification experiment, Fig 15  shows the importance of every 
wavelength broken down by satellite model type, with a background curve representing the atmospheric transmission 
window. For the CubeSat tail-number classifiers, the number of bands required to make 99% of the classifications is 
43. 37% of these bands fall in ranges with less than 50% atmospheric transmission. For the DSCOVR tail-number 
classifiers, the number of bands required to make 99% of the classifications is 41. 32% of these bands fall in ranges 
with less than 50% atmospheric transmission. For the CALIPSO tail-number classifiers, the number of bands required 
to make 99% of the classifications is 43. 35% of these bands fall in ranges with less than 50% atmospheric 
transmission. 
 
For the case of the unknown satellite body material characterization experiment, Fig 16 shows the importance of every 
wavelength broken down by satellite model type, with a background curve representing the atmospheric transmission 
window. The number of bands required to make 99% of the classifications is 43. 40% of these bands fall in ranges 
with less than 50% atmospheric transmission. 
 



 
Fig 15: Feature importance plots overlayed with the atmospheric windows for Experiment 1 



 
Fig 16: Feature importance plots overlayed with the atmospheric windows for Experiment 2 

 

 
Fig 17: A heatmap detailing the relationship between wavelength, transmission, and ML-importance in identification 
and characterization. 

 
Fig 17 is an alternative way to view Fig 15 and Fig 16. Along the x-axis defines the center wavelengths of the HSI. 
The y-axis represents the average atmospheric transmission over the channel bandwidth (defined in Fig 9). The color 
bar or heatmap characterizes the importance of that band to the ML-algorithm. Lighter colors are of lower importance, 
and darker colors denote higher importance. For CubeSat, DSCOVR, and Experiment 2 (characterizing the unknown 
target), many of the higher important wavelengths have an atmospheric transmission below 30%. Only CALIPSO has 
most of their important wavelengths in an atmospheric window. However, in ALL cases, the visible through shortwave 
IR spectrums were of medium to lower importance. 



5. CONCLUSION 
 

The integration of space-based Hyperspectral Imaging (HSI) systems with Machine Learning (ML) algorithms 
presents a promising solution for enhancing Space Domain Awareness (SDA) and achieving space superiority. By 
leveraging the unique spectral signatures of satellites, a space-based HSI system can provide timely and broad area 
characterization and identification of objects in space. This paper has presented a design of a HSI sensor and ML 
algorithm suite which creates a system that (a) can detect unresolved satellites ranging from 30cm to 13m at 10,000km 
range from the observer and (b) identify or characterize a satellite from its material properties. This design shows that 
space-based HSI systems are not a “far in the future” capability but could be fielded in the near-future given the high 
TRL nature of the majority of the system components.  
 
This system has shown that satellites of the same geometry can be individually identified within a single HSI 
observation. This can be used to discriminate between two similar satellites, where one may be benign and the other 
may have ill-intent, based on the material differences of those satellites’ payloads, where the different materials 
generate a unique signature that can be used to assign an individual “tail number” to that satellite.  The system as 
modeled can identify the individual satellite with an average rate greater than 89% for the CubeSat and greater than 
96% for DSCOVR and CALIPSO tail numbers.  
 
When the system is challenged to characterize a new satellite configuration (3-m RSO that was not in any training 
data), the system can identify the material composition an average success rate greater than 74%. This would enable 
an observer to determine the material composition of this new satellite and estimate its mission and capabilities from 
a single observation. This is possible because certain materials and ratios are indicative of missions, such as the 
materials of RF-sounding apertures.  
 
The study has shown that for accurate characterization and identification of geometrically accurate targets, many of 
the important wavelengths reside within the atmospheric gaps that block a ground-based HSI sensor from detecting. 
Further analysis of the results has shown that many of these wavelengths, reside in areas of the atmospheric windows 
with a transmission less than or equal to 50%. 
 
The limitations of ground-based HSI systems such as atmospheric interference and restricted spectral ranges, can be 
overcome with a space-based system. By collecting data across multiple wavebands, including visible, near-infrared 
and long wave infrared, a space-based HSI system can create a comprehensive and accurate picture of the space 
environment. 
 
The proposed system, combining HSI and ML algorithms has the potential for: 

1. Timely and accurate characterization and identification of objects based on their intrinsic material properties. 
2. Providing real-time updates on the space domain, enabling more effective space control. 
3. Enhancing SDA capabilities, supporting the Space Force’s mission to achieve space superiority.  

 
By advancing the capabilities of space-based HSI systems and ML algorithms, we can improve our understand of the 
space environment and enhance our ability to control and protect our space assets. 

 
6. ABBREVIATIONS AND ACRONYMS 

 
Acronym Description 

EO Electro-Optical 
FWHM Full Width Half Max 

HSI Hyperspectral Imager 
IR Infrared 
ISS International Space Station 
LBT Large Binocular Telescope 
LEO Low Earth Orbit 
ML Machine Learning 

NIRSpec Near Infrared Spectrograph 
RBG Red - Green - Blue 
RSO Resident Space Objects 



Acronym Description 
SDA Space Domain Awareness 
SPA Solar Phase Angle 
SRF Signal Response Function 

SWAP Size Weight and Power 
TMA Three-Mirror Anastigmat 
TRL Technology Readiness Level 
UV Ultra-Violet 
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