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Figure. 1 A simplified metabolic network of seed TAG synthesis incorporating PDCT enzyme. The possible routes for acyl chain
incorporation into TAG in oilseeds are shown. The red stars indicate possible labeling to enzymatic reactions with [14C]
incorporated from exogenous acetate. Solid lines: flux through glycerol backbone. Dashed lines: acyl fluxes. Abbreviations-lipids:
PDCT, phosphatidylcholine:diacylglycerol cholinephosphotransferase; DAG, diacylglycerol; TAG, triacylglycerol; G3P,
glycerol-3- phosphate; LPA, lysophosphatidic acid; LPC, lysophosphatidylcholine; PA, phosphatidic acid; PC,
phosphatidylcholine; PUFA, polyunsaturated fatty acids; FFA, free fatty acids; Mal-ACP, Malonyl-[acyl-carrier protein].
Abbreviations-enzymatic or transport reactions: ACCase, acetyl-CoA carboxylase; CPT, CDP-choline:diacylglycerol
cholinephosphotransferase; CPTr, CPT reverse; DGAT, acyl-CoA:diacylglycerol acyltransferase; Acyl-ACP; acyl-[acyl-carrier
protein]; GPAT, glycerol-3-phosphate acyltransferase; LPAT, lysophosphatidic acid acyltransferase; LPCAT,
lysophosphatidylcholine acyltransferase; PAP, phosphatidic acid phosphatase; PDAT, phospholipid:diacylglycerol
acyltransferase; PDCT; phosphatidylcholine:diacylglycerol cholinephosphotransferase; PLC, phospholipase C; PLD,
phospholipase D; FATA, acyl-ACP thioesterase A; FATB fatty-acyl-ACP thioesterase B; SAD stearoyl-ACP desaturase; LACS
long chain Acyl-CoA synthase. The figure was designed using Biorender (https://biorender.com/) under the agreements
H#WP24EXP3FQ and #MA24EXOUNC.
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Figure. 6 The T-DNA insertion used to transform Camelina sativa and the gene expression confirmation of PDCT using qRT-
PCR. (A) the modified pCambia RedSeed binary vector containing seed-specific cassettes for expression of the Camelina
PDCT under the control of seed-specific beta-type Phaseolin promoter from Phaselous vulgaris. DsRed fluorescence marker
and the hygromycin-resistant hpt gene for selection of transformants are shown in the phas::PDCT construct. (B and C) the
analysis of PDCT transcript expression in Camelina developing seeds of T3 generation homozygous transgenic lines
overexpressing PDCT and in their parental non-transgenic WT in 10-15 and 16-21 DAF, respectively. (D) Immunoblot using
1:500 dilution of HA-tag primary antibody and 1:10000 dilution of Licor Goat anti mouse secondary antibody 800cw in each
well on the 12% SDS-PAGE gels, ~ 50ug of total protein was loaded in SDS gel as determined by the Dot plot Assay. A
PVDF membrane was used for the transfer and this image was exposed using Licor at 800cw. CsPDCT is ~ 32 kDa. Proteins
were extracted from 14 days after flowering (DAF) seeds. Values in (B and C) are the means of fold change + standard error
SE estimated from three independent gRT-PCR measurements. Gene expression levels were normalized with respect to the
internal control Actin2 gene. The value in WT samples were always adjusted to 1 as they are calibrators for normalizing
relative gene expression. DAF, days after flowering; Nos-p, nopaline synthase promoter; Napin-p, napin promoter from
Brassica napus; MCS, multiple cloning site; Nos-t, nopaline synthase terminator; Act2-t, Actin 2 terminator.
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Figure.7 Effect of PDCT overexpression on Camelina morphological characteristics and seeds attributes. The
morphology of the 8-weeks old plants (A), average seed yield (B), average number of branches (C), average number
of siliques/pods (D), average seed size (E), average number of seeds (F) are shown. Data are means + standard error
(SE) on measurements on homozygous T4 seeds from individual plants (n= 6-8) of each genotype grown under
controlled growth conditions. Asterisks denote significance of differences between WT and PDCT transgenic lines
(Dunnett test *P < 0.05).
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Figure. 8 Effect of PDCT overexpression on Camelina seed oil attributes. % oil content (A), oil yield (B), and FAME
composition (C) of WT and T4 transgenic homozygous seeds from individual plants (n= 6-8) of each genotype grown
under controlled growth conditions, relative to their parental WT plants. The data from selected elite lines expressing
PDCT gene are shown. Asterisks denote significance of differences between WT and PDCT transgenic lines (Dunnett
test *P < 0.05).
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Figure. 9 Fatty acid compositions of TAG, DAG, and PC extracted from developing seeds of WT and PDCT expressing
lines. Seeds were harvested 15 and 20 days after flowering (DAF), the periods at which the oil synthesis rate is maximum.
Shown are FAME compositions of common fatty acids in WT and T3 transgenic homozygous seeds from three
independent biological replicates (n= 3) of each genotype grown under controlled growth conditions. The data in (A) and
(B) are FAME in TAG at 15 and 20 DAF, respectively. The data in (C) and (D) are FAME in DAG at 15 and 20 DAF,
respectively. The data in (E) and (F) are FAME in PC at 15 and 20 DAF, respectively. The data from selected elite lines
expressing the PDCT gene and WT are shown. Asterisks denote significance of differences between WT and PDCT
transgenic lines (Dunnett test *P < 0.05). TAG: triacylglycerol, DAG: diacylglycerol, PC: phosphatidylcholine. nd, not
detected.
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Figure. 10 Radioactivity [disintegrations per minute (DPM)] of the radiolabeled total lipids in Camelina embryos 15
DAF at 45 and 90 min of incubation with [14C]acetate. WT and two elite PDCT expressing lines are shown. The flux
change rates are shown. Data is disintegrations per minute DPM/embryo. Asterisks denote significance of differences
between WT and PDCT transgenic lines (Dunnett test *P < 0.05).
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Figure. 11 TLC analyses and phosphoimaging quantification of [14C]Iipids in Camelina embryos. Panel A shows TLC
separation of neutral and polar lipids in 15 DAF embryos at 90 min of incubation with [**C]acetate. WT and two elite PDCT
expressing lines are shown. Panel B shows the quantification of radioactive content in TAG lipids in PDCT embryos relative
WT embryos cultured with [**Clacetate for 45 and 90 minutes. The small panel indicates the rate of change of [**C]acetate
content between 45 and 90 min of culturing with [*C]acetate in TAG. Data is disintegrations per minute DPM/embryo. TAG:
triacylglycerol, DAG: diacylglycerol, PC: phosphatidylcholine. Asterisks denote significance of differences between WT and
PDCT transgenic lines (Dunnett test *P < 0.05).
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Figure. 12 Phosphoimaging quantification of [14C]lipids in Camelina embryos. Panels A and B show the quantification of
radioactive content in DAG and PC lipids, respectively, in PDCT embryos relative WT embryos cultured with [**C]acetate for
45 and 90 minutes. The small panel in A and B indicates the rate of change of [**C]acetate content between 45 and 90 min of
culturing with [**Clacetate in DAG and PC, respectively. Panel C shows the ratio of relative PC content to the relative of DAG
content in WT and transgenic PDCT embryos. WT and two elite PDCT expressing lines are shown. Data is disintegrations per
minute DPM/embryo. TAG: triacylglycerol, DAG: diacylglycerol, PC: phosphatidylcholine. Asterisks denote significance of
differences between WT and PDCT transgenic lines (Dunnett test *P < 0.05).



